

M – Age: A Framework to Process Range

Aggregate Query in Big Data using MongoDB

 Nandhini N Pavithra Sridhar

 M.Tech, IT Asst .Professor, Dept of ISE

AMC Engineering College AMC Engineering College

Bangalore,India Bangalore, India

Abstract—Range searching is a fairly well-structured

problem in computational geometry. Big Data deals with class

of problems called Range Aggregate Query problems, the aim

is to deal with some composite queries involving range

searching, where one needs to do more than simple range

reporting or counting.A range query applies an aggregate

function over all selected cells of an OLAP data cube. The

essential idea is to precompute some auxiliary information

that is used to answer ad hoc queries at runtime. In order to

analyse and process range aggregate query M-AGE : A

framework is proposed in this paper. Existing approaches

were dealt only with adhoc queries and results yielded were

not satisfactory. Here M-AGE is implemented on linux

platform and performance is evaluated on very large park

data records .M-AGE supports range queries and also runs

multiple servers. When a range aggregate query arrives it is

split based on the Balanced Partitioning algorithm and

distributed across multiple shards(A shard is nothing but a

master with one or more slaves).Queries here return specific

fields of documents and also includes user defined JavaScript

functions. JavaScript is used in queries ,aggregate

functions(such as MapReduce)and sent directly to the

MongoDB to be executed. M-AGE has O(1) time complexity

for the updates of data and time complexity for range

aggregate queries where N happens to be the unique tuples,P

happens to be the partition number B happens to be the

bucket in each of the histogram.This M-AGE framework

there by reduces the cost of both network communication and

local file scanning and has better performance compared to

hive.

Key Words— Big Data, MapReduce, MongoDB, Multiple

Servers, Range Aggregate Query.

I. INTRODUCTION

We are now living in the digital world.With the

increase in digitization the amount of structured and

unstructured data being created and stored is exploding.

The data is generated from various sources – transactions,

social media, sensors, digital images, videos, audios and

click streams for domains including healthcare, retail,

energy and utilities. It is increasing becoming imperative

for organisations to mine this data to stay competitive. The

volume, variety, and velocity of Big Data[1] causes

performance problems when created, managed and

analysed using conventional data processing techniques.

Huge information examination is carried out to find out

patterns of different social perspectives and inclinations of

different individual practice routines. This forms a

platform to investigate crucial inquiries concerning the

mind boggling world. These included related works to

assemble a productive speculation procedure, and

investigated the enormous behavioural information sets

identified with account and returned a benefit of even 326

percent higher than that of an arbitrary venture

methodology. Choi and Varian[2] introduced gauge

representations to figure monetary markers, for example,

social unemployment, vehicles deal, and even destinations

for individual voyaging. It is now vital and required to

give proficient strategies and devices to enormous

information investigation.So in processing this large

quantities of data a main problem arises which is to make a

summary which deals with approximate query answering.

Random Sampling is yet another method which yields

flexible summaries and supports subset-sum queries and

confidence bounds. But when Classic sample-based

summaries[3] are concerned which are primarily designed

for arbitrary subset queries take into account the structure

of the keys.So it can be understood here that the specific

structure,such as hierarchy, order or product space makes

range queries more relevant for Big data analysis. Range

aggregate queries play an important role in OLAP(On-line

analytical Processing Systems) and GIS(Geographic

information Systems) in summarising information. Range

aggregate queries are also used as an important tool in

decision management, online suggestion, trendestimation

and so on. So it is a challenging task to estimate and give

accurate results for range aggregate queries in big data

environments. Earlier Prefix-sum cube method[5] was

used in OLAP to increase the performance of range

aggregate queries along with Online aggregation. But with

these approaches users cannot obtain a satisfactory

answering with approximate accuracy as early as in the

beginning stages.

II. RELATED WORK

The range-aggregate query problem has been studied

by Sharath Kumar and Gupta[3] and Malensek [4] in

computational geometry and Geographic Information

Systems(GIS).The work is primarily focused on

approximating range aggregate query for real-time data

analysis in OLAP. Ho et al. was the first to present Prefix-

Sum Cube approach to solving the numeric data cube

aggregation [4] problems in OLAP. The essential idea of

PC is to pre-compute prefix sums of cells in the data cube,

which then can be used to answer range-aggregate queries

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

1

at run-time. However, the updates to the prefix sums are

proportional to the size of the data cube. Liang et al. [6]

proposed a dynamic data cube for range-aggregate queries

to improve the update cost. The prefix sum approaches are

suitable for the data which is static or rarely updated. For

big data environments, new data sets arrive continuously,

and the up-to-date information is what the analysts need.

The PC and other heuristic pre-computing approaches are

not applicable in such applications. An important

approximate answering approach called Online

Aggregation was proposed to speed range-aggregate

queries on larger data sets [7]. OLA has been widely

studied in relational databases [8] and the current cloud and

streaming systems [9], [10]. Some studies about OLA have

also been conducted on Hadoop and MapReduce [10], [11],

[12]. The OLA is a class of methods to provide early

returns with estimated confidence intervals continuously.

As more data is processed, the estimate is progressively

refined and the confidence interval is narrowed until the

satisfied accuracy is obtained. But OLA can not respond

with acceptable accuracy within desired time period, which

is significantly important on the analysis of trend for ad-hoc

queries.

III. EXISTING SYSTEM

The FastRAQ system is an approximate answering

approach that summarises accurate estimations quickly for

range aggregate queries in environments involving big data.

It first divides the data chunks into separate independent

partitions by using a balanced partitioning algorithm, and

by which a local estimation for each partition is generated.

So on the arrival of the range aggregate query , FastRAQ

obtains the result by summarising the local estimation of

every individual problem. The estimation sketch is a multi-

dimensional histogram which is built via the learned data

distribution. In FastRAQ, the attribute values can be both

numeric and alphabetic. The Key idea is so generate a local

query result using the balanced partitioning algorithm with

the stratified sampling model. So in FastRAQ the

numerical space of the aggregation – column is divided into

different groups and an estimation sketch of the group is

obtained. When a new record arrives it sis sent to the

partition depending on the current data distributions and the

number of servers available. . It first divides the data

chunks into separate independent partitions by using a

balanced partitioning algorithm, and by which a local

estimation for each partition is generated. So on the arrival

of the range aggregate query , FastRAQ obtains the result

by summarising the local estimation of every individual

problem.

A brief of the FastRAQ is shown in Fig 1.

Fig .1.FastRAQ framework.

Segment family construction for FastRAQ, which

incorporates three sorts of section families identified with

extent total questions. They are accumulation section

family, list segment family, and default segment family.

The collection segment family incorporates an

accumulation segment, the file segment family incorporates

different list sections, and the default column-family

incorporates different segments for further augmentations.

A SQL-like DDL and DML can be characterized

effectively from the blueprint.

A. Disadvantages

 Cost is produced by data transmission and

synchronization for aggregate operations.

 Scanning og local files to search selected tuples.

 The updating process includes delivering the

record each time to the specified partition.

 Range Cardinality tree produces additional

overhead.

 Cost of transmitting the local result of a partition

cannot be negligible.

IV. PROPOSED SYSTEM

Here in the proposed component, Ioutline an adjusted

segment calculation which works with stratified testing

model. In every partition, a specimen for estimations of the

accumulation section and a multi-dimensional histogram is

kept for estimations of the file segments. At the point when

a reach total question demand arrives, the nearby result is

the result of the specimen and an expected cardinality from

the histogram. This decreases the two sorts of cost all the

while. Earlier FastRAQ gives a decent beginning stage to

growing continuous noting strategies for huge information

investigation. At the point when an inquiry demand arrives,

it is conveyed into each partition. The cardinality estimator

(CE) is formed for the questioned territory from the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

2

histogram in every parcel. At that point we the appraisal

esteem is computed in every allotment, which is the result

of the example and the evaluated cardinality from the

estimator. Also I make use of the MongoDB here in the

proposed component. M-AGE combines sampling,

Histogram and data partition approaches to generate

accurate estimations involving big data. It is designed for

distributed range aggregate queries and it is shown to

achieve better performance results on both query and

update processing in big data. M-AGE basically comes

with MongoDB. It is a cross platform document oriented

database. MongoDB supports field, range queries, regular

expression searches. Queries can return specific fields of

documents and also include user-defined Java Script

functions.MongoDB provides high availability with replica

sets. A replica set consists of two or more copies of the

data. Each replica set member may act in the role of

primary or secondary replica at any time. The primary

replica performs all writes and reads by default. Secondary

replicas maintain a copy of the data of the primary using

built-in replication. When a primary replica fails, the

replica set automatically conducts an election process to

determine which secondary should become the primary.

Secondaries can optionally perform read operations, but

that data is eventually consistent by default.

A. Advantages

 M-AGE can be used as a tool in DBaaS.

 It can be used to find solutions of m*n format

problem. When there are m aggregation columns

and n index columns of the same record.

 M-AGE achieves 26 times of performance

improvement on count queries than Hive.

 Can apply on large data sets.

 M-AGE achieve better performance improvement

on range aggregate queries than Hive.

 It can search different index-columns of queried

ranges.

 The cost of merging due to union statements is

negligible.

V. SYSTEM ARCHITECTURE OF PROPOSED

SYSTEM

The data distributions are measured by the clustering

values of all index-columns and they also make use of the

learned knowledge to build what is known as the

histogram. So here the feature vectors are extracted from

the learned data set which will produce the vector set

through which the final clusters are formed. The common

K-means clustering method is used to produce the clusters.

Each cluster is assigned with a unique ID.M-AGE supports

multi-dimensional range queries which may include

multiple buckets of the same histogram. It uses a unique ID

for each record. The histogram is implemented as a

hierarchical tree structure which is called as the range-

cardinality tree(RC tree). A typical RC tree is depicted in

fig 3.The RC-Tree[13] includes three types of nodes. They

are root nodes, internal nodes and the leaf nodes. The root

node or the internal node always points to its children

nodes. A leaf node corresponds to one bucket in the

histogram. The leaf node only keeps the information and

the tuples values are always stored in the bucket files.

Buckets are independent of each other, the RC-Tree

structure and its construction process is quite similar to the

B+ tree. To improve the throughput of RC-Tree, a hash

table[14] for newly incoming data is introduced for

incremental updating process. The hash table consists of

multiple nodes which are identical to the RC-Tree’s leaves

nodes. If a new record is coming, it first writes into the

hash table, creates node if it does not exist, and then

appends the tuples values into a temporary data file. When

the number of nodes in the hash table reaches a threshold,

the hash table flushes nodes into the RC-Tree, and appends

the temporary files to the formal bucket data files. The

incremental updating process[15] will greatly improve the

throughput of RC-Tree in big data environments. The

following updating algorithm explains the incremental

updating process in RC-Tree.

Fig.2. System Architecture of M-AGE

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

3

Fig.3. RC-Tree structure.

Algorithm 1:Grouping

Step 1: Parse value of index-columns into key-value pairs.

Step 2: Search in bucket spreads.

Step 3: Search in hash table and get the target node.

Step 4: End

To query cached data in hash table, the process is the same

as Algorithm 2 to obtain cardinality estimator of the cached

data, and then the result is merged to the estimator into

CEmerge to compute the final cardinality estimation

Algorithm 2: Range Carnality Query algorithm.

Input:(Q,T,ho);

 Q: Select distinct count;

 T: the RC-Tree;

 ho :the edge range cardinality ratio.

Output : R;

 R:the range cardinality queried result.

Step 1: Locate the first node in RC-Tree by ColName;

Step 2:Scan the bucket data file;

Step 3:Merge into the cardinality estimator CEmerge;

Step 4: R<-h(CEmerge);

Step 5:return R.

VI. SYSTEM DESIGN

Partitioning is a process of assigning each record in a

large table to a smaller table based on the value of a

particular field in a record. It has been used in data center

networks to improve manageability and availability of big

data. The partitioning[13] step has become a key

determinant in data analysis to boost the query processing

performance[14]. The number of partitions should be kept

under some threshold in an applicable system. In big data

environments, a partition is a unit for load balancing and

local range-aggregate queries. In each partition, a dynamic

sample is calculated from the current loaded records.

Currently, M-AGE uses a mean value of aggregation-

column as the sample, which is Sample ¼ SUM=Counter,

where SUM is sum of values from aggregation-column,

and Counter is the number of records in the current

partition. A detailed balanced partition algorithm is shown

in Algorithm 3.

Algorithm 3: Partitioning.

Input:(R,VP);

 R: an input record;

 VP: the partition vector set.

Output : PID;

 PID: a partition identifier for partition p.

Step 1: Parse the input record R ;

Step 2: Compute the GID;

Step 3:Get the partition vector Vpi from VP with the GID

,and let Vpi = < GID,Vr >;

Step 4: Set the target partition identifier;

Step 5: Build the sample in partition PID;

Step 6: return PI

To ensure that data is balanced on each server, the

partition algorithm divides each group into a number of

partitions and sends to one server depending on the data

distributions.The input record R is sent to a partition given

by PID which is generated from its corresponding

aggregation-column.M - AGE uses approximate answering

approaches, such as sampling, histogram, and cardinality

estimation etc., to improve the performance of range-

aggregate queries. We use relative error as a statistical tool

for accuracy analysis. Relative error is widely used in an

approximate answering system. Also, it is easy to compute

the relative errors of combined estimate variables in a

distributed environment for M - AGE. In this section, we

analyze the estimated relative error and the confidence

interval of final range-aggregate query result.

Theorem:

∆𝑆 ̂ 𝑖𝑠 𝑎𝑛 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 ∆𝑆 𝑖𝑛 𝑏𝑖𝑔 𝑑𝑎𝑡𝑎 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑠.

Proof: According to Algorithm 3,the range aggregate query

result �̂� in each partition is expressed as follows :

�̂� = Count * Sample, (1)

Where Count is the estimated range cardinality obtained

from the histogram, Sample is a sample of values of

aggregation-column in the queried partition. The exact

range-aggregate result S is expressed as S = ∑ 𝑋𝑗,𝑛
𝑗=1 where

X is a selected tuple in the queried partition. According to

Eq.(1),the expectation of ∆𝑆 ̂can be expressed as:

E(∆𝑆) ̂ = E(|(S - �̂�)/S|) = E(|1-
𝐶𝑜𝑢𝑛𝑡

𝑛
|) (2)

Now the error transformation formula is used to analyse the

variance of .∆𝑆 ̂and it is expressed as follows:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

4

𝜎(∆𝑆) ̂ =√𝜎2(∆𝑆𝑎𝑚𝑝𝑙𝑒 + 𝜎2(∆𝐶𝑜𝑢𝑛𝑡),
(3)

The variance of estimated cardinality has been discussed in

[15], and the 𝜎(∆𝐶𝑜𝑢𝑛𝑡) asymptotically equals to
1.04

√𝑚
,where m is the number of register bit array. If m is set

to m=212,𝜎(∆𝑆)̂=0.026.

VII. RESULTS

The results that are shown are with FastRAQ in

comparison with Hive. FastRAQ is better than Hive in

terms of performance and it reduces the two types of cost

significantly.

Fig 4.The different queried ranges.

Here the results are shown with M-AGE and its

performance with MongoDB.M-AGE acts as a tool to boost

the performance in DBaaS. It can be shown that M-AGE is

significantly better than FastRAQ.

CONCLUSION

The key idea was to reduce the two types of cost which

were noted earlier in the existing systems. M-AGE is a new

framework deployed to ensure the same. It is mainly to

process and provide accurate results to answering range

aggregate queries in big data atmospheres. M-AGE solves

the 1:n format range aggregate queries problem, i.e., there

is one aggregation column and n index columns in a record.

REFERENCES

[1]. P. Mika and G. Tummarello, “Web semantics in the clouds,” IEEE

Intell. Syst., vol. 23, no. 5, pp. 82–87, Sep./Oct. 2008.

[2]. T. Preis, H. S. Moat, and E. H. Stanley, “Quantifying trading

behavior in financial markets using Google trends,” Sci. Rep., vol.
3, p. 1684, 2013.

[3]. H. Choi and H. Varian, “Predicting the present with Google

trends,” Econ. Rec., vol. 88, no. s1, pp. 2–9, 2012.
[4]. C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant,, “Range queries

in OLAP data cubes,” ACM SIGMOD Rec., vol. 26, no. 2, pp. 73–

88, 1997.
[5]. G. Mishne, J. Dalton, Z. Li, A. Sharma, and J. Lin, “Fast data in the

era of big data: Twitter’s real-time related query suggestion

architecture,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
[6]. W. Liang, H. Wang, and M. E. Orlowska, “Range queries in

dynamic OLAP data cubes,” Data Knowl. Eng., vol. 34, no. 1, pp.

21–38, Jul. 2000.
[7]. J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online

aggregation,” ACM SIGMOD Rec., vol. 26, no. 2, 1997, pp. 171–

182.
[8]. P. J. Haas and J. M. Hellerstein, “Ripple joins for online

aggregation,” in ACMSIGMOD Rec., vol. 28, no. 2, pp. 287–298,

1999.
[9]. E. Zeitler and T. Risch, “Massive scale-out of expensive

continuous queries,” Proc. VLDB Endowment, vol. 4, no. 11, pp.
1181–1188, 2011.

[10]. N. Pansare, V. Borkar, C. Jermaine, and T. Condie, “Online

aggregation for large MapReduce jobs,” Proc. VLDB Endowment,
vol. 4, no. 11, pp. 1135–1145, 2011.

[11]. T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J.

Talbot, K. Elmeleegy, and R. Sears, “Online aggregation and
continuous query support in MapReduce,” in Proc. ACM SIGMOD

Int. Conf. Manage. Data, 2010, pp. 1115–1118.

[12]. Y. Shi, X. Meng, F. Wang, and Y. Gan, “You can stop early with
cola: Online processing of aggregate queries in the cloud,” in Proc.

21st ACM Int. Conf. Inf. Know. Manage., 2012, pp. 1223–1232.

[13]. K. Bilal, M. Manzano, S. Khan, E. Calle, K. Li, and A. Zomaya,
“On the characterization of the structural robustness of data center

networks,” IEEE Trans. Cloud Comput., vol. 1, no. 1, pp. 64–77,

Jan.–Jun. 2013.
[14]. S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,

and P. Samarati, “Integrity for join queries in the cloud,” IEEE

Trans. Cloud Comput., vol. 1, no. 2, pp. 187–200, Jul.–Dec. 2013.
[15]. S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in practice:

algorithmic engineering of a state of the art cardinality estimation

algorithm,” in Proc. 16th Int. Conf. Extending Database Technol.,
2013, pp. 683–692.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACT - 2016 Conference Proceedings

Volume 4, Issue 22

Special Issue - 2016

5

