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Abstract—Range searching is a fairly well-structured 

problem in computational geometry. Big Data deals with class 

of problems called Range Aggregate Query problems, the aim 

is to deal with some composite queries involving range 

searching, where one needs to do more than simple range 

reporting or counting.A range query applies an aggregate 

function over all selected cells of an OLAP data cube. The 

essential idea is to precompute some auxiliary information  

that is used to answer ad hoc queries at runtime.  In order to 

analyse and process range aggregate query M-AGE : A 

framework is proposed in this paper. Existing approaches 

were dealt only with adhoc queries and results yielded were 

not satisfactory. Here M-AGE is implemented on linux 

platform and performance is evaluated on very large park 

data records .M-AGE supports range queries and also runs 

multiple servers. When a range aggregate query arrives it is 

split based on the Balanced Partitioning algorithm  and 

distributed across multiple shards(A shard is nothing but a 

master with one or more slaves).Queries here return specific 

fields of documents and also includes user defined JavaScript 

functions. JavaScript is used in queries ,aggregate 

functions(such as MapReduce)and sent directly to the 

MongoDB to be executed. M-AGE has O(1) time complexity 

for the updates of data and         time complexity for range 

aggregate queries where N happens to be the unique tuples,P 

happens to be the partition number B happens to be the 

bucket in each of the histogram.This M-AGE framework 

there by reduces the cost of both network communication and 

local file scanning and has better performance compared to 

hive. 

Key Words— Big Data, MapReduce, MongoDB, Multiple 

Servers, Range Aggregate Query. 

I. INTRODUCTION 

We are now living in the digital world.With the 

increase in digitization the amount of structured and 

unstructured data being created and stored is exploding. 

The data is generated from various sources – transactions, 

social media, sensors, digital images, videos, audios and 

click streams for domains including healthcare, retail, 

energy and utilities. It is increasing becoming imperative 

for organisations to mine this data to stay competitive. The 

volume, variety, and velocity of Big Data[1] causes 

performance problems when created, managed and 

analysed using conventional data processing techniques. 

Huge information examination is carried out to find out 

patterns of different social perspectives and inclinations of 

different individual practice routines. This forms a 

platform to investigate crucial inquiries concerning the 

mind boggling world. These included related works to 

assemble a productive speculation procedure, and 

investigated the enormous behavioural information sets 

identified with account and returned a benefit of even 326 

percent higher than that of an arbitrary venture 

methodology. Choi and Varian[2] introduced gauge 

representations to figure monetary markers, for example, 

social unemployment, vehicles deal, and even destinations 

for individual voyaging. It is now vital and required to 

give proficient strategies and devices to enormous 

information investigation.So in processing this large 

quantities of data a main problem arises which is to make a 

summary which deals with approximate query answering. 

Random Sampling is yet another method which yields 

flexible summaries and supports subset-sum queries and 

confidence bounds. But when Classic sample-based 

summaries[3] are concerned which are primarily designed 

for arbitrary subset queries take into account the structure 

of the keys.So it can be understood here that the specific 

structure,such as hierarchy, order or product space makes 

range queries more relevant for Big data analysis. Range 

aggregate queries play an important role in OLAP(On-line 

analytical Processing Systems) and GIS(Geographic 

information Systems) in summarising information. Range 

aggregate queries are also used as an important tool in 

decision management, online suggestion, trendestimation 

and so on. So it is a challenging task to estimate and give 

accurate results for range aggregate queries in big data 

environments. Earlier Prefix-sum cube method[5] was 

used in OLAP to increase the performance of range 

aggregate queries along with Online aggregation. But with 

these approaches users cannot obtain a satisfactory 

answering with approximate accuracy as early as in the 

beginning stages. 

II. RELATED WORK 

The range-aggregate query problem has been studied 

by Sharath Kumar and Gupta[3] and Malensek [4] in 

computational geometry and Geographic Information 

Systems(GIS).The work is primarily focused on 

approximating range aggregate query for real-time data 

analysis in OLAP. Ho et al. was the first to present Prefix-

Sum Cube approach to solving the numeric data cube 

aggregation [4] problems in OLAP. The essential idea of 

PC is to pre-compute prefix sums of cells in the data cube, 

which then can be used to answer range-aggregate queries 
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at run-time. However, the updates to the prefix sums are 

proportional to the size of the data cube. Liang et al. [6] 

proposed a dynamic data cube for range-aggregate queries 

to improve the update cost. The prefix sum approaches are 

suitable for the data which is static or rarely updated. For 

big data environments, new data sets arrive continuously, 

and the up-to-date information is what the analysts need. 

The PC and other heuristic pre-computing approaches are 

not applicable in such applications. An important 

approximate answering approach called Online 

Aggregation was proposed to speed range-aggregate 

queries on larger data sets [7]. OLA has been widely 

studied in relational databases [8] and the current cloud and 

streaming systems [9], [10]. Some studies about OLA have 

also been conducted on Hadoop and MapReduce [10], [11], 

[12]. The OLA is a class of methods to provide early 

returns with estimated confidence intervals continuously. 

As more data is processed, the estimate is progressively 

refined and the confidence interval is narrowed until the 

satisfied accuracy is obtained. But OLA can not respond 

with acceptable accuracy within desired time period, which 

is significantly important on the analysis of trend for ad-hoc 

queries.   

III. EXISTING SYSTEM 

The FastRAQ system is an approximate answering 

approach that summarises accurate estimations quickly for 

range aggregate queries in environments involving big data. 

It first divides the data chunks into separate independent 

partitions by using a balanced partitioning algorithm, and 

by which a local estimation for each partition is generated. 

So on the arrival of the range aggregate query , FastRAQ 

obtains the result by summarising the local estimation of 

every individual problem. The estimation sketch is a multi-

dimensional histogram which is built via the learned data 

distribution. In FastRAQ, the attribute values can be both 

numeric and alphabetic. The Key idea is so generate a local 

query result using the balanced partitioning algorithm with 

the stratified sampling model. So in FastRAQ the 

numerical space of the aggregation – column is divided into 

different groups and an estimation sketch of the group is 

obtained. When a new record arrives it sis sent to the 

partition depending on the current data distributions and the 

number of servers available. . It first divides the data 

chunks into separate independent partitions by using a 

balanced partitioning algorithm, and by which a local 

estimation for each partition is generated. So on the arrival 

of the range aggregate query , FastRAQ obtains the result 

by summarising the local estimation of every individual 

problem. 

 

 

 

 

 

 

 

 

 

A brief of the FastRAQ is shown in Fig 1. 

 

 

Fig .1.FastRAQ framework. 

 

Segment family construction for FastRAQ, which 

incorporates three sorts of section families identified with 

extent total questions. They are accumulation section 

family, list segment family, and default segment family. 

The collection segment family incorporates an 

accumulation segment, the file segment family incorporates 

different list sections, and the default column-family 

incorporates different segments for further augmentations. 

A SQL-like DDL and DML can be characterized 

effectively from the blueprint. 

A. Disadvantages 

 Cost is produced by data transmission and 

synchronization for aggregate operations. 

 Scanning og local files to search selected tuples. 

 The updating process includes delivering the 

record each time to the specified partition. 

 Range Cardinality tree produces additional 

overhead. 

 Cost of transmitting the local result of a partition 

cannot be negligible. 

IV. PROPOSED SYSTEM 

Here in the proposed component, Ioutline an adjusted 

segment calculation which works with stratified testing 

model. In every partition, a specimen for estimations of the 

accumulation section and a multi-dimensional histogram is 

kept for estimations of the file segments. At the point when 

a reach total question demand arrives, the nearby result is 

the result of the specimen and an expected cardinality from 

the histogram. This decreases the two sorts of cost all the 

while. Earlier FastRAQ gives a decent beginning stage to 

growing continuous noting strategies for huge information 

investigation. At the point when an inquiry demand arrives, 

it is conveyed into each partition. The cardinality estimator 

(CE) is formed for the questioned territory from the 
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histogram in every parcel. At that point we  the appraisal 

esteem is computed  in every allotment, which is the result 

of the example and the evaluated cardinality from the 

estimator. Also I make use of the MongoDB here in the 

proposed component. M-AGE combines sampling, 

Histogram and data partition approaches to generate 

accurate estimations involving big data. It is designed for 

distributed range aggregate queries and it is shown to 

achieve better performance results on both query and 

update processing in big data. M-AGE basically comes 

with MongoDB. It is a cross platform document oriented 

database. MongoDB supports field, range queries, regular 

expression searches. Queries can return specific fields of 

documents and also include user-defined Java Script 

functions.MongoDB provides high availability with replica 

sets. A replica set consists of two or more copies of the 

data. Each replica set member may act in the role of 

primary or secondary replica at any time. The primary 

replica performs all writes and reads by default. Secondary 

replicas maintain a copy of the data of the primary using 

built-in replication. When a primary replica fails, the 

replica set automatically conducts an election process to 

determine which secondary should become the primary. 

Secondaries can optionally perform read operations, but 

that data is eventually consistent by default.  

A. Advantages 

 M-AGE can be used as a tool in DBaaS. 

 It can be used to find solutions of m*n format 

problem. When there are m aggregation columns 

and n index columns of the same record. 

 M-AGE achieves 26 times of performance 

improvement on count queries than Hive. 

 Can apply on large data sets. 

 M-AGE achieve better performance improvement 

on range aggregate queries than Hive. 

 It can search different index-columns of queried 

ranges. 

 The cost of merging due to union statements is 

negligible. 

V. SYSTEM ARCHITECTURE OF PROPOSED   

SYSTEM 

The data distributions are measured by the clustering 

values of all index-columns and they also make use of the 

learned knowledge to build what is known as the 

histogram. So here the feature vectors are extracted from 

the learned data set which will produce the vector set 

through which the final clusters are formed. The common 

K-means clustering method is used to produce the clusters. 

Each cluster is assigned with a unique ID.M-AGE supports 

multi-dimensional range queries which may include 

multiple buckets of the same histogram. It uses a unique ID 

for each record. The histogram is implemented as a 

hierarchical tree structure which is called as the range-

cardinality tree(RC tree). A typical RC tree is depicted in 

fig 3.The RC-Tree[13] includes three types of nodes. They 

are root nodes, internal nodes and the leaf nodes. The root 

node or the internal node always points to its children 

nodes. A leaf node corresponds to one bucket in the 

histogram. The leaf node only keeps the information and 

the tuples values are always stored in the bucket files. 

Buckets are independent of each other, the RC-Tree 

structure and its construction process is quite similar to the 

B+ tree. To improve the throughput of RC-Tree, a hash 

table[14] for newly incoming data is introduced for 

incremental updating process. The hash table consists of 

multiple nodes which are identical to the RC-Tree’s leaves 

nodes. If a new record is coming, it first writes into the 

hash table, creates node if it does not exist, and then 

appends the tuples values into a temporary data file. When 

the number of nodes in the hash table reaches a threshold, 

the hash table flushes nodes into the RC-Tree, and appends 

the temporary files to the formal bucket data files. The 

incremental updating process[15] will greatly improve the 

throughput of RC-Tree in big data environments. The 

following updating algorithm explains the incremental 

updating process in RC-Tree. 

 

Fig.2. System Architecture of M-AGE 
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Fig.3. RC-Tree structure. 

Algorithm 1:Grouping 

Step 1: Parse value of index-columns into key-value pairs. 

Step 2: Search in bucket spreads. 

Step 3: Search in hash table and get the target node. 

Step 4: End 

To query cached data in hash table, the process is the same 

as Algorithm 2 to obtain cardinality estimator of the cached 

data, and then the result is merged to  the estimator into 

CEmerge to compute the final cardinality estimation 

Algorithm 2: Range Carnality Query algorithm. 

Input:(Q,T,ho); 

  Q: Select distinct count; 

   T: the RC-Tree; 

   ho :the edge range cardinality ratio. 

Output : R; 

   R:the range cardinality queried result. 

Step 1: Locate the first node in RC-Tree by ColName; 

Step 2:Scan the bucket data file; 

Step 3:Merge into the cardinality estimator CEmerge; 

Step 4: R<-h(CEmerge); 

Step 5:return R. 

 

VI. SYSTEM DESIGN 

Partitioning is a process of assigning each record in a 

large table to a smaller table based on the value of a 

particular field in a record. It has been used in data center 

networks to improve manageability and availability of big 

data. The partitioning[13] step has become a key 

determinant in data analysis to boost the query processing 

performance[14]. The number of partitions should be kept 

under some threshold in an applicable system. In big data 

environments, a partition is a unit for load balancing and 

local range-aggregate queries. In each partition, a dynamic 

sample is calculated from the current loaded records. 

Currently, M-AGE uses a mean value of aggregation-

column as the sample, which is Sample ¼ SUM=Counter, 

where SUM is sum of values from aggregation-column, 

and Counter is the number of records in the current 

partition. A detailed balanced partition algorithm is shown 

in Algorithm 3. 

Algorithm 3: Partitioning. 

Input:(R,VP); 

   R: an input record; 

   VP: the partition vector set. 

Output : PID; 

    PID: a partition identifier for partition p. 

Step 1: Parse the input record R ; 

Step 2: Compute the GID; 

Step 3:Get the partition vector Vpi from VP with the GID 

,and let Vpi = < GID,Vr >; 

Step 4: Set the target partition identifier; 

Step 5: Build the sample in partition PID; 

Step 6: return PI 

 

To ensure that data is balanced on each server, the 

partition algorithm divides each group into a number of 

partitions and sends to one server depending on the data 

distributions.The input record R is sent to a partition given 

by PID which is generated from its corresponding 

aggregation-column.M - AGE uses approximate answering 

approaches, such as sampling, histogram, and cardinality 

estimation etc., to improve the performance of range-

aggregate queries. We use relative error as a statistical tool 

for accuracy analysis. Relative error is widely used in an 

approximate answering system. Also, it is easy to compute 

the relative errors of combined estimate variables in a 

distributed environment for M - AGE. In this section, we 

analyze the estimated relative error and the confidence 

interval of final range-aggregate query result.  

Theorem:

∆𝑆  ̂ 𝑖𝑠 𝑎𝑛 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 ∆𝑆 𝑖𝑛 𝑏𝑖𝑔 𝑑𝑎𝑡𝑎 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑠. 

Proof: According to Algorithm 3,the range aggregate query 

result �̂� in each partition is expressed as follows : 

�̂� = Count * Sample,                              (1) 

Where Count is the estimated range cardinality obtained 

from the histogram, Sample is a sample of values of 

aggregation-column in the queried partition. The exact  

range-aggregate result S is expressed as S = ∑ 𝑋𝑗,𝑛
𝑗=1  where 

X is a selected tuple in the queried partition. According to 

Eq.(1),the expectation of  ∆𝑆  ̂can be expressed as: 

E(∆𝑆)  ̂ = E(|(S - �̂�)/S|) = E(|1-
𝐶𝑜𝑢𝑛𝑡

𝑛
|)               (2) 

Now the error transformation formula is used to analyse the 

variance of .∆𝑆  ̂and it is expressed as follows: 
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𝜎(∆𝑆 ) ̂ =√𝜎2(∆𝑆𝑎𝑚𝑝𝑙𝑒 + 𝜎2(∆𝐶𝑜𝑢𝑛𝑡),                              
(3) 

The variance of estimated cardinality has been discussed in 

[15], and the 𝜎(∆𝐶𝑜𝑢𝑛𝑡) asymptotically equals to 
1.04

√𝑚
,where m is the number of register bit array. If  m is set 

to m=212,𝜎(∆𝑆)̂=0.026. 

VII. RESULTS 

The results that are shown are with FastRAQ in 

comparison with Hive. FastRAQ is better than Hive in 

terms of performance and it reduces the two types of cost 

significantly. 

 

Fig 4.The different queried ranges. 

 

Here the results are shown with M-AGE and its 

performance with MongoDB.M-AGE acts as a tool to boost 

the performance in DBaaS. It can be shown that M-AGE is 

significantly better than FastRAQ. 

 

CONCLUSION 

 

The key idea was to reduce the two types of cost which 

were noted earlier in the existing systems. M-AGE is a new 

framework deployed to ensure the same. It is mainly to 

process and provide accurate results to answering range 

aggregate queries in big data atmospheres. M-AGE solves 

the 1:n format range aggregate queries problem, i.e., there 

is one aggregation column and n index columns in a record. 
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