International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 3 Issue 3, March - 2014

Machine Learning using Neural Network And

Evolutionary Algorithm

Mr. Tushar Ghude.
Dept. of Computer Engineering
Vidyalankar Institute of Technology
Mumbai, India.

Prof. Avinash Shrivas.
Dept. of Computer Engineering
Vidyalankar Institute of Technology
Mumbai, India.

1JERTV31S031824

Abstract—Multi-layer networks use a variety of learning
techniques, the most popular being back-propagation. Though
multilayered feedforward neural networks possess a number of
properties which make them particularly suited to solve
complex pattern classification problems it faces difficulties in
solving some real world problem due to lack of a training
algorithms which reliably finds a nearly globally optimal set of
weights in a relatively short time. Also the choice of the basic
parameter (network topology, learning rate, initial weights)
often already determines the success of the training process. The
selection of these parameters follows in practical use rule of
thumb, but their value is at most arguable. Genetic algorithms
(GAs) usually avoid local minima by searching in several regions
simultaneously. This paper presents a modified Epnet algorithm
to evolve network architecture and weights simultaneously. This
paper also introduces a new method of encoding different neural
networks and weights.

Keywords— Evolution, evolutionary algorithms, evolution of
network architecture, generalization, learning, neuralnetwork
design, complexification, Neuroph, genetic algorithms, artificial
neural network

I. INTRODUCTION

An Artificial neural network (ANN) is interconnected
network of artificial neurons. By the use of training, generally
a gradient descent algorithm such as back-propagation is able
to learn map input patterns to output patterns. A neural
network trained for classification is designed to take input
samples and classify them into groups. These groups may be
fuzzy, without clearly defined boundaries. These groups may
also have quite rigid boundaries. The ability of an ANN to
learn is considered to be a property of its structure as well as
the value of its weights, however the most appropriate ANN
structure is still generally heuristically chosen for an
application.

Backpropagation (BP) training algorithm [10] has been
known to be very useful in solving a wide variety of real
world problems (such as Pattern Classification, Clustering,
Function Approximation, Forecasting, Optimization, Pattern
Association and Control) but despite its popularity in the
training of multilayer perceptron (MLP), BP has some
drawbacks. neural networks can get stuck in local minima
depending on the shape of the error surface, the values of the

www.ijert.org

randomly initialized weights and some other parameters, that
is, BP very much depends on good, problem specific
parameter settings. There also might be other factors leading
to this problem. For example descending very fast on a steep
valley, if network is using first order gradient descent, it might
get to the opposite slope and bounce back and forth all the
time.

Il. PRINCIPLE STRUCTURE OF AGENETIC
ALGORITHM AND NEURAL NETWORK (GANN)
SYSTEM

The idea of combining GA and ANN came up first in the
late 80s, and it has generated an intense field of research in the
1980s. By combining genetic algorithms with neural networks
(GANN), genetic algorithm is used to find network
parameters. The inspiration for this idea comes from nature: In
real life, the success of an individual is not only determined by
his knowledge and skills, which he gained through, experience
(the neural network training), it also depends on his genetic
heritage (set by the genetic algorithm).

A genetic algorithm tries to simulate the natural evolution
process. Its purpose is to optimize a set of parameters. In the
original idea, proposed by John Holland [Holland, 1975], the
genetic information is encoded in a bit string of fixed length,
called the parameter string or individual. A possible value of a
bit is called an allele. Each parameter string represents a
possible solution to the examined problem. For the GANN
problem, it contains information about the construction of a
neural network. The quality of the solution is stored in the
fitness value [8]. The basic GA operators are crossover [6],
selection and mutation [9]. The selection of individuals for
cross-over and mutation is biased towards good individuals.
The chance of an individual to be selected is based on its
relative fitness in the population. Crossover is generating
offspring from two parent networks. This is performed by
taking parts of the bit-string of one of the parents and the other
parts from the other parent and combining both in the child.
The probability of mutation is a set percentage of the number
of active connections in the offspring that will undergo weight
mutation.

1630

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 3Issue 3, March - 2014

1JERTV31S031824

Generation of
initial individuals

v

Generation of
MNeural Network

Crossover

Structure of GANN

Fig. 1.

I1l. DESCRIPTION OF THE PROPOSED ALGORITHM

The emphasis of the algorithm is on maintaining the
behavioral link between the parent network and offspring and
is achieved by the use of evolutionary programming, partial
weight training after each architectural mutation and node
splitting in order to give a chance for newly created network
to stabilized (protecting new innovation).

Algorithm combines the architectural evolution of a neural
network with its weight learning. This step-wise “process
involves the five mutation operators: hybrid training (using a
back-propagation algorithm and simulated annealing), node
deletion, node addition, altering learning rate and momentum,
connection deletion. Connection deletion is performed at the
end as it is observed during the study deleting and adding
random connections during the evolution process hampers
network learning when mutation factor is large (at the
beginning of the process), instead adding or deleting nodes
with connections in a specified way helps in maintaining
behavioral link. In order to encourage evaluation of smaller
network penalty can be added. Connection deletion can be
done safely at the end of evaluation process when network is
relatively steady by deleting connections with the smallest
absolute values.

Basic steps in algorithm
Step 1: Initial Population Generation and Initialization

In this step, algorithm randomly generates and initializes a
population of feed-forward artificial neural networks with
randomized node density and weight values within a specified
range. The initial population is generated based on the four
user specified parameters Minimum Initial Node Density,
Initial Node Connection Density, Minimum Hidden Nodes
Kept and Minimum Connections Kept. In order to find out
minimum node and connection density necessary, run NEAT
algorithm [2] for the given problem for time t,. (NEAT stands
for Neuroevolution of augmenting topologies. It is a method
for evolving artificial neural networks with a genetic

www.ijert.org

algorithm. NEAT implements the idea that it is most effective
to start evolution with small, simple networks consisting of
only input layer neurons and output layer neurons and allow
them to become increasingly complex over generations.
Process of complexification [2] is effective for continual
elaboration to find out highly sophisticated networks for
continuously changing environment but convergence is rather
slow and it takes very long time to build a near optimum
solution [8]. In classification problems once network is
generalized it does not undergoes major changes in its
hierarchy). Idea behind using NEAT is only to find out
approximate minimum network architecture and therefore
time required is comparatively small. NEAT also helps in
order to decide ranges for initial weight distribution. Node and
connection density is achieved by generating fully
interconnected networks with all the hidden nodes active. A
random percentage between the Minimum Initial Node
Density is set and then hidden nodes are removed at random to
achieve the required node density level. The number of hidden
nodes in the network cannot be less than the Minimum Hidden
Nodes Kept.

Step 2: Partially train each network in the population on the
training set for a certain number of epochs using Back
Propagation with adaptive learning rates. The number of
epochs is specified by the user. The error value E of each
network on the validation set is checked after partial training.
If E has not been significantly reduced, then the assumption is
that the network is trapped in a local minimum.

Step 3: Rank the networks in the population according to their
error values, from the best to the worst. If the best network
found is acceptable or the maximum number of generations
has been reached, stop the evolutionary process and go to Step
9.

Step 4: Use rank-based selection to choose one parent network
from the population. Copy a parent net to generate sub-
population. The sub-population inherits all the parameter
settings of the main population. Only diversity that is admitted
to the sub-population is Standard Deviation for connection
and bias weight mutation.

Step 5: obtaining offspring network

5a. Select two parent networks from the sub-population.
Clone the second parent to produce an offspring.

5b. Crossover: The probability of crossover is a set
percentage of the number of active connections in the
offspring that will undergo weight crossover. These numbers
of connections are selected at random from the first parent and
the associated weights are copied to the offspring. The parent
and the offspring have identical structures as they are derived
from one main network, hence a connection that exists in the
parent will also exist in the offspring. If the offspring is better
than the parent it was cloned from, it replaces that parent in
the sub-population, otherwise if the offspring is better than the
first parent it replaces that parent in the sub-population. If the
offspring is inferior, then it is discarded and no replacement
will occur.

Step 6: Mutation: Generate a random number between 50 and
100. This will be the percentage of connection weights that
will be mutated. Flip a computational coin where the result
may be 0 or 1 with 50 percent probability of either result. The
coin toss is used to decide whether to increase or decrease the

1631

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 3Issue 3, March - 2014

1JERTV31S031824

standard deviation of the distribution used for sampling values
for weight mutation. When the standard deviation is increased
(coin toss results in a 1), bigger numbers are added to
connection and bias weights. When the standard deviation is
decreased (coin toss results in a 0), smaller numbers are used.
When network comes close to convergence, the coin toss is
additionally biased (90 percent) in favor of decreasing the
standard deviation for weight mutation. If the new solution
has a higher fitness than the parent, then terminate simulated
annealing. The new solution will replace the parent in the
main population.

Step 7: Node deletion: First decide the number of hidden
nodes Nigen t0 be deleted by generating a uniformly
distributed random number between one and a user-specified
maximum number. Npigeen 1S Normally very small in the
experiments, no more than three in most cases. Then delete
Nhiggen hidden nodes from the parent network uniformly at
random. Partially train the pruned network by the Back
Propagation to obtain an offspring network. If the offspring is
better than the worst network in the current population,
replace the worst by the offspring and go to Step 5a).
Replacement in the main population concludes a generation.
Otherwise discard the offspring continue.

Step 8: Node splitting: The maximum number of new nodes
that will be added in this step is a random number between a
user set minimum and maximum. A new hidden node is added
by splitting an existing hidden node.

The weights of incoming connections to the new node
and to the split node will be the same.

The weights of the outgoing connections from the new node
have the value: (-1 * a) * OriginalWeight.

The weights of the outgoing connection from the split node
have the value: (+1 * a) * OriginalWeight.

Where, ‘a’ is a random number taken from a Gaussian
distribution with a mean of 0 and a set standard deviation.

Step 9: Repeat above procedure for every parent in the main
population. After the evolutionary process, train the best
network further on the combined training and validation set
using Back Propagation until it converges. (there is no further
significant improvement in the accuracy after a certain
number of epochs/cycles).

IV. NETWORK ENCODING

Evolutionary algorithms [8] operate on a population of
genotypes (also referred to as genomes). In neuroevolution
[2], a genotype is mapped to a neural network phenotype that
is evaluated on some task to derive its fitness. In direct
encoding schemes the genotype directly maps to the
phenotype. That is, every neuron and connection in the neural
network is specified directly and explicitly in the genotype. In
contrast, in indirect encoding schemes the genotype specifies
indirectly how that network should be generated. Indirect
encodings are often used to achieve several aims:

- Allow recurring structures or features in the network
(modularity and other regularities);

- Compression of phenotype to a smaller genotype

www.ijert.org

Indirect encodings have been shown to produce highly
regular solutions to problems, but their bias toward regularity
makes it difficult for them to properly handle irregularities in
problems.

Implemented algorithm uses a different type of encoding
technique to represent the genotype of the ANN. Neural
Network is implemented using 'Neuroph'. Neuroph is an
object-oriented neural network framework written in Java. It
can be used to create and train neural networks in Java
programs. Neuroph provides Java class library with basic
support for creating and training Neural Networks (current
version of Neuroph does not include inbuilt support for
genetic algorithms.)

To encode a neural network we use two types of data
structures to represent the genotype of the ANN. A two-
dimensional String array used to store source neuron and
destination neuron for a connection and one-dimensional array
of real numbers used to store weight associated with that
connection. To encode a Network label every neuron with a
unique 1D - layer index followed by index of the neuron in
that layer. Every row in the two-dimensional array represents
an input connection for destination neuron; connection weight
is stored separately in second array. Bias will be encoded at
the end of the layer. For example

TABLE I. ENCODING STUCTURE

Source Destination
10-n0 11-n0 0.906345956
10-n1 11-n0 0.695224389
10-n2 11-n0 0.365454554
10-n3 11-n0 0.654654556
10-n4 11-n0 1.848646846
10-n5 11-n0 0.654686545
10-n6 11-n0 0.846545454

Table above represents a neural network with seven
neurons in first layer (i.e. layer 0) connected to a neuron in
second layer (i.e. layer 1). Connection 10-n6 (layer-index O,
neuron-index 6) to 11-n0 (layer-index 1, neuron-index 0) is a
bias. This type of encoding is very flexible can support both
types of crossover - bit level in which algorithm considers
every connection separately and node level crossover. [11]

V. CONCLUSION

This paper describes an algorithm for evolving neural
network using genetic algorithm and possible methods for
solving related problems like network encoding and
maintaining behavioral link while altering network topology.
Given network encoding scheme is useful for implementing
both bit level and node level crossover. Also presents a way
to improve the time factor and avoid frequent alteration of
network in Epnet using two methodologies at the same time.
Its expected error factor is less than pure gradient descend
using heuristic based fix network topology. Calculation of the
error fitness function needs further research. In particular
calculating network complexity penalty for large networks

1632

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Voal. 3Issue 3, March - 2014

since initially algorithm tends to favor larger networks in [6] A Study of Crossover Operators in Genetic Programming William M.
training process. Spears. _ _ _
[7] Training Feedforward Neural Networks Using Genetic Algorithms
REFERENCES David J._ Montana and Lawrence Davis BBN Systems and
Technologies
[1] A New Evolutionary System for Evolving Artificial Neural Networks ; - ;
Xin Yao, Senior Member, IEEE, and Yong Liu 3, MAY 1997 IEEE L0} Bl'acBHiEg%ﬁ{éﬁé%'#ctfﬁgvioon:ﬁ”ﬁaég'PTrgg'sva;%gf)NeW Philosophy of
TRANSACTIONS ON NEURAL NETWORKS 91 Y. Livond X, Y "‘E i : desi f’ i _'1 | network
. L1u an . ao, volutionary design of artificial neural networks
[2] Efficient Reinforcement Learning through Evolving Neural Network with different nodes,” in Proc. 1996 IEEE Int. Conf. Evolutionary.
Topologies Kenneth O. Stanley Department of Computer Sciences . ’ . .
University of Texas at Austin Austin, TX 78712. [10] Comparlng the Performance of Ba_cl_(propagatlon Algorithm and
o . . Genetic Algorithms in Pattern Recognition Problems Chukwuchekwa
[3] Artificial Neural Networks and Genetic Algorithms Instructor: Shu- Ulumma Joy. Department of Mathematics Federal University of
Heng Chen Department of Economics. National Chengchi University Technology dwerri.
[4] Fusion of neural networks with fuzzy logic and genetic algorithm [11] Evolving crossover, mutation and training rate in a population of
Sung-Bae Cho Department of Computer Science, Yonsei University, Neural Networks. Dara Curran. Dept of information technology,
134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, South Korea. University of Ireland.
[5] Genetic Algorithm And Neural Network for OPTICAL CHARACTER
RECOGNIZATIO Hendy Yeremia, Niko Adrianus Yuwono, Pius
Raymond and Widodo Budiharto.
IJERTV 315031824 www.ijert.org 1633

