
Machine Learning using Neural Network And 

Evolutionary Algorithm 
 

 

Mr. Tushar Ghude. 
Dept. of Computer Engineering 

Vidyalankar Institute of Technology 

Mumbai, India. 

  

Prof. Avinash Shrivas. 
Dept. of Computer Engineering 

Vidyalankar Institute of Technology 

Mumbai, India. 

  

 
Abstract—Multi-layer networks use a variety of learning 

techniques, the most popular being back-propagation. Though 

multilayered feedforward neural networks possess a number of 

properties which make them particularly suited to solve 

complex pattern classification problems it faces difficulties in 

solving some real world problem due to lack of a training 

algorithms which reliably finds a nearly globally optimal set of 

weights in a relatively short time. Also the choice of the basic 

parameter (network topology, learning rate, initial weights) 

often already determines the success of the training process. The 

selection of these parameters follows in practical use rule of 

thumb, but their value is at most arguable. Genetic algorithms 

(GAs) usually avoid local minima by searching in several regions 

simultaneously. This paper presents a modified Epnet algorithm 

to evolve network architecture and weights simultaneously. This 

paper also introduces a new method of encoding different neural 

networks and weights. 

Keywords— Evolution, evolutionary algorithms, evolution of 

network architecture, generalization, learning, neuralnetwork 

design, complexification, Neuroph, genetic algorithms, artificial 

neural network 

I.  INTRODUCTION 

An Artificial neural network (ANN) is interconnected 
network of artificial neurons. By the use of training, generally 
a gradient descent algorithm such as back-propagation is able 
to learn map input patterns to output patterns.  A neural 
network trained for classification is designed to take input 
samples and classify them into groups. These groups may be 
fuzzy, without clearly defined boundaries. These groups may 
also have quite rigid boundaries. The ability of an ANN to 
learn is considered to be a property of its structure as well as 
the value of its weights, however the most appropriate ANN 
structure is still generally heuristically chosen for an 
application. 

Backpropagation (BP) training algorithm [10] has been 
known to be very useful in solving a wide variety of real 
world problems (such as Pattern Classification, Clustering, 
Function Approximation, Forecasting, Optimization, Pattern 
Association and Control) but despite its popularity in the 
training of multilayer perceptron (MLP), BP has some 
drawbacks. neural networks can get stuck in local minima 
depending on the shape of the error surface, the values of the 

randomly initialized weights and some other parameters, that 
is, BP very much depends on good, problem specific 
parameter settings. There also might be other factors leading 
to this problem. For example descending very fast on a steep 
valley, if network is using first order gradient descent, it might 
get to the opposite slope and bounce back and forth all the 
time. 

II. PRINCIPLE STRUCTURE OF A GENETIC 

ALGORITHM AND NEURAL NETWORK (GANN) 

SYSTEM 

The idea of combining GA and ANN came up first in the 
late 80s, and it has generated an intense field of research in the 
1980s. By combining genetic algorithms with neural networks 
(GANN), genetic algorithm is used to find network 
parameters. The inspiration for this idea comes from nature: In 
real life, the success of an individual is not only determined by 
his knowledge and skills, which he gained through, experience 
(the neural network training), it also depends on his genetic 
heritage (set by the genetic algorithm). 

A genetic algorithm tries to simulate the natural evolution 
process. Its purpose is to optimize a set of parameters. In the 
original idea, proposed by John Holland [Holland, 1975], the 
genetic information is encoded in a bit string of fixed length, 
called the parameter string or individual. A possible value of a 
bit is called an allele. Each parameter string represents a 
possible solution to the examined problem. For the GANN 
problem, it contains information about the construction of a 
neural network. The quality of the solution is stored in the 
fitness value [8]. The basic GA operators are crossover [6], 
selection and mutation [9]. The selection of individuals for 
cross-over and mutation is biased towards good individuals. 
The chance of an individual to be selected is based on its 
relative fitness in the population. Crossover is generating 
offspring from two parent networks. This is performed by 
taking parts of the bit-string of one of the parents and the other 
parts from the other parent and combining both in the child. 
The probability of mutation is a set percentage of the number 
of active connections in the offspring that will undergo weight 
mutation. 

 

1630

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031824



 

 

Fig. 1. Structure of GANN 

 

III. DESCRIPTION OF THE PROPOSED ALGORITHM 

The emphasis of the algorithm is on maintaining the 
behavioral link between the parent network and offspring and 
is achieved by the use of evolutionary programming, partial 
weight training after each architectural mutation and node 
splitting in order to give a chance for newly created network 
to stabilized (protecting new innovation). 

Algorithm combines the architectural evolution of a neural 
network with its weight learning. This step-wise process 
involves the five mutation operators: hybrid training (using a 
back-propagation algorithm and simulated annealing), node 
deletion, node addition, altering learning rate and momentum, 
connection deletion. Connection deletion is performed at the 
end as it is observed during the study deleting and adding 
random connections during the evolution process hampers 
network learning when mutation factor is large (at the 
beginning of the process), instead adding or deleting nodes 
with connections in a specified way helps in maintaining 
behavioral link. In order to encourage evaluation of smaller 
network penalty can be added. Connection deletion can be 
done safely at the end of evaluation process when network is 
relatively steady by deleting connections with the smallest 
absolute values. 

Basic steps in algorithm 

Step 1: Initial Population Generation and Initialization 

In this step, algorithm randomly generates and initializes a 
population of feed-forward artificial neural networks with 
randomized node density and weight values within a specified 
range. The initial population is generated based on the four 
user specified parameters Minimum Initial Node Density, 
Initial Node Connection Density, Minimum Hidden Nodes 
Kept and Minimum Connections Kept. In order to find out 
minimum node and connection density necessary, run NEAT 
algorithm [2] for the given problem for time t0. (NEAT stands 
for Neuroevolution of augmenting topologies. It is a method 
for evolving artificial neural networks with a genetic 

algorithm. NEAT implements the idea that it is most effective 
to start evolution with small, simple networks consisting of 
only input layer neurons and output layer neurons and allow 
them to become increasingly complex over generations. 
Process of complexification [2] is effective for continual 
elaboration to find out highly sophisticated networks for 
continuously changing environment but convergence is rather 
slow and it takes very long time to build a near optimum 
solution [8]. In classification problems once network is 
generalized it does not undergoes major changes in its 
hierarchy).  Idea behind using NEAT is only to find out 
approximate minimum network architecture and therefore 
time required is comparatively small. NEAT also helps in 
order to decide ranges for initial weight distribution. Node and 
connection density is achieved by generating fully 
interconnected networks with all the hidden nodes active.  A 
random percentage between the Minimum Initial Node 
Density is set and then hidden nodes are removed at random to 
achieve the required node density level. The number of hidden 
nodes in the network cannot be less than the Minimum Hidden 
Nodes Kept. 

Step 2: Partially train each network in the population on the 
training set for a certain number of epochs using Back 
Propagation with adaptive learning rates. The number of 
epochs is specified by the user. The error value E of each 
network on the validation set is checked after partial training. 
If E has not been significantly reduced, then the assumption is 
that the network is trapped in a local minimum. 

Step 3: Rank the networks in the population according to their 
error values, from the best to the worst. If the best network 
found is acceptable or the maximum number of generations 
has been reached, stop the evolutionary process and go to Step 
9. 

Step 4: Use rank-based selection to choose one parent network 
from the population. Copy a parent net to generate sub-
population. The sub-population inherits all the parameter 
settings of the main population. Only diversity that is admitted 
to the sub-population is Standard Deviation for connection 
and bias weight mutation. 

Step 5: obtaining offspring network 

5a.   Select two parent networks from the sub-population. 
Clone the second parent to produce an offspring. 

5b. Crossover: The probability of crossover is a set 
percentage of the number of active connections in the 
offspring that will undergo weight crossover. These numbers 
of connections are selected at random from the first parent and 
the associated weights are copied to the offspring. The parent 
and the offspring have identical structures as they are derived 
from one main network, hence a connection that exists in the 
parent will also exist in the offspring. If the offspring is better 
than the parent it was cloned from, it replaces that parent in 
the sub-population, otherwise if the offspring is better than the 
first parent it replaces that parent in the sub-population. If the 
offspring is inferior, then it is discarded and no replacement 
will occur. 

Step 6: Mutation: Generate a random number between 50 and 
100. This will be the percentage of connection weights that 
will be mutated. Flip a computational coin where the result 
may be 0 or 1 with 50 percent probability of either result. The 
coin toss is used to decide whether to increase or decrease the 

1631

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031824



standard deviation of the distribution used for sampling values 
for weight mutation. When the standard deviation is increased 
(coin toss results in a 1), bigger numbers are added to 
connection and bias weights. When the standard deviation is 
decreased (coin toss results in a 0), smaller numbers are used. 
When network comes close to convergence, the coin toss is 
additionally biased (90 percent) in favor of decreasing the 
standard deviation for weight mutation. If the new solution 
has a higher fitness than the parent, then terminate simulated 
annealing. The new solution will replace the parent in the 
main population. 

Step 7: Node deletion: First decide the number of hidden 
nodes Nhidden to be deleted by generating a uniformly 
distributed random number between one and a user-specified 
maximum number. Nhidden is normally very small in the 
experiments, no more than three in most cases. Then delete 
Nhidden hidden nodes from the parent network uniformly at 
random. Partially train the pruned network by the Back 
Propagation to obtain an offspring network. If the offspring is 
better than the worst network in the current population, 
replace the worst by the offspring and go to Step 5a). 
Replacement in the main population concludes a generation. 
Otherwise discard the offspring continue. 

Step 8: Node splitting: The maximum number of new nodes 
that will be added in this step is a random number between a 
user set minimum and maximum. A new hidden node is added 
by splitting an existing hidden node.  

   The weights of incoming connections to the new node      
and to the split node will be the same. 

   The weights of the outgoing connections from the new node 
have the value: (-1 * a) * OriginalWeight. 

   The weights of the outgoing connection from the split node 
have the value: (+1 * a) * OriginalWeight. 

Where, „a‟ is a random number taken from a Gaussian 
distribution with a mean of 0 and a set standard deviation. 

Step 9: Repeat above procedure for every parent in the main 
population. After the evolutionary process, train the best 
network further on the combined training and validation set 
using Back Propagation until it converges. (there is no further 
significant improvement in the accuracy after a certain 
number of epochs/cycles). 

IV. NETWORK ENCODING 

Evolutionary algorithms [8] operate on a population of 
genotypes (also referred to as genomes). In neuroevolution 
[2], a genotype is mapped to a neural network phenotype that 
is evaluated on some task to derive its fitness. In direct 
encoding schemes the genotype directly maps to the 
phenotype. That is, every neuron and connection in the neural 
network is specified directly and explicitly in the genotype. In 
contrast, in indirect encoding schemes the genotype specifies 
indirectly how that network should be generated. Indirect 
encodings are often used to achieve several aims: 

- Allow recurring structures or features in the network 
(modularity and other regularities); 

- Compression of phenotype to a smaller genotype 

Indirect encodings have been shown to produce highly 
regular solutions to problems, but their bias toward regularity 
makes it difficult for them to properly handle irregularities in 
problems. 

Implemented algorithm uses a different type of encoding 
technique to represent the genotype of the ANN. Neural 
Network is implemented using 'Neuroph'. Neuroph is an 
object-oriented neural network framework written in Java. It 
can be used to create and train neural networks in Java 
programs. Neuroph provides Java class library with basic 
support for creating and training Neural Networks (current 
version of Neuroph does not include inbuilt support for 
genetic algorithms.) 

To encode a neural network we use two types of data 
structures to represent the genotype of the ANN. A two-
dimensional String array used to store source neuron and 
destination neuron for a connection and one-dimensional array 
of real numbers used to store weight associated with that 
connection. To encode a Network label every neuron with a 
unique ID - layer index followed by index of the neuron in 
that layer. Every row in the two-dimensional array represents 
an input connection for destination neuron; connection weight 
is stored separately in second array. Bias will be encoded at 
the end of the layer. For example 

 

TABLE I. ENCODING STUCTURE 

 

 

 

 

 

 

 

 

Table above represents a neural network with seven 
neurons in first layer (i.e. layer 0) connected to a neuron in 
second layer (i.e. layer 1). Connection l0-n6 (layer-index 0, 
neuron-index 6) to l1-n0 (layer-index 1, neuron-index 0) is a 
bias. This type of encoding is very flexible can support both 
types of crossover - bit level in which algorithm considers 
every connection separately and node level crossover. [11] 

V. CONCLUSION 

This paper describes an algorithm for evolving neural 

network using genetic algorithm and possible methods for 

solving related problems like network encoding and 

maintaining behavioral link while altering network topology. 

Given network encoding scheme is useful for implementing 

both bit level and node level crossover. Also presents a way 

to improve the time factor and avoid frequent alteration of 

network in Epnet using two methodologies at the same time.  

Its expected error factor is less than pure gradient descend 

using heuristic based fix network topology. Calculation of the 

error fitness function needs further research. In particular 

calculating network complexity penalty for large networks 

Source Destination 

l0-n0 l1-n0 

l0-n1 l1-n0 

l0-n2 l1-n0 

l0-n3 l1-n0 

l0-n4 l1-n0 

l0-n5 l1-n0 

l0-n6 l1-n0 

0.906345956 

0.695224389 

0.365454554 

0.654654556 

1.848646846 

0.654686545 

0.846545454 

1632

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031824



since initially algorithm tends to favor larger networks in 

training process. 

REFERENCES 

[1] A New Evolutionary System for Evolving  Artificial Neural Networks 
Xin Yao, Senior Member, IEEE, and Yong Liu 3, MAY 1997 IEEE 
TRANSACTIONS ON NEURAL NETWORKS 

[2] Efficient Reinforcement Learning through Evolving Neural Network 
Topologies  Kenneth O. Stanley Department of Computer Sciences 
University of Texas at Austin Austin, TX 78712. 

[3] Artificial Neural Networks and Genetic Algorithms Instructor: Shu-
Heng Chen Department of Economics. National Chengchi University 

[4] Fusion of neural networks with fuzzy logic and genetic algorithm  
Sung-Bae Cho Department of Computer Science, Yonsei University, 
134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, South Korea. 

[5] Genetic Algorithm And Neural Network for OPTICAL CHARACTER  
RECOGNIZATIO Hendy Yeremia, Niko Adrianus Yuwono, Pius 
Raymond and Widodo Budiharto. 

[6] A Study of Crossover Operators in Genetic Programming  William M. 
Spears. 

[7] Training Feedforward Neural Networks Using Genetic Algorithms  
David J. Montana and Lawrence Davis BBN Systems and 
Technologies  

[8] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of 
Machine Intelligence. New York:  IEEE Press, 1995. 

[9] Y. Liu and X. Yao, “Evolutionary design of artificial neural networks 
with different nodes,” in Proc. 1996 IEEE Int. Conf. Evolutionary. 

[10]  Comparing the Performance of Backpropagation Algorithm and 
Genetic Algorithms in Pattern Recognition Problems Chukwuchekwa 
Ulumma Joy. Department of Mathematics Federal University of 
Technology,Owerri.  

[11] Evolving crossover, mutation and training rate in a population of 
Neural Networks. Dara Curran. Dept of information technology, 
University Of Ireland.

 

 

1633

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031824


