
 

 

Maintainability Index over Multiple Releases: A Case Study PHP Open 

Source Software 
Anita Ganpati   Dr. Arvind Kalia            Dr. Hardeep Singh 

Dept. of Computer Science Dept. of Computer Science   Dept. of Computer Science 

Himachal Pradesh University Himachal Pradesh University G N D University 

Shimla, India   Shimla, India    Amritsar, India 

   

 

 

Abstract 

 

Software maintainability is the ease by which a 

software system can be modified. Maintainability of 

the software is an important software attribute 

which represents the majority of the costs in 

software development life-cycle. In order to 

effectively manage the cost of the software 

development it is important to forecast software’s 

maintainability and identify maintainability 

predictors which have an impact on the software 

maintenance activity. The maintainability of any 

software system is quantified in terms of 

Maintainability Index (MI). In this study the 

maintainability change in terms of MI of the PHP 

Open Source Software (OSS) of fifty releases over a 

period of seven years was empirically investigated. 

Also the relationship between various software 

metrics namely Lines of Code (LOC), Cyclomatic 

Complexity (CC), Halstead Volume and MI for fifty 

versions of the PHP was investigated. The software 

metrics were calculated using Resource Standard 

Metrics (RSM) tool and Crystal Flow tool. The 

results indicated that there is a decrease in the MI 

of the PHP over its successive releases. The 

relationship between maintainability index and 

metrics taken for the study was identified on the 

basis of the Pearson correlation analysis. From the 

results it can be depicted that the size and 

complexity metrics are strongly inversely related to 

the maintainability index of PHP.  

 

1. Introduction  
Change to software is inevitable. All software 

systems must change with time to meet the growing 

needs of its users [5]. Software maintenance is the 

process of enhancing and optimizing existing 

software [16]. Therefore, it is necessary for the 

software development houses, software developers 

and software development teams to perform 

software maintenance in such a way that the 

difficulties arising from changes are reduced. In 

Open Source Software (OSS) development 

scenario, software is available on the internet and it 

allows developers around the world to contribute to 

the code, facilitate addition of new functionalities, 

improvement of exiting software version and 

submitting bug fixes to the current release. 

Developing an OSS system implies a series of 

frequent maintenance efforts for debugging, 

existing functionality and adding new ones to the 

system. In the OSS, the development as well as 

maintenance of the software is decentralized due to 

which the maintainability is core issue in OSS 

development. Software maintainability is an 

attribute that characterizes the ease with which the 

existing source code can be modified to provide 

new or changed functionality, correct faults, 

improve performance, or adapt to a changed 

environment [14]. The software products should 

remain maintainable otherwise they have to be 

reengineered [13]. There have been several 

attempts to quantify the maintainability of a 

software system. The most widely used software 

metric which quantifies the maintainability is 

known as Maintainability Index (MI) [15].  

The various software design and code metrics can 

be useful for predicting maintainability of OSS 

[10]. Any software system’s maintainability is 

quantified in terms of MI. MI is a combination of 

software metrics namely McCabe’s Cyclomatic 

Complexity (CC), Halstead’s Volume (V) and 

Lines of Code (LOC) that affect maintainability of 

the software [8]. More precisely, MI is defined as 

follows: 

        MI = 171−5.2 *ln(aveV) − 0.23*aveV(g) − 

16.2 *ln(aveLOC)  

where  

aveV= average Halstead Volume 

aveV(g) = average Cyclomatic Complexity per 

module 

aveLOC = average Lines of Code per module

  

 MI is an index which has values ranging from 0 to 

100, predicting the ease of the maintenance of the 

code. A MI value of 100 indicates that the software 

or code has very good maintainability whereas a 0 

value indicates that the code is very difficult to 

maintain if not impossible [7]. According to Oman 

et al. the code with MI value above 85 is highly 

maintainable. The MI value of the code between 65 

and 85 is moderately maintainable. The code with 

MI value below 65 is difficult to maintain [11]. In 

order to assess the association between 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

1www.ijert.org



 

 

maintainability index and the different software 

metrics, an empirical study is conducted. In other 

words, it is intended to observe the statistical nature 

and significance of a relationship between the 

software metrics (size & complexity) and 

maintainability index of the software. 

 

2. Literature Review 
 

Coleman et al. proposed Maintainability Index as 

the most common approach for maintainability 

estimation [4]. 

Hayes et al. [6] derived a model for estimating 

adaptive maintenance effort. It was concluded that 

the number of LOC changed and the number of 

operators changed are strongly correlated with the 

maintenance effort. 

Aggarwal et al. [1] concluded that three main 

factors affecting software maintainability are 

readability of source code, documentation quality 

and understandability of software.  

Banker et al. [3] analyzed the relationships between 

software complexity and maintenance and 

recommended that complexity has a significant 

impact on maintenance costs. 

Oman et al. [12] proposed a software 

maintainability hierarchy, in terms of some 

maintainability indicators and as per the  hierarchy, 

Halstead Complexity and Cyclomatic Complexity 

are the indicators of maintainability. 

Ash et al. analyzed the maintainability index for 

two software products using the four-metric model 

over several releases [2]. 

Denis et al. investigated the relationships between 

software maintainability and other internal software 

quality attributes. The source code characteristics 

of five Java-based open-source software products 

were analyzed. It was concluded that the number of 

data variables declared and the McClure metric for 

decisional complexity have the strongest 

correlations with maintainability [9]. 

 

3. Objective of the Study 
The specific objectives of this study are: 

1) To investigate the maintainability index change 

for fifty versions of the PHP software over the 

period of seven years.  

2) To identify the relationship between various 

software metrics (LOC, CC, Halstead Volume and 

Maintainability Index) of fifty versions of the PHP.  

 

4. Research Methodology 
The source code of open source software PHP was 

used in this study as the data source. PHP is a 

general-purpose server-side scripting language 

designed for Web development to produce dynamic 

Web pages. The various software metrics namely 

LOC, CC, Halstead Volume and MI of fifty 

versions of the open source software PHP required 

for studying the maintainability index change were 

calculated using software tools namely Resource 

Standard Metrics (RSM) and Crystal Flow. The 

relationship between maintainability index and 

various metrics under study were identified on the 

basis of the Pearson correlation analysis. The 

correlation values were computed by using a public 

social private partnership (PSPP) tool. PSPP is a 

free software application for analysis of sampled 

data. It is particularly suited to the analysis and 

manipulation of very large data sets. In addition to 

statistical hypothesis tests such as Pearson 

correlation, t-tests, analysis of variance and non-

parametric tests PSPP can also perform linear 

regression. Also it is a very powerful tool for 

recoding and sorting of data and for calculating 

metrics such as skewness and kurtosis[17].  

 

5. Analysis 
The Maintainability Index of the PHP software was 

observed over a period of seven years. The results 

for the maintainability index for fifty versions of 

PHP are graphically depicted in the Figure 1. It is 

clear from the values of the maintainability index 

that the there is a decrease in the maintainability 

index of PHP in its successive versions. The 

maintainability index for the version 4.3.9 which 

was released in the year 2004 is 82.3 however the 

latest PHP version 5.3.7 released in the year 2011 

has the MI value 75.9. The decrease in the 

maintainability index is an indicator that the 

maintenance of the PHP has increased over the 

successive releases. 

 

74.0

75.0

76.0

77.0

78.0

79.0

80.0

81.0

82.0

83.0

p
h
p4

.3
.9

p
h
p4

.3
.1
0

p
h
p4

.3
.1
1

p
h
p4

.4
.0

p
h
p4

.4
.1

p
h
p4

.4
.2

p
h
p4

.4
.3

p
h
p4

.4
.4

p
h
p4

.4
.5

p
h
p4

.4
.6

p
h
p4

.4
.7

p
h
p4

.4
.8

p
h
p4

.4
.9

p
h
p5

.0
.0

p
h
p5

.0
.1

p
h
p5

.0
.2

p
h
p5

.0
.3

p
h
p5

.0
.4

p
h
p5

.0
.5

p
h
p5

.1
.0

p
h
p5

.1
.1

p
h
p5

.1
.2

p
h
p5

.1
.3

p
h
p5

.1
.4

p
h
p5

.1
.5

p
h
p5

.1
.6

p
h
p5

.2
.0

p
h
p5

.2
.1

p
h
p5

.2
.2

p
h
p5

.2
.3

p
h
p5

.2
.4

p
h
p5

.2
.5

p
h
p5

.2
.6

p
h
p5

.2
.8

p
h
p5

.2
.9

p
h
p5

.2
.1
0

p
h
p5

.2
.1
1

p
h
p5

.2
.1
2

p
h
p5

.2
.1
3

p
h
p5

.2
.1
4

p
h
p5

.2
.1
5

p
h
p5

.2
.1
6

p
h
p5

.3
.0

p
h
p5

.3
.1

p
h
p5

.3
.2

p
h
p5

.3
.3

p
h
p5

.3
.4

p
h
p5

.3
.5

p
h
p5

.3
.6

p
h
p5

.3
.7

Version

M
I 
v
a
lu

e
s

 
  

Figure 1. Graph between Maintainability 
Index (MI) values and different Versions 

Also the correlation values between for the LOC, 

CC, Average Halstead Volume and MI were 

computed to identify the relationship between the 

size, complexity metrics and maintainability index. 

 

Table 1.  Correlation between LOC, CC, 
Halstead Volume and MI 

Software Metrics Maintainability 

Index (MI) 

Avg. LOC -0.94 

Avg. CC -0.93 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

2www.ijert.org



 

 

Avg. Halstead Volume -0.89 

 

It is clear from the correlation results in the Table 1 

that there is a strong negative correlation between 

the Average CC and MI, Average LOC and MI, 

Average Halstead Volume and MI. It indicates that 

the increase in CC, LOC and Halstead Volume will 

decrease the maintainability of the software. The 

MI for any software system quantifies the 

maintainability of the software. Therefore from the 

results it can be deduced that various software 

metrics namely CC, LOC and Halstead Volume can 

be considered as the controlling factors for the 

maintainability of software.  

 

6. Conclusion & Future Scope 
The maintainability index of the PHP was 

analysed over a period of seven years. It was 

observed that there is a decrease in the 

maintainability index of the PHP. So it can be 

concluded that the maintenance of PHP has 

increased over the successive releases. Moreover 

the correlation analysis results have shown that the 

software metrics namely CC, LOC, Halstead 

volume are strongly inversely related to the 

maintainability of PHP software. In particular, the 

CC and LOC can be considered as the most 

important factor for controlling the maintainability 

of the PHP. In future, more empirical studies with 

more number of software over a long period in 

term of number of years can be carried out to 

strengthen the viewpoint. 

 

7. References  

[1] K.K. Aggarwal, Y. Singh and J.K. Chhabra, “ An 

Integrated Measure of Software Maintainability”, 

Annual Proceedings on Reliability and 

Maintainability Symposium, IEEE Computer 

Society Press, pages 235–241, 2002. 

[2] D. Ash, J. Alderete, L. Yao, P.W. Oman and B. 

Lowther, “Using Software Maintainability Models 

to Track Code Health”,Proceedings of the 

International Conference on Software Maintenance, 

IEEE Computer Society Press; pages 154–160, 

1994. 

[3] R. Banker, S. Datar, C. Kemerer and D. Zweig, 

“Software Complexity and Maintenance Costs” , 

Communications of the ACM; 36 (11), pages 81–94, 

1993. 

[4] D. Coleman, D. Ash, B. Lowther and P. Oman, “ 

Using Metrics to Evaluate Software System 

Maintainability”,  IEEE Computer; 27(8), pages 44–

49, 1994. 

[5] Penny Grubb, Armstrong A. Takang, “Software 

Maintenance: Concepts and Practice”, World 

Scientific Publishing Co. Pvt. Ltd., Singapore, 2003.  

[6] J. Hayes, S. Patel, L. Zhao, “A Metrics-Based 

Software Maintenance Effort Model”. Proceedings 

8th European Conference on Software Maintenance 

and Reengineering, IEEE Computer Society Press, 

pages 254–260, Los Alamitos ,Calfornia, 2004. 

[7] Don Jones, “The Definitive Guide to Building Code 

Quality”, Real Time Publishers. 

[8] R. A. Khan, K. Mustafa and S.I. Ahson, “Software 

Quality: Concepts and Practices”, Narosa 

Publishing House. 

[9] Denis Kozlov, Jussi Koskinen, Markku Sakkinen and 

Jouni Markkula, “ Assessing Maintainability 

Change Over Multiple Software Releases”,  Journal 

of Software Maintenance and Evolution: Research 

and Practice, 20 (1), pages 31–58, 2008. 

[10] Subhas Chandra Misra, “Modeling Design/Coding 

Factors That Drive Maintainability of Software 

Systems”, Software Quality Journal, 13,  pages 297-

320, 2005. 

[11] Paul W. Oman and Shari Lawrence Pfeeleger, “ 

Applying Software Metrics”, Johnn Wiley and Sons 

Publishers. 

 

  [12] P. Oman and J. Hagemeister, “Metrics for 

Assessing a Software System’s Maintainability”, 

Proceedings of the Conference on Software 

Maintenance, IEEE Computer Society Press, pages 

337–344, 1992. 

[13] R. S. Pressman, “Software Engineering: A 

Practitioner's Approach”, 5th ed., McGraw-Hill, 

2001.  

[14] I. Sommerville, “Software Engineering”, 7th ed., 

Pearson Addison Wesley, 2004. 

[15] E. VanDoren, “Maintainability Index Technique for 

Measuring Program Maintainability”, Technical 

Report, Software Engineering Institute, March 

2002.  

[16] Liguo Yu, “Indirectly Predicting the Maintenance 

Effort of Open-Source Software”, Journal of 

Software Maintenance And Evolution: Research 

And Practice, 18, pages 311–332, 2006. 

 
 [17] Arthur Griffith. SPSS For Dummies. 2nd ed., Wiley 

Publication. 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

3www.ijert.org


