
International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 1 Issue 8, October - 2012

Maintenance Model for Open Source Object Oriented Designs

Er. Harinder Kaur

BBSBEC Fatehgarh Sahib Er. Satwinder Singh

BBSBEC Fatehgarh Sahib

Dr. M. Javed

PAU Ludhiana

Abstract

Software reusability has considerable effect on

software maintainability. Software maintainability

increases as reuse of software components increases.

Earlier model was developed which finds the

maintainability of the class diagrams on the basis of

understandability and modifiability on the basis of

object oriented metrics of class diagrams This paper

developed Enhanced model for Object-Oriented

Softwares in Design phase which estimates the

Maintainability of UML class diagrams in terms of

their understandability, modifiability and reusability.

As class diagrams play a key role in the design phase

of object-oriented software therefore early estimation

of their maintainability may help designers to

incorporate required enhancements and corrections in

order to improve their maintainability and

consequently the maintainability of the final software to

be delivered in future.

1. Introduction
Ever-changing world makes maintainability a strong

quality requirement for the majority of software

systems. The maintainability measurement during the

development phases of object-oriented system

estimates the maintenance effort, and also evaluates the

likelihood that the software product will be easy to

maintain . The maintainability is defined by IEEE

standard glossary of Software Engineering as “the ease

with which a software system or component can be

modified to correct faults, improve performance or the

ease with which an existing application or component

can be reused. As class diagrams play a key role in the

design phase of object-oriented software therefore early

estimation of their maintainability may help designers

to incorporate required enhancements and corrections

in order to improve their maintainability and

consequently the maintainability of the final software

to be delivered in future. Hence, there is a need of

developing a maintainability estimation model, which

quantifies the maintainability of object-oriented

software at the design stage.

2. Metric Selection
Metric Selection is very objective in nature. There are
several ways in which these metrics can be picked up

based on which a particular model can be developed.

The goal of metric selection is to select such metrics

which are Statistically significant, relevant in coherent

context of Object Oriented Programming for

developing following models:

 Maintenance Model

 Understandability Model

 Modifiability Model

 Reusability Model

For each model, we have to do extensive

research to find out which metric or which measure of

attribute of software will be highly relevant for the

above said models. For this purpose, recent literature

survey as well as cross and within company data set

was chosen with help of experts and their performance,

measurable expects for developing such model were

studied. Here is list of metrics for each model:

Number of classes: The total number of Classes.

Number of Generalizations (NGen): The total

number of Generalization relationships within a class

diagram.

Number Of Generalizations Hierarchies (NGenH):

The total number of generalization hierarchies within a

class diagram.

Maximum DIT: It is the maximum DIT value obtained

for each class diagram. The DIT value for class is the

longest path from the class to the root of the tree value

obtained for each class diagram. The DIT value for

class is the longest path from the class to the root of the

tree.

Number Of Aggregation Hierarchies (NAggH): The

total number of aggregation hierarchies within a class

diagram.

www.ijert.org 1

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 1 Issue 8, October - 2012

Method Hiding Factor (MHF) :MHF is defined as

the ratio of the sum of the invisibilities of all methods

defined in all classes to the total number of methods

defined in the system under consideration.

Attribute Hiding Factor (AHF) :AHF is defined as

the ratio of the sum of the invisibilities of all attributes

defined in all classes to the total number of attributes

defined in the system under consideration.

Method Inheritance Factor (MIF) :MIF is defined

as the ratio of the sum of the inherited methods in all

classes of the system under consideration to the total

number of available methods (locally defined plus

inherited) for all classes.

Attribute Inheritance Factor (AIF) :AIF is defined

as the ratio of the sum of inherited attributes in all

classes of the system under consideration to the total

number of available attributes (locally defined plus

inherited) for all classes.

Polymorphism Factor (PF) :PF is defined as the

ratio of the actual number of possible different

polymorphic situation for clas to the maximum number

of possible distinct polymorphic situations for class.

3. Models Development
Quantification of class diagram‟s understandability and

modifiability is prerequisite for the maintainability

estimation model. Therefore before developing

Proposed Model, the paper has developed two models

for understandability and modifiability:

3.1 Modifiability Model
In order to establish a multivariate model for
modifiability of class diagram, metrics listed, will play

the role of independent variables while modifiability

will be taken as dependent variable. To identify metrics

those are effectively contributing in the prediction of

modifiability, the technique of backward stepwise

multiple regression has been used. This procedure starts

with a model, which initially includes all the

independent variables and gradually eliminates those,

one after another, that does not explain much of the

variation in the dependent variable, until it ends with an

optimal set of independent variables. Now applying

backward stepwise regression, on the available data has

resulted into the following modifiability model (1).

This model has been taken from MEMOOD Model [4].

Modifiability=0.629+0.471*NC–0.173*NGen–

0.616*NAggH–0.696*NGenH+0.396*MaxDIT (1)

Where, NC is the „Number of Classes‟, NGen is

„Number of Generalizations‟, NAggH is „Number of

Aggregation Hierarchies‟, NGenH is „Number of

Generalization Hierarchies‟ and MaxDIT is Maximum

DIT. From the model it can be interpreted that

modifiability of class diagram is DIT‟, while „NGen‟

and „Number of directly proportional to „Number of

Classes‟ and „Maximum Generalization and

Aggregation Hierarchies‟ are inversely proportional to

modifiability of class diagram.

3.2 Understandability Model
After establishing a model for modifiability the next
task is to build a similar model for understandability

also.Applying the same technique of stepwise

backward multiple regressions on the available data

resulted into the following understandability model (2)

Understandability=1.166+0.256*NC–.0.394*NGenH

(2)

where, NC is the „Number of Classes‟ and NGenH is

„Number of Generalization Hierarchies‟. From (3) it

could be interpreted that understandability of class

diagram is directly proportional to „NC‟, while

„NGenH‟ is inversely proportional to the

understandability of class diagram.

3.3 Reusability Model
Our approach is to derive formula to measure
reusability of a class diagram based on following

principles(3):

 Deeper a particular class is in the hierarchy,

the greater the potential for reuse of

inherited methods [6]. It states that reusability

of a class increases with increase in

inheritance of a class. So Inheritance has

positive impact on reusability of a class.

 Another factor which affect the reusability

potential is Encapsulation which enhance

reusability of a software[5]. Encapsulation

has positive impact on reusability of a class.

 Polymorphism indicates weakness of class

understandability and may inhibit reuse. It

enhances unnecessary complexity and

overgeneralization. It indicates that

Polymorphism has negative impact on

reusability of a class.

Reusability of a class =a*(MIF+AIF)+

b*(MHF+AHF)–c*(PF) (3)

where a, b, c are empirical constants where a=1, b=1
and c= 0.5

3.4 Maintenance Model
In order to estabilish a multivariate model for

www.ijert.org 2

 B Std.
Error

Beta t Significance

(Constant) .60 .26 .00 2.31 .05
Reusability -

.15
.04 -.38 -

3.84
.01

Modifiability .55 .17 .52 3.25 .01
Understandability .80 .18 .66 4.35 .00

 Sum Of
Squares

DF Mean
Square

F Significanc
e

Regression 8.54 3 2.85 46.80 .00
Residual .36 6 .06
Total 8.96 9

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 1 Issue 8, October - 2012

Maintainability of class diagram, Reusability,

Modifiability and Understandability of class diagrams

becomes independent variables while maintainability

will be taken as dependent variable(4) .

Maintainability=.60-.15*Reusability+*Modifiability

+.80*Understandability (4)

3.4.1 Statistical significance of the Model Observing

the significance for the F-test in the last column of

Analysis of Variance (Table I), it can be concluded that

the Maintainability Model is statistically significant at a

confidence level of more than 99%.

Table.I Anova for maintainability model

Also the value of R2 (Coefficient of Determination)

and Adjusted R2 in the Table II, is also very

encouraging. As, it refers to the percentage or

proportion of the total variance in maintainability by all

the five metrics (independent variables) participating in

the model.

Table.II Model summary for maintainability model

R R

Square
Adjusted R
Square

Std. Error
of the

Estimate

.98 .96 .95 .25

Table.III Coefficients and statistical significance of

Independent variables

As long as statistical significance and relevance of

Individual independent variables in the Maintainability

model is concern, It can be noticed from the last

column of Table III, that each of the four metrics

participating in the model is statistically significant at a

significance level of 0.05 (equivalent to a confidence

level of 95%).

4. Conclusion
The paper has developed model to quantify

Maintainability of the class diagrams. This model is

quantified in terms of Modifiability, Understandability

and Reusability on basis of Encapsulation, Inheritance

and Polymorphism metrics of class diagrams. Model

has been developed through the technique of multiple

linear regression. The paper also validates the

quantifying ability of developed model for class

diagrams.

5. References
[1] Mehwish Riaz, Emilia Mendes, Ewan Tempero “A

Sysytematic Review of Maintainability Prediction and

Metrics” Third International Symposium on Empirical

Software Engineering and Measurement 2009.

[2] M. Genero, E. Manso, A. Visaggio, and M. Piattini,
“Building Measure-Based Prediction Models for UML Class

Diagram Maintainability,” Journal of Empirical Software

Engineering, vol. 12, no. 5, pp. 517 -549, 2007.

[3] P. Antonellis, D. Antoniou, Y. Kanellopoulos, C. Makris,

E.Tjortjis, and N. Tsirakis, “A Data Mining Methodology for

Evaluating Maintainability According to ISO/IEC-9126

Software Engineering Product Quality Standard,” Proc. 11th

IEEE Conference on Software Maintenance and

Reengineering (CSMR2007),21– 23 Mar. 2007, Amsterdam,
Netherlands, 2007.

[4] S. W. A. Rizvi and R. A. Khan, “Maintainability
Estimation Model for Object- Oriented Software in Design

Phase (MEMOOD), 2010.
[5] Kung-Kiu Lau and Faris M. Taweel, “Data Encapsulation

in Software Components,” School of Computer Science, The

University of Manchester Manchester M13 9PL, United

Kingdom, LNCS 4608, pp. 1–16, 2007. _c Springer-
Verlag Berlin Heidelberg 2007.

[6] Pradeep Kumar Bhatia, Rajbeer Mann, “An Approach to
Measure Software Reusability of OO Design”, National

Conference on Challenges & Opportunities in Information

www.ijert.org 3

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 1 Issue 8, October - 2012

Technology (COIT-2008) RIMT-IET, Mandi Gobindgarh.
March 29, 2008
[7] Satwinder Singh, K.S. Kahlon, “Effectiveness of

Encapsulation and Object oriented Metrics to Refactor code

and identify error prone Classes using Bad smells” ACM

SIGSOFT Software Engineering Notes Page 1-10 September

2011, Volume 36, Number 5.
, n

[8] Tong Yi, Fangjun Wu Chengzhi Ga

, “A Comparison of

Metrics for UML Diagrams” , ACM SIGSOFT Software

Engineering Notes Page 1 September 2004, Volume 29,

Number 5.
[9] M. Dagpinar and J. Jahnke, “Predicting Maintainability

with Object- Oriented Metrics –an Empirical Comparison,”

Proc. 10th Working Conference on Reverse Engineering

(WCRE’03), 13 - 17 Nov. 2003, pp. 155 - 164, 2003.

[10] Puneet Mittal, Satwinder Singh, K.S. Kahlon,

“Identification of error prone Classes using Object oriented

metrics” Advances in Computing and communications

Volume 191, 2011, pp 58-68.

www.ijert.org 4

