
Manual & Automated Testing
Minal Sehgal , Shikha Sharma , Deepa Gupta Mam(Internal Guide)

Amity University,Amity Institute of Information Technology

Abstract

Software testing is both a discipline and a process. The

primary objective is to understand the concept of

Software Testing and the Software Testing Tools which

companies use to achieve Quality Assurance. In this

contribution we will also discuss how Beatrix Software

Factory & Three Rivers Technologies shifted from

Manual to Automated testing & analyzing the

contribution of Automated Testing Tools to IT Industry.

Keywords-Win Runner, Load Runner, Quick Test

Professional, Rational Robot, TAO.

1. Introduction
Software testing is both a discipline and a process.

Though software testing is part of the software

development process, it should not be considered part

of software development. It is a separate discipline

from software development. Software development is

the process of coding functionality to meet defined end-

user needs. Software testing is an iterative process of

both validating functionality, and, even more

important, attempting to break the software. The

iterative process of software testing consists of

Designing tests, Executing tests, Identifying problems,

getting problems fixed. The objective of software

testing is to find problems and fix them to improve

quality. Software testing typically represents 40% of a

software development budget.

1.1. Types of Software Testing
 Software testing consists of several

subcategories, each of which is done for different

purposes, and often using different techniques.

Software testing categories include: Functionality

testing, to verify the proper functionality of the

software, including validation of system and business

requirements, validation of formulas and calculations,

as well as testing of user interface functionality. Forced

error testing, or attempting to break and fix the

software during testing so that customers do not break

it in production. Compatibility testing, to ensure that

software is compatible with various hardware

platforms, operating systems, other software packages,

and even previous releases of the same software.

Performance testing, to see how well software performs

in terms of the speed of computations and

responsiveness to the end-user. Stress testing, to see

how the system performs under extreme conditions,

such as a very large number of simultaneous users.

Usability testing, to ensure that the software is easy and

intuitive to use.

1.2. Methods of Software Testing
 There are two basic methods of performing

software testing: Manual Software Testing -As the

name would imply, manual software testing is the

process of an individual or individuals manually testing

software. Automated Software Testing-Automated

software testing is the process of creating test scripts

that can then be run automatically, repetitively, and

through much iteration. Achieving the Right Blend of

Software Testing An effective software testing process

is typically a mix of test types, executed through a

combination of manual and automated testing. The mix

and number of tests is determined by the quality

requirements of the application. Each method

(automated or manual) is used for what is appropriate.

Manual testing is best leveraged for those tests which

require spontaneity and creativity, as well a good deal

of subjectivity, user interface or usability testing &

exploratory/ad hoc testing .While automated testing is

best used for tests which are explicit and repetitive,

general QA and functionality tests (i.e. does each

module do what the requirements say it should? How

does the application respond to incorrect inputs?) ,'End

to end' scenario tests (simulating a 'real world' use of

the software in a production environment),

performance, load, and stress testing.

 2. Research Methodology

2.1. Purpose of the study
 The purpose of the study is to understand the

various reasons why companies go in for Automated

testing from Manual Testing and what are the factors

1053

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

which are fuelling this conversion and various hurdles

which organization has to come across while

implementing it.

2.2. Research objectives
 Primary objectives are understanding the

concept of Software Testing & understanding the

Software Testing Tools which companies use to

achieve Quality Assurance. Secondary objectives

understand how Belatrix Software Factory & Three

Rivers Technologies shifted from Manual to

Automated testing & analyzing the contribution of

Automated Testing Tools to IT Industry.

2.3. Research design
 This research is the most commonly used and the

basic reason for carrying out descriptive research is to

identify the cause of something that is happening.

Method of data collection is secondary sources.

2.4 Scope/ relevance of the study
 The study will help the individual to understand

that the primary purpose of testing is to detect software

failures so that defects may be discovered and

corrected. Testing cannot establish that a product

functions properly under all conditions but can only

establish that it does not function properly under

specific conditions. The scope of software testing often

includes examination of code as well as execution of

that code in various environments and conditions as

well as examining the aspects of code: does it do what

it is supposed to do and do what it needs to do.

Instruments of data collection are Books & Internet.

2.5 Limitations
 Since only secondary data has been used and not

the primary data so we have to rely on the information

which is being provided by these sources which

sometimes does not give accurate and reliable

information.

3. Concepts of Testing

3.1. Definition of Testing
 Software testing is performed to verify that the

completed software package functions according to the

expectations defined by the

requirements/specifications. The overall objective to

not to find every software bug that exists, but to

uncover situations that could negatively impact the

customer, usability and/or maintainability.

3.2. History
The separation of debugging from testing was initially

introduced by Glenford J. Myers in 1979. Although his

attention was on breakage testing ("a successful test is

one that finds a bug") it illustrated the desire of the

software engineering community to separate

fundamental development activities, such as

debugging, from that of verification. Dave Gelperin and

William C. Hetzel classified in 1988 the phases and

goals in software testing in the following stages:-

 Until 1956 - Debugging oriented

 1957–1978-Demonstration oriented

 1979–1982 - Destruction oriented

 1983–1987 - Evaluation oriented

 1988–2000 - Prevention oriented

3.3. Successful Testing Strategies
 Below are some of the tips which every tester

should keep in mind before Testing any application:-

3.3.1. Learn to analyze our test results thoroughly.
Do not ignore the test result. The final test result may

be „pass‟ or „fail‟ but troubleshooting the root cause of

„fail‟ will lead us to the solution of the problem. Testers

will be respected if they not only log the bugs but also

provide solutions.

3.3.2. Learn to maximize the test coverage every time

we test any application.

3.3.3. To ensure maximum test coverage break our

application under test (AUT) into smaller functional

modules.

3.3.4. Make our test cases available to developers prior

to coding.

3.3.5. Keep developers away from test environment.

This is required step to detect any configuration

changes missing in release or deployment document.

Sometimes developers do some system or application

configuration changes but forget to mention those in

deployment steps. If developers don‟t have access to

testing environment they will not do any such changes

accidentally on test environment and these missing

things can be captured at the right place.

3.3.6. It‟s a good practice to involve tester‟s right from

software requirement and design phase. These way

testers can get knowledge of application dependability

resulting in detailed test coverage.

3.3.7. If possible identify and group our test cases for

regression testing. This will ensure quick and effective

manual regression testing.

1054

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

3.4. Advantages of Testing

3.4.1. To improve quality

As computers and software are used in critical

applications, the outcome of a bug can be severe. Bugs

can cause huge losses. Bugs in critical systems have

caused airplane crashes, allowed space shuttle missions

to go awry, halted trading on the stock market, and

worse. For Example: The so-called year 2000 (Y2K)

bug has given birth to a cottage industry of consultants

and programming tools dedicated to making sure the

modern world doesn't come to a screeching halt on the

first day of the next century. Quality means the

conformance to the specified design requirement. Being

correct, the minimum requirement of quality, means

performing as required under specified circumstances.

3.4.2. For Verification & Validation (V&V) Another

important purpose of testing is verification and

validation (V&V). It is heavily used as a tool in the

V&V process. Testers can make claims based on

interpretations of the testing results, which either the

product works under certain situations, or it does not

work.

3.4.3. For reliability estimation

Software reliability has important relations with many

aspects of software, including the structure, and the

amount of testing it has been subjected to. Testing is

required to make sure that Application developed is in

accordance with Client and have implemented with all

the requirements from the client. Testing cannot

establish that a product functions properly under all

conditions but can only establish that it does not

function properly under specific conditions

3.5. Scope of Testing
The purpose of software testing is to assess and

evaluate the quality of work performed at each step of

the software development process. Although it

sometimes seems that way, the purpose of testing is

NOT to use up all the remaining budget or schedule

resources at the end of a development effort. The goal

of testing is to ensure that the software performs as

intended, and to improve software quality, reliability

and maintainability. Testing software is operating the

software under controlled conditions, to (1) verify that

it behaves “as specified”; (2) to detect errors, and (3) to

validate that what has been specified is what the user

actually wanted.

Verification is the checking or testing of items,

including software, for conformance and consistency

by evaluating the results against pre-specified

requirements.

Error Detection: Testing should intentionally attempt

to make things go wrong to determine if things happen

when they shouldn‟t or things don‟t happen when they

should.

Validation looks at the system correctness – i.e. is the

process of checking that what has been specified is

what the user actually wanted.

Testing must be done by different persons at different

levels. Different purposes are addressed at the different

levels of testing. Factors which decide who will

perform testing include the size and context of the

system, the risks, the development methodology used,

the skill and experience of the developers. Below

Figure shows persons involved at different levels of

software testing.

3.6 Testing Limitations

3.6.1. It can only identify the known issues or errors. It

gives no idea about defects still uncovered. Testing

cannot guarantee that the system under test is error free.

3.6.2. Testing provides no help when we have to make

a decision to either "release the product with errors for

meeting the deadline" or to "release the product late

compromising the deadline".

3.6.3. Testing cannot establish that a product functions

properly under all conditions but can only establish that

it does not function properly under specific conditions.

3.6.4. Software testing does not help in finding root

causes which resulted in injection of defects in the first

place.

 4. Methods of Software Testing

1055

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

4.1. Manual Testing
 Software development is a complex process and

involves a series of tasks to be carried out including

code testing. Testing can be carried out through

automated or Manual Testing Method. Testing is a

specialized skill or domain; it can be carried out by

only seasoned professionals who are well versed with

various testing methods and tools. Numerous

automated testing tools and methods are available for

testers; however, Manual Testing method has its own

importance. It is the process of manually testing the

software functionality for errors in programming. In

this method of testing a tester plays the role of an end

user and works on all the options provided by the

application to ensure correct behaviour.

4.1.1. Definition of Manual Testing is a process

where in a tester often follows a written test plan that

leads them through a set of important test cases. A test

case in software testing is a set of conditions under

which a tester will determine whether an software

application is working correctly or not. In order to fully

test that all the requirements of an application are met,

there must be at least two test cases for each

requirement: one positive test and one negative test.

4.1.2 Advantages of Manual Testing

Good for all projects: Manual testing can be use for

both small and big projects. We can easily add and

remove the test cases according to project movements.

Cost Effective: It is very cost effective. It is very

cheaper to manage.

Easy to Understand: Fresh tester can understand very

easily the process of manual testing.

Reliable: Manual testing is more reliable than

automation testing (in many cases automated not cover

all cases).

It allows the tester to perform more ad-hoc (random

testing). More bugs are found via random testing than

via automation. Manual testing is not related with any

programming languages.

4.1.3 Drawbacks of Manual Testing

 Time Consuming: Manual testing can be very

time consuming as everything has to be done

manually.

 It does not have concept of re-usability.

 More human involvement.

 Each time there is a new build, the tester must

re-run all required tests - which after a while

would become very dull and tiresome.

 In manual testing, the concept of repeatability

not so accurate

4.2. Automated Testing
 The principle of automated testing is that there is

a program (which could be a job stream) that runs the

program being tested, feeding it the proper input, and

checking the output against the output that was

expected. Once the test suite is written, no human

intervention is needed, either to run the program or to

look to see if it worked; the test suite does all that,

and somehow indicates whether the program's output

was as expected. We, for instance, have over two

hundred test suites, all of which can be run overnight

by executing one job stream submission command;

after they run, another command can show which test

suites succeeded and which failed.

4.2.1 Definition of Automated Testing: Test

automation is the use of software to control the

execution of tests, the comparison of actual outcomes

to predicted outcomes, the setting up of test

preconditions, and other test control and test reporting

functions. Commonly, test automation involves

automating a manual process already in place that uses

a formalized testing process.

The following types of testing can be automated:-

Functional-testing that operations perform as expected.

Regression-testing that the behaviour of the system has

not changed.

Stress-determining the absolute capacities of the

application and operational infrastructure.

Performance-providing assurance that the

performance of the system will be adequate for both

batch runs and online transactions in relation to

business projections and requirements.

Load-determining the points at which the capacity and

performance of the system become degraded to the

situation that hardware or software upgrades would be

required.

4.2.3. Advantages of Automated Testing

a) Reliable: Tests perform precisely the same

operations each time they are run, thereby eliminating

human error

b) Repeatable: You can test how the software reacts

under repeated execution of the same operations.

c) Comprehensive: You can build a suite of tests that

covers every feature in your application.

d) Reusable: You can reuse tests on different versions

of an application, even if the user interfaces changes.

e) Better Quality Software: Because you can run

more tests in less time with fewer resources

1056

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

f) Fast: Automated Tools run tests significantly faster

than human users.

g) Cost Reduction: As the number of resources for

regression test are reduced.

4.2.4. Disadvantages of Automated Testing

Though the automation testing has many advantages, it

has its own disadvantages too. Some of the

disadvantages are:

 Proficiency is required to write the automation

test scripts.

 Debugging the test script is major issue. If any

error is present in the test script, sometimes it

may lead to deadly consequences.

 Test maintenance is costly in case of playback

methods. Even though a minor change occurs

in the GUI, the test script has to be rerecorded

or replaced by a new test script.

 Maintenance of test data files is difficult, if the

test script tests more screens.

5. Life Cycle of Testing

 Software testing has its own life cycle that meets

every stage of the SDLC. The software testing life

cycle diagram can help one visualize the various

software testing life cycle phases. They are:

1) Requirement Stage

2) Test Planning

3) Test Analysis

4) Test Design

5) Test Verification and Construction

6) Test Execution

7) Result Analysis

8) Bug Tracking

9) Reporting and Rework

10) Final Testing and Implementation

11) Post Implementation

1) Requirement Stage: This is the initial stage of the

life cycle process in which the developers take part in

analyzing the requirements for designing a product.

Testers can also involve themselves as they can think

from the users' point of view which the developers may

not. Thus a panel of developers, testers and users can

be formed. Formal meetings of the panel can be held in

order to document the requirements discussed which

can be further used as software requirements

specifications or SRS.

2) Test Planning: Test planning is predetermining a

plan well in advance to reduce further risks. Without a

good plan, no work can lead to success be it software-

related or routine work. A test plan document plays an

important role in achieving a process-oriented

approach. Once the requirements of the project are

confirmed, a test plan is documented. The test plan

structure is as follows:

Introduction: This describes the objective of the test

plan.

Test Items: The items that are referred to prepare this

document will be listed here such as SRS, project plan.

Features to be tested: This describes the coverage area

of the test plan, i.e. the list of features that are to be

tested that are based on the implicit and explicit

requirements from the customer.

Features not to be tested: The incorporated or

comprised features that can be skipped from the testing

phase are listed here. Features that are out of scope of

testing, like incomplete modules or those on low

severity e.g. GUI features that don't hamper the further

process can be included in the list.

Approach: This is the test strategy that should be

appropriate to the level of the plan. It should be in

acceptance with the higher and lower levels of the plan.

Item pass/fail criteria: Related to the show stopper

issue. The criterion which is used has to explain which

test item has passed or failed.

Suspension criteria and resumption requirements:
The suspension criterion specifies the criterion that is to

be used to suspend all or a portion of the testing

activities, whereas resumption criterion specifies when

testing can resume with the suspended portion.

Test deliverable: This includes a list of documents,

reports, charts that are required to be presented to the

stakeholders on a regular basis during testing and when

testing is completed.

Testing tasks: This stage is needed to avoid confusion

whether the defects should be reported for future

function. This also helps users and testers to avoid

incomplete functions and prevent waste of resources.

Environmental needs: The special requirements of

that test plan depending on the environment in which

that application has to be designed are listed here.

Responsibilities: This phase assigns responsibilities to

the person who can be held responsible in case of a

risk.

Staffing and training needs: Training on the

application/system and training on the testing tools to

be used needs to be given to the staff members who are

responsible for the application.

Risks and contingencies: This emphasizes on the

probable risks and various events that can occur and

what can be done in such situation.

1057

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Approval: This decides who can approve the process

as complete and allow the project to proceed to the next

level that depends on the level of the plan.

3) Test Analysis

Once the test plan documentation is done, the next

stage is to analyze what types of software testing

should be carried out at the various stages of SDLC.

4) Test Design

Test design is done based on the requirements of the

project documented in the SRS. This phase decides

whether manual or automated testing is to be done. In

automation testing, different paths for testing are to be

identified first and writing of scripts has to be done if

required. There originates a need for an end to end

checklist that covers all the features of the project.

5) Test Verification and Construction

In this phase test plans, the test design and automated

script tests are completed. Stress and performance

testing plans are also completed at this stage. When the

development team is done with a unit of code, the

testing team is required to help them in testing that unit

and reporting of the bug if found. Integration testing

and bug reporting is done in this phase of the software

testing life cycle.

6) Test Execution

Planning and execution of various test cases is done in

this phase. Once the unit testing is completed, the

functionality of the tests is done in this phase. At first,

top level testing is done to find out top level failures

and bugs are reported immediately to the development

team to get the required workaround. Test reports have

to be documented properly and the bugs have to be

reported to the development team.

7) Result Analysis

Once the bug is fixed by the development team, i.e.

after the successful execution of the test case, the

testing team has to retest it to compare the expected

values with the actual values, and declare the result as

pass/fail.

8) Bug Tracking

This is one of the important stages as the Defect Profile

Document (DPD) has to be updated for letting the

developers know about the defect. Defect Profile

Document contains the following:

Defect Id: Unique identification of the Defect.

Test Case Id: Test case identification for that defect.

Description: Detailed description of the bug.

Summary: This field contains some keyword

information about the bug, which can help in

minimizing the number of records to be searched.

Defect Submitted By: Name of the tester who

detected/reported the bug.

Date of Submission: Date at which the bug was

detected and reported.

Build No.: Number of test runs required.

Version No.: The version information of the software

application in which the bug was detected and fixed.

Assigned To: Name of the developer who is supposed

to fix the bug.

Severity: Degree of severity of the defect.

Priority: Priority of fixing the bug.

Status: This field displays current status of the bug.

The contents of a bug well explain all the above

mentioned things.

9) Reporting and Rework

Testing is an iterative process. The bug once reported

and as the development team fixes the bug, it has to

undergo the testing process again to assure that the bug

found is resolved. Regression testing has to be done.

Once the Quality Analyst assures that the product is

ready, the software is released for production. Before

release, the software has to undergo one more round of

top level testing. Thus testing is an ongoing process.

8) Final Testing and Implementation

This phase focuses on the remaining levels of testing,

such as acceptance, load, stress, performance and

recovery testing. The application needs to be verified

under specified conditions with respect to the SRS.

Various documents are updated and different matrices

for testing are completed at this stage of the software

testing life cycle.

9) Post Implementation

Once the tests are evaluated, the recording of errors that

occurred during various levels of the software testing

life cycle, is done. Creating plans for improvement and

enhancement is an ongoing process. This helps to

prevent similar problems from occurring in the future

projects. In short, planning for improvement of the

testing process for future applications is done in this

phase.

1058

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

 6. Testing Tools

 Automation testing of the project is done

through the Automation Testing Tools. There are many

Automation Tools in use developed by different

companies. In that mainly, a) Mercury Interactive b)

IBM c) SAP. Mercury Interactive is developed by

Mercury International Corporation

The main Tools from this are:-Win Runner, Load

Runner, and Quick test professional. The Tools from

IBM are: - Rational Robot .The Tools from SAP are:-

TAO

6.1. Win Runner: Win Runner is the most used

Automated Software Testing Tool. Main Features of

Win Runner are:

 Developed by Mercury Interactive

 Functionality testing tool

 Supports C/s and web technologies such as

(VB, VC++, D2K, Java, HTML, Power

Builder, Delphe, Cibell (ERP))

 To Support .net, xml, SAP, PeopleSoft, Oracle

applications, Multimedia we can use QTP.

 Win runner run on Windows only.

 Xrunner run only UNIX and Linux.

 Tool developed in C on VC++ environment.

 To automate our manual test win runner used

TSL (Test Script language like c)

The main Testing Process in Win Runner is:-

1) Learning- Recognazation of objects and windows in

our application by win runner is called learning. Win

runner 7.0 follows Auto learning.

2) Recording- Win runner records over manual

business operation in TSL

3) Edit Script- Depends on corresponding manual test,

test engineer inserts check points in to that record

script.

4) Run Script- During test script execution, win runner

compare tester given expected values and application

actual values and returns results.

5) Analyze Results- Tester analyzes the tool given

results to concentrate on defect tracking if required.

6.2. Load Runner
 Load Runner is an industry-leading performance

and load testing product by Hewlett-Packard (since it

acquired Mercury Interactive in November 2006) for

examining system behaviour and performance, while

generating actual load. Load Runner can emulate

hundreds or thousands of concurrent users to put the

application through the rigors of real-life user loads,

while collecting information from key infrastructure

components (Web servers, database servers etc). The

results can then be analysed in detail, to explore the

reasons for particular behaviour. Consider the client-

side application for an automated teller machine

(ATM). Although each client is connected to a server,

in total there may be hundreds of ATMs open to the

public. There may be some peak times such as 10 a.m.

Monday, the start of the work week during which the

load is much higher than normal. In order to test such

situations, it is not practical to have a test bed of

hundreds of ATMs. So, given an ATM simulator and a

computer system with Load Runner, one can simulate a

large number of users accessing the server

simultaneously.

6.2.1. The Load Runner Testing Process

There are five steps in Load Runner Testing Process:

Step I: Planning the Test

Successful load testing requires that we develop a

thorough test plan. A clearly defined test plan will

ensure that the Load Runner scenarios that we develop

will accomplish our load testing objectives.

Step II: Creating the Vuser scripts

Vusers emulate human users interacting with our

client/server system. A Vuser script contains the

actions that each virtual user performs during scenario

execution.

In each Vuser script we determine the tasks that will

be: Performed by each Vuser, performed

1059

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

simultaneously by multiple Vusers, measured as

transactions

Step III: Creating the Scenario

A scenario describes the events that occur during a

client/server testing session. A scenario includes a list

of machines that "host" Vusers; a list of Vuser scripts

that the Vusers run; and a list of Vusers that run during

the scenario. We create scenarios using the

LoadRunner Controller.

Creating the List of Hosts to Run Vusers: For each

scenario, we create a list of hosts--machines configured

to execute Vuser scripts.

Creating the List of Vuser Scripts: For each scenario,

we create a list of scripts that Vusers run during

scenario execution.

Creating the Vusers: To each Vuser in a scenario, we

assign a Vuser script and a host to run the script.

Step IV: Running the Scenario: We emulate user load

on the server by instructing multiple Vusers to perform

tasks simultaneously. We can set the level of load by

increasing and decreasing the number of Vusers that

perform tasks at the same time. Before we run a

scenario, we set the scenario configuration. This

determines how all the hosts and Vusers behave when

we run the scenario. For each scenario, we create a list

of scripts that Vusers run during scenario execution.

We can run the entire scenario, individual Vusers, or

groups of Vusers (Vuser Groups). While a scenario

runs, Load Runner measures and records the

transactions that we defined in each Vuser

script.

Step V: Analyzing Test Results

During scenario execution, Load Runner records the

performance of the client/server system under different

loads. We use Load Runner‟s graphs and reports to

analyze the server's performance.

6.3. QTP
 Quick Test Professional (QTP) is an automated

functional Graphical User Interface (GUI) testing tool

that allows the automation of user actions on a web or

client based computer application.

It is primarily used for functional regression test

automation. QTP uses a scripting language built on top

of VBScript to specify the test procedure, and to

manipulate the objects and controls of the application

under test.

6.3.1. Testing Process

QTP (Quick Test Professional) lets us create tests and

business components by recording operations as we

perform them in our application.

1) First step is Planning- Before starting to build a

test; we should plan it and prepare the required

infrastructure. For example, determine the functionality

we want to test, short tests that check specific functions

of the application or complete site. Decide how we

want to organize our object repositories.

2) Second step in QTP is Creating Tests or

Components

We can create a test or component by

a) Either recording a session on our application or Web

site.

As we navigate through the application or site, Quick

Test graphically displays each step we perform as a row

in the Keyword View. The Documentation column of

the Keyword View also displays a description of each

step in easy-to-understand sentences. A step is

something that causes or makes a change in our site or

application, such as clicking a link or image, or

submitting a data form.

OR b) Build an object repository and use these objects

to add steps manually in the Keyword View or Expert

View. We can then modify our test or component with

special testing options and/or with programming

statements.

3) Third step is inserting checkpoints into our test or

component. A checkpoint is a verification point that

compares a recent value for a specified property with

the expected value for that property. This enables us to

identify whether the Web site or application is

functioning correctly.

4) Fourth step is Broaden the scope of our test or

component by replacing fixed values with parameters.

To check how our application performs the same

operations with different data we can parameterize our

test or component. When we parameterize our test or

component, Quick Test substitutes the fixed values in

our test or component with parameters

5) Fifth step is running the test After creating test or

component, we run it. Run test or component to check

the site or application. When we run the test or

component, Quick Test connects to our Web site or

application and performs each operation in a test or

component, checking any text strings, objects, or tables

we specified. If we parameterized the test with Data

Table parameters, Quick Test repeats the test (or

specific actions in your test) for each set of data values

we defined. Run the test or component to debug it.

6) Sixth step is analyzing the results After running the

test or component, we can view the results of the run in

the Test Results window. We can view a summary of

the results as well as a detailed report.

1060

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

6.4. Rational Robot
Rational Robot is a test automation tool for

functional testing of client/server applications.

 Provides a general-purpose test automation

tool for QA teams for functional testing of

client/server applications.

 Lowers learning curve for testers discovering

the value of test automation processes.

 Enables test-automation engineers to detect

defects by extending test scripts and to define

test cases.

 Provides test cases for common objects and

specialized test cases to development

environment objects.

 Includes built-in test management, integrates

with IBM Rational Unified Process tools. Aids

in defect tracking, change management and

requirements traceability.

 Supports multiple UI technologies. Operating

systems supported: Windows

6.4.1.Features and benefits

IBM Rational® Robot v2003 automates regression,

functional and configuration testing for e-commerce,

client/server and ERP applications. It's used to test

applications based upon a wide variety of user interface

technologies, and is integrated with the IBM Rational®

TestManager® solution to provide desktop

management support for all testing activities.

Simplifies configuration testing - Rational Robot can

be used to distribute functional testing among many

machines, each one configured differently. The same

functional tests can be run simultaneously, shortening

the time to identify problems with specific

configurations.

Tests many types of applications - Rational Robot

supports a wide range of environments and languages,

including HTML and DHTML, Java™, VS.NET,

Microsoft Visual Basic and Visual C++, Oracle

Developer/2000, PeopleSoft, Sybase PowerBuilder and

Borland Delphi.

Tests custom controls and objects - Rational Robot

allows you to test each application component under

varying conditions and provides test cases for menus,

lists, alphanumeric characters, bitmaps and many more

objects.

Provides an integrated programming environment -

Rational Robot generates test scripts in SQABasic, an

integrated MDI scripting environment that allows you

to view and edit your test script while you are

recording.

Helps you analyze problems quickly - Rational Robot

automatically logs test results into the integrated

Rational Repository, and color codes them for quick

visual analysis. By double-clicking on an entry, you are

brought directly to the corresponding line in your test

script, thereby ensuring fast analysis and correction of

test script errors.

Enables reuse - Rational Robot ensures that the same

test script, without any modification, can be reused to

test an application running on Microsoft Windows XP,

Windows ME, Windows 2003, Windows 2000,

Windows 98 or Windows NT.

6.5. TAO
 SAP Test Acceleration and Optimization to

generate automatic tests during regression testing of

SAP solutions, quickly. SAP Test Acceleration and

Optimization creates components from the screens of a

transaction and parameterizes them. These tests are for

a single transaction and can be combined into a

scenario test. SAP Test Acceleration and Optimization

also supports maintenance of components and tests by

integration into the Business Process Change Analyzer

in SAP Solution Manager. We can only test business

processes of SAP ABAP ERP products (SAP GUI

only).It breaks down a test into components, using SAP

Test Acceleration and Optimization, and SAP Quality

Center application by HP, and do the following: Drag

these components into tests, regenerate the components

or tests whenever there is a change in screen, data, or

business process.

.

6.5.1Integration

SAP Test Acceleration and Optimization interacts with

the SAP Solution Manager System, managed systems

1061

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

and SAP Quality Center. SAP Test Acceleration and

Optimization uses the SAP Solution Manager

repository to store information, such as results of

analysis. You use the SAP Quality Center to compose

the tests using the components generated by SAP Test

Acceleration and Optimization.

6.5.2.Features

SAP Test Acceleration and Optimization with SAP

Quality Center has the following features:

Test creation: It record and execute tests quickly. You

can use the default components available with SAP

Test Acceleration and Optimization to build tests. The

subject matter expert of a product has to spend less

time with quality professionals, to explain the business

process.

Regeneration of components affected: It regenerates

any number of components whenever there is a change

to the business process.

Test Consolidation: It consolidates a test into a

component and use it in a scenario test, to speed up test

execution.

Test Execution: It executes the tests available in SAP

Quality Center. You can also create or update technical

bills of material for associated SAP Solution Manager

Items.

6.5.3.Release Notes SAP Test Acceleration and

Optimization 2.0 SP04
The SAP Test Acceleration and Optimization™ (SAP

TAO ™) software streamlines the creation and

maintenance of ERP business process testing. It helps

Quality Analyst specialists to break down application

into components. Assemble test cases through a simple

interface using drag and drop components in Quality

Center. Test script can be parameterized for flexible

reuse. Maintained easily and inexpensively, even when

screens, flows, or service packs change.

It provides an overview of new and changed functions

in SAP Test Acceleration and Optimization 2.0 SP04.

6.5.4.Features of SAP TAO ™ 1.0 version released

in 2007:

Inspect: Captures the data in a screen or transaction

and determines its validity. It enables you to create and

maintain a list of transactions and screens.

Import/Export: Primarily runs in background mode to

export and import data from the SAP Test Acceleration

and Optimization™ client to the SAP Quality Center.

Consolidator: Gathers all the objects and data in an

SAP Quality Center test script and creates a single

component.

Connect: Connection settings for SAP and Quality

Center

6.5.5.Enhancements in SAP TAO ™ 2.0 versions

released in 2009:
PFA (Process flow Analyzer): It records user

interactions and the sequence of screens to execute a

business process, in the SAP TAO ™ repository. It

automates inspection and creation of the test

components and a parameterized draft transition test

case. It automatically creates the data table spreadsheet

with the DT columns and values used during the

recording process.

Repository: The SAP Test Acceleration and

Optimization™ repository is a part of the SAP Solution

Manger system and is used to store: User interaction

and sequence of the screens in a business process.

Information specific to SAP Test Acceleration and

Optimization™ that cannot be retrieved by other tools.

Change Analyzer: It helps you to analyze the impact

of changes due to upgrades, SAP patches or Custom

development on a test, components or consolidated

component.

7. Testing Models

7.1. V-Model
 As you get involved in the development of a new

system a vast number of software tests appear to be

required to prove the system. Below we describe the

various types of software testing and how they fit into

the V-Model. The main software testing types are:

 Component.

 Interface.

 System.

 Acceptance.

 Release

To put these types of software testing in context

requires an outline of the development process.

1062

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Development Process

The development process for a system is traditionally

as a Waterfall Model where each step follows the next,

as if in a waterfall.

Business Case

The first step in development is a business investigation

followed by a "Business Case" produced by the

customer for a system. This outlines a new system, or

change to an existing system, which it is anticipated

will deliver business benefits, and outlines the costs

expected when developing and running the system.

User Requirements

The next broad step is to define a set of "User

Requirements", which is a statement by the customer of

what the system shall achieve in order to meet the need

System Specification

"Requirements" are then passed to developers, who

produce a "System Specification". This changes the

focus from what the system shall achieve to how it will

achieve it by defining it in computer terms, taking into

account both functional and non-functional

requirements.

System Design

Other developers produce a "System Design" from the

"System Specification". This takes the features required

and maps them to various components, and defines the

relationships between these components.

Component Design

Each component then has a "Component Design",

which describes in detail exactly how it will perform its

piece of processing.

Component Construction

Finally each component is built, and then is ready for

the test process.

The level of test is the primary focus of a system and

derives from the way a software system is designed and

built up. Conventionally this is known as the "V-

Model", which maps the types of test to each stage of

development.

Component Test

Starting from the bottom the first test level is

"Component Test", sometimes called Unit Testing. It

involves checking that each feature specified in the

"Component Design" has been implemented in the

component.

Interface Test

As the components are constructed and tested they are

then linked together to check if they work with each

other. It is a fact that two components that have passed

all their tests, when connected to each other produce

one new component full of faults. These tests can be

done by specialists, or by the developers

System Test

Once the entire system has been built then it has to be

tested against the "System Specification" to check if it

delivers the features required. It is still developer

focussed, although specialist developers known as

systems testers are normally employed to do it.

Acceptance Test

Acceptance Testing checks the system against the

"User Requirements". It is similar to systems testing in

that the whole system is checked but the important

difference is the change in focus:

 Systems testing checks that the system that

was specified has been delivered.

 Acceptance Testing checks that the system

delivers what was requested.

The customer and not the developer should always do

acceptance testing.

Release Test

Even if a system meets all its requirements, there is still

a case to be answered that it will benefit the business.

The linking of "Business Case" to Release Testing is

looser than the others, but is still important. Release

Testing is about seeing if the new or changed system

will work in the existing business environment. Mainly

this means the technical environment, and checks

concerns such as:

 Does it affect any other systems running on

the hardware?

 Is it compatible with other systems?

 Does it have acceptable performance under

load?

Regression Tests

With modern systems one person's system, becomes

somebody else's component. It follows that all the

above types of testing could be repeated at many levels

in order to deliver the final value to the business. In fact

every time a system is altered.

7.2 Butterfly Model

The Butterfly Model focuses on verification and

validation of software products and is therefore a good

fit for software testing tasks that are incorporated into

the V-model of software development.

This model provides a graphic picture of the

complexity of test tasks using the outline of a butterfly.

The areas occupied by the wings and body are

approximately related to the level of effort afforded to

each of the activities included in the model. The model

establishes three general areas of test activities that are

illustrated by the butterfly's graphic outline. They are:

Test Analysis (butterfly’s left wing): The left wing of

the butterfly represents test analysis – the investigation,

quantization, and/or re-expression of a facet of the

software to be tested.

1063

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Test Design (right wing) : The right wing of the

butterfly represents the act of designing and

implementing the test cases needed to verify the design

artefact as replicated in the implementation.

Test Execution (butterfly’s body): Test execution

includes only the formal running of the designed tests.

Informal test execution is a normal part of test design,

and in fact is also a normal part of software design and

development.

7.3. Waterfall Model
 The waterfall model derives its name due to the

cascading effect from one phase to the other . In this

model each phase well defined starting and ending

point, with identifiable deliveries to the next phase.

This model is sometimes referred to as the linear

sequential model or the software life cycle.

The model consists of six distinct stages, namely:

1. In the requirements analysis phase

(a) The problem is specified along with the desired

service objectives (goals)

(b) The constraints are identified

2. In the specification phase the system specification

is produced from the detailed definitions of (a) and (b)

above.

This document should clearly define the product

function.

Note that in some text, the requirements analysis and

specifications phases are combined and represented as a

single phase.

 3. In the system and software design phase, the

system specifications are translated into a software

representation. The software engineer at this stage is

concerned with:

a) Data structure

b) Software architecture

c) Algorithmic detail and

d) Interface representations

The hardware requirements are also determined at this

stage along with a picture of the overall system

architecture. By the end of this stage should the

software engineer should be able to identify the

relationship between the hardware, software and the

associated interfaces. Any faults in the specification

should ideally not be passed 'down stream'

4. In the implementation and testing phase stage the

designs are translated into the software domain

a) Detailed documentation from the design phase can

significantly reduce the coding effort.

b) Testing at this stage focuses on making sure that any

errors are identified and that the software meets its

required specification.

5. In the integration and system testing phase all the

program units are integrated and tested to ensure that

the complete system meets the software requirements.

After this stage the software is delivered to the

customer [Deliverable- The software product is

delivered to the client for acceptance testing.]

6. The maintenance phase the usually the longest

stage of the software. In this phase the software is

updated to:

a) Meet the changing customer needs

b) Adapted to accommodate changes in the external

environment

c) Correct errors and oversights previously undetected

in the testing phases

d) Enhancing the efficiency of the software

Observe that feed back loops allow for corrections to be

incorporated into the model. For example a

problem/update in the design phase requires a 'revisit'

to the specifications phase. When changes are made at

any phase, the relevant documentation should be

updated to reflect that change.

8. Analysis

1064

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

8.1. Case Study

8.1.1. From Manual Testing to Automated Testing
Belatrix Software Factory

The Company. This Client is a leading supplier of

Enterprise solutions, desktop software, scientific

databases, and professional services for biotechnology,

drug discovery and chemical research, including

software, databases, and web sites which enable

customers to create, analyze and communicate

chemical, biological, and scientific information more

effectively.

The Products. This Client‟s products are used

primarily in the pharmaceutical, biotechnology and

chemical industries. They are also used in higher and

academic education and government research. The

company's principal software is the de facto standard

and primary communication tool on the chemist's

desktop. The enterprise version of this solution enables

information research organizations to deploy

application and information solutions using Internet,

intranet, and extranet technologies. These solutions are

now in use by companies such as Abbot Laboratories,

Johnson & Johnson, Merck, etc.

The Challenge: With over 1,500 manual test cases, the

quality assurance process for the Client‟s main desktop

application was quickly becoming very challenging to

maintain. The application was constantly growing

(more features were added) and we had to find a way to

reduce testing times, increase the amount of test cases

and improve the system quality overall without

introducing more additional testing time. Based on this

experience, the Belatrix Quality Assurance team

proposed to automate our testing process. Due to the

complexity of the application, we had to decide what

the best testing architecture would be. These are the

problems that have arisen:

• There are several automation tools available (free and

open source), but none of them provides a complete

solution. Even the licensed ones can prove to be quite

expensive and they confine you in their specific

architecture and scripting languages.

• We could spend too much time writing complex test

scripts, so reusability was very important.

• We could spend too much time maintaining scripts.

Based on these restrictions, we realized we had a few

options:

 Select a licensed tool

 Benefits: We could start creating scripts

faster, since we do not need to develop

anything.

 Risks: The licensed tools could not meet our

requirements and we may not be able to adapt

the tool‟s behavior due to the fact that we do

not have the source code. If the tool turned out

to be ineffective, much work would have been

wasted as it would have probably been

developed on a proprietary technology or

language.

 Select a specific free and Open Source tool:

 Benefits: they are free and we could add more

features as needed because we have the source

code. They tend to use popular scripting

languages, preventing future lock-in.

 Risks: we could spend too much time creating

scripts and maintaining them and we should

also develop several features to cover our

needs.

 Use and combine several Open Source test

automation tools:

 Benefits: they have a low cost and we could

leverage best-of-breed approaches.

 Risks: some tools may not work well with the

others. However, this can be mitigated with

appropriate prototyping.

The Solution: Along with the client, Belatrix decided

that the best option was to follow the best approach and

select multiple open source tools combined with a

custom framework that allows us to:

 Reduce the time to create scripts.

 Reduce the time to maintain the scripts.

 Combine several automation tools in order to

get the benefits of each one of them while

circumventing their weaknesses.

 Develop special features that could be reused

by all scripts:

 Take screenshots

 Connect with a data base

 Create automated reports

Some of the tools and technologies that were chosen

include:

 Python as a general scripting language

 Open STA

 DummyNet

 PyWinAuto

 Selenium

1065

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

The Results. Belatrix helped the Client reduce the test

processing time by 40%, add hundreds of additional

test cases without affecting schedules and keep test

cycles under control. Belatrix was also able to help the

Client automate the system deployment process, as well

as the system installation, installation testing, smoke

tests, feature testing (including integration with other

tools), performance testing and all the report generation

to produce reliable quality metrics.

8.1.2. Automated Testing Case Study

THREE RIVERS

TECHNOLOGIES

Background: A Fortune 500 client of has invested

significantly in the development of a custom

Manufacturing Fulfilment system for their 33

worldwide business units. The system is used to

manage the production of manufactured products

tailored to their customers' needs. The system was

originally developed by another software services

provider over the course of several years. It is a

traditional client/server application developed in Visual

C++ and accesses an Oracle database running in a Unix

environment. Their client was receiving weekly updates

of the system in the latter phases of development - prior

to implementation. They found it virtually impossible

to perform the necessary testing and validation of these

updates before the next update was received. They also

realized that a more consistent approach was needed to

properly test each update of the system.

Objectives: Their client wanted to find a way to

perform the testing and validation of these updates to

ensure the system was meeting all the functional

requirements and was going to be reliable upon

deployment. Three Rivers Technologies was asked to

help develop a way to automatically test the system

quickly and efficiently. The objectives of the project

were as follows:

 Define a testing strategy that would automate

as much testing as possible

 Develop Test Plans that would ensure core

functionality would be reliably tested using

automated testing tools

 Develop an automated test suite that would

give their client the ability to fully regression

test the system quickly during the final phases

of development as well as after deployment

(as enhancements were being added)

 Design and build test scripts for system

validation that would be highly reusable and

inexpensive to maintain

Methodology/Approach: The first step that Three

Rivers Technologies' QA consultants took was to

familiarize themselves with the system and its intended

functionality. This was accomplished by talking to and

working with users of the system, by reviewing

requirements documents, and by participating in the

existing manual testing activities. The main goal of

their early involvement was to gain an overall

understanding of the system in order to develop a

comprehensive testing strategy that would take

maximum advantage of automated testing tools. Once

the overall testing strategy had been established the

following tasks were performed:

 A Test Plan was developed

 A system testing environment was set up that

could be restored to its initial state after

running scripts - which allowed for repeated

execution of the regression tests

 Automated test scripts were built using

Rational's Team Test product

 Libraries of reusable functions were designed

and built so that they could be incorporated

into the test scripts in order to minimize

maintenance efforts

 Automated test scripts that covered 80 percent

of the system's functionality were developed

over a six month period of time

Results

This project has been very successful. All of the project

objectives were met and their client has been extremely

happy with the results.

 Their client now has the ability to regression

test their Manufacturing Fulfilment system in

approximately 4 hours using the test scripts

our consultants developed. This level of

testing would take several weeks to perform

manually and would have an increased

possibility of missing defects.

 Three years after initiating this project, all of

the original scripts are still being used to test

new releases of the system, and only minimal

maintenance has been required to keep scripts

updated to work with the new releases.

 The automated testing strategy that was

envisioned and developed for this system has

saved thousands and thousands of hours of

manual testing. And because so much of the

testing effort has been standardized and

automated, testers are able to focus their

manual testing efforts for new releases on

critical areas of the system that have been

enhanced with new functionality.

1066

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

 Automated testing has reduced the time

required to deploy new system functionality,

thereby increasing users' overall productivity.

 The investment made in automated testing of

this system has also resulted in improved

quality. The system was deployed in the field

last year and subsequent updates have been

released without any major regression errors

being found after release.

 The automated test scripts have been

leveraged for other types of testing like

performance and load testing, environment

testing, and integration testing.

Since initiating this project three years ago, their client

has gained efficiencies in testing, improved system

quality, and realized significant cost savings. As a

result, this Fortune 500 client has increased their

investment in automated testing and has brought on

additional Three Rivers Technologies' QA consultants

to design and build automated testing solutions for

many of their critical business systems.

9. Findings

[1] One important reason for doing testing is

user/production environment will be completely

different from development environment.

For example, a webpage developer may be using

FireFox as browser for doing his webpage

development. But the user may be using different

browser such as Internet Explorer, Safari, Chrome and

Opera. The web page appearing good in FireFox may

not appear good in other browsers. So ultimately, user

will not be happy even if the developer puts more

efforts to develop the webpage. As we know that Users

satisfaction is more important for growth of any

business, testing becomes more important.

[2] Quality can be ensured by testing only. In the

competitive market, only Quality product can exist

for long time.

[3] Prevent Defect Migration:- The majority of errors

are usually introduced in the software requirements

gathering phase. If the errors are detected early, they

can be prevented from migrating to the subsequent

development phase. Early detection and debugging of

errors leads to huge savings in software development

costs.

[4] For Reliability Estimation:-From the user point of

view, reliability means how dependable the software

product is. In medical diagnosis, an incorrect

suggestion to the doctor can result in the loss of lives.

Critical software products are thoroughly checked for

all aspects of its functionality.

[5] Prove Usability and Operability:- One very

important aim of software testing is to prove the

software is both usable and operable. Usability testing

is where the software is released to a select group of

users and their working with the product is observed.

All aspects of a user's interaction with the software, like

ease of use and where users are facing problems, are

recoded and analyzed.

10. Suggestions

[1] Rely more heavily on high volume automation

techniques.

[2] Retrain software testers to help them focus more

effectively on risk.

[3] Identify all the platforms on which application will

be run.

[4] Keep track of bug fixing time taken by development

team.

[5] Improve requirements management process –

business & functional requirements should be well

documented. Involve testing team in requirement

gathering phase.

[6] Create a document / list of all possible scenarios

before writing test cases. Include it into test planning.

[7] Keep developers away from test environments.

[8] Analyse test results thoroughly. Try to identify root

cause from functional perspective.

11. Conclusion

[1] Software testing is an art. Most of the testing

methods and practices are not very different from 20

years ago. It is nowhere near maturity, although there

are many tools and techniques available to use. Good

testing also requires a tester's creativity, experience and

intuition, together with proper techniques.

[2]Testing is more than just debugging. Testing is not

only used to locate defects and correct them. It is also

used in validation, verification process, and reliability

measurement.

1067

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

[3]Testing is expensive. Automation is a good way to

cut down cost and time. Testing efficiency and

effectiveness is the criteria for coverage-based testing

techniques.

[4]Complete testing is infeasible. Complexity is the

rootof the problem. At some point, software testing has

to be stopped and product has to be shipped. The

stopping time can be decided by the trade-off of time

and budget. Or if the reliability estimate of the software

product meets requirement.

Acknowledgement

 Success is a sweet fruit which requires hard work

and for that one takes all the encouraging and helping

hands of the people. I am indebted and obliged to thank

my Research paper guide Ms. Deepa Gupta for her

proper guidance and helpful hints to ensure my

research paper was on the right track. Without her

constant support, valuable supervision and

encouragement I would have not been able to complete

this work on time. I would also like to thank my friends

who have been always ready to help me at every step.

Bibliography/ References

Book:

 [1] R.S. Pressman & Associates

References:

 Section 1 in [1]

 Section 3 in [2]

 Automated testing case study –three rivers in [3]

 About Load Runner in [5]

 Software testing lifecycle in [4]

 Manual testing in [6]

 About software testing in [7]

REFERENCES

[1]http://www.logigear.com/newsletter-2006/271-

introduction-to-software-testing.html

[2]http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/#i

ntroduction

 [3] http://www.3riverstech.com/atcasestudy.php

 [4] http://www.onestoptesting.com/qtp/testing-process.asp

[5]http://www.softwaretestinggenius.com/download/introlr
.pdf

[6]http://www.outsourcingdotnetdevelopment.com/manual-

testing.html

[7] http://bazman.tripod.com/what_testing.html

1068

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

