
Markerless Augmented Reality Android App For Interior Decoration  

Prasad Renukdas
#1

, Rohit Ghundiyal
#2

, Harshavardhan Gadgil
#3

, Vishal Pathare
#4

 

#
Department of Computer Engineering, MES College of Engineering, 

Pune, India 

 
 
 

 
Abstract—We propose a markerlessapplication for 

interior decoration purposes, in which any novice user 

can easily decorate his/her home.  We include our 

observations and reminisce on potential future 

improvements. 

This paper also discusses mobile application of 

Augmented Reality (AR) on the Android platform. We 

discuss existing SDKs for developing AR applications on 

mobile platforms and elaborate their functionalities and 

limitations. 

Keywords— Augmented Reality, AR, interior decoration, 

Metaio, Artoolkit. 

I. Overview 
Augmented reality (AR) is a live, direct or 

indirect, view of a physical, real-world environment 

whose elements are augmented by computer-generated 

sensory input such as sound, video, graphics or GPS 

data. 

This technology is still in its infant stage, 

particularly in mobile computing, but is quickly 

maturing with numerous innovative applications 

already developed for archaeology, art, advertising, 

education, entertainment, medicine, industrial design, 

architecture, tourism and more. 

Earlier, backpack portable computers and 

head mounted displays (HMDs) were used for 

augmented reality. The advancements in mobile 

hardware and software platforms brought AR into the 

hands of the common man.    

The hardware used for this paper was an 

Alcatel OT995 Ultra smartphone. It has 512 MB of 

RAM, a 5 mega-pixel auto focus camera and a 

Qualcomm Snapdragon 1.4 GHz processor based on 

the ARM A9 (Cortex) architecture. The Eclipse IDE 

(ver Juno) was used to develop the applicationand 3D 

modeling was done in Blender. 

 

II. INTRODUCTION TO AUGMENTED REALITY 

A. Types of Displays Technologies. 

 

1) Eye Glasses: 

AR displays can be rendered on devices 

resembling eyeglasses. Versions include eye 

wear that employ cameras to intercept the real 

world view and re-display its augmented view 

through the eye piecesand devices in which 

the AR imagery is projected through or 

reflected off the surfaces of the eye wear lens 

pieces. A notable example of this is the 

Google Glass Project, currently under 

development and expected to release 

commercially around 2014. 

 

2) Virtual Retinal Display: 

A virtual retinal display (VRD) is a personal 

display device under development at the 

University of Washington's Human Interface 

Technology Laboratory. With this technology, 

a display is scanned directly onto the retina of 

a viewer's eye. The viewer sees what appears 

to be a conventional display floating in space 

in front of them. 

 

3) Handheld: 

Handheld displays employ a small display that 

fits in a user's hand. All handheld AR 

solutions to date opt for video see-through. 

Initially handheld AR employed fiduciary 

markers, and current and future approaches 

include GPS and markerless tracking through 

scene recognition. Handheld display AR 

promises to be the first commercial success 

for AR technologies. The two main 

advantages of handheld AR is the portable 

nature of handheld devices and ubiquitous 

nature of camera phones.  

 

B. SDKs currently available for Android development: 

1) ARToolkit: 

It is an open source marker based 

AR library developed at the University of 

Washington.  

Some of the features of ARToolkit include:  

 Single camera position/orientation tracking. 

 Tracking code that uses simple black squares. 

 The ability to use any square marker patterns. 

 Easy camera calibration code. 

 Fast enough for real time AR applications. 

 SGI IRIX, Linux, MacOS and Windows OS 

distributions. 

 Distributed with complete source code. 

It is designed for personal computers 

and not for embedded devices. Hence porting 

it directly to mobile platforms is difficult and 

impractical because it uses a lot of FPU 

calculations. 

 

2) ARToolkitPlus: 

1367

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



This was an enhanced version in the 

ARToolkit. The library was ported from C to 

C++. It is available for download under 

general public license.  

It does not read camera images or 

render geometry of any kind nor is it an out-

of-the box solution.  

Some of the features of 

ARToolKitPlus include:  

 Class-based API (compile-time 

parametrization using templates) 

 Up to 4096 id-based markers (no speed 

penalty due to large number of markers) 

 New camera pixel-formats (RGB565, Gray)  

 Many speed-ups for low-end devices (fixed-

point arithmetic, look-up tables, etc.) 

 New Pose estimation algorithm gives more 

stable tracking (less jitter) 

 Loads MATLAB camera calibration toolbox 

files 

 Automatic thresholding 

 Tools: pattern-file to TGA converter, pattern 

mirroring, off-line camera calibration, id-

marker generator. 

 

3) Vuforia: 

Vuforia is an Augmented Reality 

SDK provided by Qualcomm, AG. It supports 

a variety of 2D and 3D target types including 

Image Targets, 3D Multi-Target 

configurations, and a form of addressable 

Fiduciary Marker known as a Frame Marker. 

Additional features of the SDK include 

localized Occlusion Detection using „Virtual 

Buttons‟, runtime image target selection, and 

the ability to create and reconfigure target sets 

programmatically at runtime. 

The latest release of the SDK, 

Vuforia 2.0, also supports cloud recognition, 

where a user points his smartphone at a book, 

packaging or publication and information 

about the item like the price, reviews, etc are 

shown. 

 

4) Metaio Mobile SDK: 

The Metaio SDK includes a 

powerful 3-D rendering engine in addition to 

plug-ins for Unity. It has advanced tracking 

features, such as Markerless 2D and 3D 

Tracking, client-based visual search and 

SLAM. Some of its features are: 

 Native App development for iOS, Android 

and PC (Windows) 

 Includes powerful 3D Rendering engine. 

 Highly advanced tracking and minimal 

artefacting.  

 FREE commercial usage (with watermark)  

 Huge developer support community. 

 

The latest release, Metaio SDK 4.1 

includes AREL (Augmented Reality 

Experience Language) which is a javascript 

binding of the metaio SDK's API in 

combination with a static XML content 

definition. AREL allows scripting of powerful, 

highly interactive Augmented Reality 

experiences based on common web 

technologies such as XML, HTML5 and 

JavaScript. AREL allows creation of platform 

independent applications instead of using 

platform specific programming languages - 

Java for the Android SDK, Objective C for 

iOS and C++ for Windows 7 and up.  

III. RESTRICTIONS ON MOBILE DEVICES 

Smartphones with RAM as low as 64 MB won‟t 

support this app. Android system will force close the 

app if it won‟t respond within stipulated time (3 to 5 

sec). The CPUs on the embedded processors mostly 

don‟t allow parallel processing. Even then AR can 

make use of multithreading which speeds up certain 

marking and detection algorithms. Many of the phones 

don‟t have a separate FPU. Hence the app which runs 

on the phone will work 3 to 4 times slower than that of 

the average PC and will consume the battery more than 

other apps due to more computations required. Another 

hurdle is the OpenGL. This app requires OpenGL ES 

version 2.0 to run and will not run on lower versions. 

IV. CHOICE OF SDK 

Each SDK has its own merits and limitations. 

We chose Metaio mobile SDK 4.1 to develop our 

application for the following reasons: 

 

1) High level of abstraction:  

Metaio implements complex computer vision 

algorithms in native C++ libraries and ports 

them to Android. This abstraction enables a 

developer to assume low level 

implementations and design and develop apps 

with greater ease, efficiency and enhances 

productivity. 

 

2) Advanced Tracking: 

Metaio‟s tracking algorithms are highly 

advanced, allowing us to develop apps free of 

visual artifacts. The algorithms are also 

greatly efficient, and can be executed in 

reasonable time on sufficiently low cost 

devices. 

 

3) Support for a wide range of formats: 

Modeling in 3D is an arduous and time 

consuming task, and Metaio‟s support for obj, 

fbx and md2 model formats gave us greater 

flexibility in our choice of 3D modeling tool 

and made switching between and comparing 

the benefits of different formats easier. 

 

1368

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



4) Direct loading of 3D models with abstraction 

of OpenGL calls: 

Unlike Vuforia and other SDKs which need 

3D models in obj format to be converted to 

C++ header files (.h), Metaio directly reads the 

respective formats without conversion. This 

allows faster and more efficient use of 

smartphone resources like device memory and 

minimizes I/O load times. 

V. DESIGN AND IMPLEMENTATION 

We have chosen a hybrid tracking system[18] 

that uses integrated sensors embedded in the mobile 

device like accelerometer and 2D visual tracking to 

estimate pose and create an AR environment.The main 

objective is to calculate pose which consists of six 

degrees of freedom. Three of the six degrees of 

freedom are represented in terms of a translation 

vector 𝑡 , which relates the position of an observer 

relative to a plane and the remaining three in terms of 

a rotation matrix R that relates the orientation of an 

observer relative to a plane. 
Accelerometer measures at least two of the three 

degrees of freedom, R is determined using samples 

from the accelerometer and 𝑡 must be determined 

using 2-D visual tracking. 

 

A. Pose calculation Steps: 

1) Accelerometer values: 

 

An accelerometer measures the 

acceleration of the sensor relative to an object 

in free-fall. The accelerometer measures the 

force of gravity along each of its axes x, y 

and z. It is calibrated to return an acceleration 

reading of 1g upwards along its z-axis when 

it lies flat on a table since it is accelerating 

upwards at 1g relative to an object in free-fall. 

Rotations are represented as a combination of 

the device‟s rotated axes readings. This 

combination forms the acceleration vector, a: 

 
𝑎 = [𝑎𝑥     𝑎𝑦     𝑎𝑧     ]𝑇                  (1) 

 

 Where𝑎𝑥   𝑎𝑦   𝑎𝑧   arethereadings from the 

 accelerometer‟s x-, y- and z-axes respectively. 

An  accelerometer can only determine two of the 

three  degrees of freedom since  rotationaroundthe 

 device‟s z-axis when it‟s lying ona flat 

surface will  not result in a change in the force of 

gravity  along any of its axes. We will “guess” the 

third rotation  component: direction. An 

accelerometer inside a  moving object 

returnsacceleration vectorsinstead of 

 orientation vectors.We find the 

orientationvectors of  the device by using a low-

pass filter on consecutive readings of 𝑎𝑖 : 

 

𝑎𝑖 = 0.1 × 𝑎𝑖    + 0.9 × 𝑎𝑖 − 1         
 

 Where 𝑎 = [𝑎𝑥     𝑎𝑦     𝑎𝑧     ]𝑇 and 𝑎𝑖 is theith

 orientation vector estimation. 

 

2) Calculation of rotation matrix: 

 

The rotation matrix, R, is a 3-by-3 

matrix in the form: 

 

𝑅 =   𝑟1 𝑟2   𝑟3  


 Where𝑟1 , 𝑟2 , 𝑟3  are the three 3-by-1 column 

 vectors of R. 𝑟1  represents the device‟s 

orientation  vector  as a unit vector: 



𝑟1 = 𝑎 =
𝑎

 𝑎  

    




 Where  𝑎   is the length of 𝑎 . 

 

 𝑟2 influences the direction rendered models 

will face  and shouldbe an arbitrary unit vector 

on the plane  perpendicular to 𝑎  definedby: 
 

𝑎𝑥   𝑥 +  𝑎𝑦   𝑦 +  𝑎𝑧   𝑧 = 0



 Choosing x=0 and y=1 so that z=−
𝑎𝑦    

𝑎𝑧    
. We 

define 

this new vector, 𝑏   as: 

 

𝑏  = [0     1     −
𝑎𝑦    

𝑎𝑧    
]𝑇 

 

 𝑟2 is then 

 

𝑟2 = 𝑏 =
𝑏

 𝑏  

    
                           (6) 

 

 Where  𝑏   is the length of𝑏   

 𝑟3  must be the cross product of 𝑟1 and 𝑟2 so 

that it is  orthogonal: 

𝑟3 = 𝑟1  ×  𝑟2 = 𝑎  × 𝑏 
 

Substituting (3), (6) and (7) into (2) gives: 

 

𝑅 = [𝑎 𝑏 𝑎  × 𝑏 ]                        (8) 

 

 The OpenGL Model View matrix, 

𝑀𝑚𝑜𝑑𝑒𝑙𝑣𝑖𝑒𝑤 is a  4-by-4 matrix that determines the 

rendering  system‟s  translation, 

rotation and scale. For multiplication   with the 

4-by-4 Model View matrix,𝑀𝑚𝑜𝑑𝑒𝑙𝑣𝑖𝑒𝑤 , the  R matrix 

1369

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



must be represented in homogeneous 

 coordinates: 

 

R =  𝑟1 𝑟2 𝑟3 0
0 0 0 1

 =  𝑎 𝑏 𝑎  × 𝑏         0
0 0 0 1

  

 

 Multiplying R with the model view matrix,  

 𝑀𝑚𝑜𝑑𝑒𝑙𝑣𝑖𝑒𝑤 correctly rotates the OpenGL 

view to  reflect the orientation of the real world in the 

scene.  We multiply these two matrixes by first 

initializing  the Model View matrix and 

multiplying it by R: 
 glMatrixMode(GL_MODELVIEW); 

 glLoadIdentity(); 

 glMultMatrixf(R); 

 

3) Calculating Relative Translation Between 

Two Frames: 
 

We define 𝑡𝑥  (and 𝑡𝑦 ) to be the 

relative change in translation of acamera 

betweenthe current frame  and the 

previous frame along the camera‟s xand 

y-axis in image coordinates. 

When tracking points between 

consecutive frames using optical flow, we 

obtainanarrayrepresenting the relative 

movement of all matched points between 

frames. The array is given as a set of (dx,dy) 

movement values,one for each tracked point. 

To find 𝑡𝑥 and𝑡𝑦  we average all the dxand dy 

values for two consecutive frames. For n 

points tracked: 

 

 𝑡𝑥  ,  𝑡𝑦  =
1

𝑛
  𝑑𝑥𝑘,  𝑑𝑦𝑘 

 
𝑛

𝑘=1





 ofind the change in scale between two 

consecutive  frames ( 𝑡𝑧 )is slightly trickier. 

Whenthe camera is  translated along its z-axis 

that the movement of  points in the top and left 

segments of an image move  in the opposite 

direction relative to  pointsin the  bottom 

and right segments. therefore  thearray of  (dx, 

dy)values is split up into four quadrants: 

 

 
𝑄1
=  𝑑𝑥1

  1 ,  𝑑𝑦1 1  ,  𝑑𝑥1 2  ,  𝑑𝑦1 2  , … 

 
𝑄2
=  𝑑𝑥2

  1 ,  𝑑𝑦2 1  ,  𝑑𝑥2 2  ,  𝑑𝑦2 2  , … 
 

𝑄3
=  𝑑𝑥3

  1 ,  𝑑𝑦3 1  ,  𝑑𝑥3 2  ,  𝑑𝑦3 2  , … 
 

𝑄4
=  𝑑𝑥4

  1 ,  𝑑𝑦4 1  ,  𝑑𝑥4 2  ,  𝑑𝑦4 2  , … 
 
 With Q1 being the top left quadrant of the 

image, Q2  top right, Q3bottom left and Q4 

bottom right. We  then  find𝑡𝑥 and𝑡𝑦  for eachquadrant: 
 

 𝑡𝑥,1     ,   𝑡𝑦,1      =  𝑄1  

 𝑡𝑥,2     ,   𝑡𝑦,2      =  𝑄2  

 𝑡𝑥,3     ,   𝑡𝑦,3      =  𝑄3  

 𝑡𝑥,4     ,   𝑡𝑦,4      =  𝑄4  
  

 where the angle brackets represent averaging 

over the  arrays Q1,Q2, Q3 and Q4.We then find𝑡𝑧  as 

 follows: 

  

𝑡𝑧 =  𝑡𝑥,1     +   𝑡𝑥,4      −  𝑡𝑥,2      +  𝑡𝑥,3       

 
Translation and scale is represented 

by the translation vector, 𝑡 .We use an 

iterative approach to estimate 𝑡 , updating it 

accordingto the tracking results between 

 each two frames. We use a 

poseestimate buffer to store three 

valuesrelated to translation that arethe total 

translations along each axis of the camera 

relative to aninitial starting position: 

 Total translation along the camera‟s 

x-axis:𝑡𝑥,𝑡𝑜𝑡𝑎𝑙        . 

 Total translation along the camera‟s 

y-axis:𝑡𝑦,𝑡𝑜𝑡𝑎𝑙        . 

 Scale. Scale is equivalent to 

translation along the camera‟s z-

axis:𝑡𝑧,𝑡𝑜𝑡𝑎𝑙        . 

 

Overall translation, 𝑡𝑇𝑜𝑡𝑎𝑙       , is the 

compound effect of all iterative 

measurements of change in translation 

between two frames since the start of 

tracking. 

 

𝑡𝑡𝑜𝑡𝑎𝑙       =  𝑡𝑥,𝑡𝑜𝑡𝑎𝑙         𝑡𝑦,𝑡𝑜𝑡𝑎𝑙         𝑡𝑧,𝑡𝑜𝑡𝑎𝑙         
𝑇
 

 
Every time a new frame is processed 

and a relative change in translationfrom 

theprevious frame is calculated, 𝑡𝑖 ,we 

update𝑡𝑇𝑜𝑡𝑎𝑙        by adding 𝑡𝑖 : 
 

𝑡𝑇𝑜𝑡𝑎𝑙,𝑖        = 𝑡𝑇𝑜𝑡𝑎𝑙,𝑖−1           + 𝑡𝑖  

  
 Where𝑡𝑇𝑜𝑡𝑎𝑙,𝑖         is the ith estimate of𝑡𝑇𝑜𝑡𝑎𝑙       

 and𝑡𝑖  is  the relative changein translation 

between the current  frame i and i-1. 

1370

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



 

 

B. Algorithm Steps[2]: 

 

Initialization  

1. Initialize the video captureand 

camera parameters and acquire 

device position information from the 

magnetic compass and 

accelerometer. 

Main Loop 

2. Freeze video input frame. 

3. Getdevice position and 

orientation from the magnetic 

compass. 

4. Calculate the camera 

transformation relative to the device 

position. 

5. Draw the virtual objects in the 

center of the screen. 

Shutdown  

6. Close the video capture down. 

 

 

C: The App: The User Interface 

  
The user interface navigation screens 

in the app will be designed asnative Android 

layouts. The WebViewclass in Android 

enables loading and resizing of web pages at 

runtime, which will be used for the start 

screen.  A few preliminary designs of the user 

interface include: 

 

 

 
 

Figure 3:Item selection screen, level 1 

 

Eclipse lets us design powerful and beautiful 

layout for the GUI, and Android, from 2.3 

(Gingerbread) onwards, has significantly 

improved the WebView class to render web 

pages faster and make browsing and touch 

events more responsive.  

 

The Rendering interface: 

As the camera captures the image 

and renders the chosen item, items similar to 

current are shown in the top left corner. We 

believe this will improve accessibility and 

improve user satisfaction. A few screenshots 

of the app in action are as follows: 

 

 
 

 
 

Figure 5:The app in action, rendering 3D 

objects without Fiduciary markers 

 

 

D. 3D Modeling: 

We choose the open source tool, 

Blender for creating our 3D models because it 

is free and easy to use, and has extensive 

documentation. It also runs well on a 

moderately powered PC, like the ones the 

authors possessed.  

The following is a screenshot of a 

model of a sofa under development: 

1371

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



 
 

Figure 6: A sofa 3d model under development 

The model requirements of the 

Metaio SDK were sufficiently flexible and 

resistant to tracking artefacts, without being 

too restrictive, unlike those of the Vuforia 

SDK from Qualcomm which is another 

reason we chose Metaio over Vuforia.  

3D modeling was done on a desktop 

PC with an AMD Phenom II X4 Quad Core 

Processor, 3.5 GB RAM and on a Dell 

Insperon 15R laptop with an Intel i3 dual core 

processor and 3 GB RAM.  

 

VI. OBSERVATIONS 

 

1) Application works perfectly on high end 

phones but performance degrades on low end 

phones. 

2) Very high quality models give some minimal 

artifacting. 

3) Models are right now locally stored, resulting 

in high size of application and initial loading 

times.  

4) Application can run in realtime video mode as 

well as static photo mode. 

5) All models in a particular room are loaded 

immediately loaded when activity for that 

room starts, resulting in high memory usage 

and loading times. 

6) Models possess low shadow and reflection 

effects, resulting in a not-so-realistic feel. In 

the future, models can be improved for cutting 

edge hardware. 

 

VII. FUTURE SCOPE 

 

1) The models can be stored on file hosting sites 

and loaded on demand. Although this will 

result in increased performance and low 

memory consumption and increased reliability, 

it will require the user to have a high speed 

internet connection. 

2) This app can be further improved and extended 

for architecture, civil engineering, advertorial 

and other purposes. 

 

VIII. CONCLUSION 

This paper provided a brief introduction to 

handheld Augmented Reality, discussed the various 

free SDKs available for developing AR applications 

and outlined their merits and limitations. We also 

discussed the hurdles in achieving fast and efficient 

tracking on mobile devices. 

In the context of this paper an Android 

application for interior decoration purposes is being 

developed using the Metaio SDK 4.1 described earlier.  

 

IX. ACKNOWLEDGEMENT 

The authors wish to thank all referees and all 

those who contributed to this project in their own small 

ways. Special thanks to Dr. Ahmad Raza Khan for 

providing inspiration to use the Android platform for 

this project and to Prof. RevatiWahul for providing 

guidance for this paper. 

 

REFERENCES 

 

1] Woohun Lee; Jun Park; , "Augmented foam: a tangible 

augmented reality for product design," Mixed and 
Augmented Reality, 2005. Proceedings. Fourth IEEE 

and ACM International Symposium on , vol., no., pp. 

106- 109, 5-8 Oct. 2005 
2] Tobias Domhan, “Augmented Reality on Android 

Smartphones”. 

3] Gabriel Takacs, Vijay Chandrasekhar, Bernd Girod, 

RadekGrzeszczuk, “Feature Tracking for Mobile 

Augmented Reality Using Video Coder Motion Vectors”. 

4] Kenji Oka and Yoichi Sato Hideki Koike, “An 
Augmented Reality Application for Previewing 3D 

Décor Changes”. 

5] Agusanto, K.; Li Li; Zhu Chuangui; Ng Wan Sing; , 
"Photorealistic                rendering for augmented reality 

using environment illumination," Mixed and Augmented 

Reality, 2003. Proceedings. The Second IEEE and ACM 
International Symposium on , vol., no., pp. 208- 216, 7-

10 Oct. 2003 

6] Ruobing Yang; , "The study and improvement of 
Augmented reality based on feature matching," Software 

Engineering and Service Science (ICSESS), 2011 IEEE 
2nd International Conference on , vol., no., pp.586-589, 

15-17 July 2011 

7] MartinKurze, Axel Roselius; ,” Smart Glasses: An Open 
Environment for AR Apps”, Deutsche Telekom AG, 

Laboratories &funijiInc 

8] Keil, J.; Zollner, M.; Becker, M.; Wientapper, F.; 
Engelke, T.; Wuest, H.; , "The House of Olbrich — An 

Augmented Reality tour through architectural history," 

Mixed and Augmented Reality - Arts, Media, and 
Humanities (ISMAR-AMH), 2011 IEEE International 

Symposium On , vol., no., pp.15-18, 26-29 Oct. 

2011Keil, J.; Zollner, M.; Becker, M.; Wientapper, F.; 
Engelke, T.; Wuest, H.; , "The House of Olbrich — An 

Augmented Reality tour through architectural history," 

Mixed and Augmented Reality - Arts, Media, and 
Humanities (ISMAR-AMH), 2011 IEEE International 

Symposium On , vol., no., pp.15-18, 26-29 Oct. 2011 

1372

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



9] BorkoFurht, “Handbook of Augmented Reality”, ISBN-

10: 1461400635 

10] http://dev.metaio.com/arel/overview/ 

11] http://dev.junaio.com/arel/documentationArelJS/ 

12] http://handheldar.icg.tugraz.at/artoolkitplus.php 
13] https://developer.vuforia.com/ 

14] http://www.hitl.washington.edu/artoolkit/ 

15] http://wiki.blender.org/index.php/Doc:2.6/Manual 
16] http://www.blender.org/education-help/ 

17] https://developer.vuforia.com/resources/sample-

apps/frame-markers-sample-app 
18] Carel P.J. van Wyk, “Markerless Augmented Reality on 

Mobile Devices with Integrated Sensors” 

1373

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T


