
Hadoop with Map Cache

Sayali Ashok Shivarkar
Computer Network

Sinhgad College of Engineering,Pune, Maharashtra

Abstract— Apache’s hadoop system is pretty good and most

popular for storing and processing large amount of data. Hadoop has

two main systems: HDFS and Mapreduce. HDFS is uses for storing data

and MapReduce is used for processing this large amount of data. An

observation regarding mapReduce application is that they generate

large amount of intermediate data and this big data is thrown away

after processing is done. Motivated by this observation, we are

introduced cache for Map task which called as MCache. In MCache,

task submits their result to cache manager. Whenever new task arrives

it request cache manager to find similar task, which may be save

completely its execution and time also. Introducing Mcache significantly

improves the completion time of Map task and also saves a significant

chunk of CPU execution time.

Keywords—Hadoop,MapReduce,Cache Manegement.

I. INTRODUCTION

Today is age of data. Data is everywhere and data is going

to increase day by day. Photo and videos are uploaded in

facebook and other social networking sites per day are near

about 1 lakhs and more than that. This terabytes and petabytes

of data need to be analyzed to know which web site is popular,

which book is in demand, what kind of ads and movies

appeals to people. Previous tools are become inadequate too

processing this huge amount of data, so hadoop is introduced

to store, analysis and processes this big data.

For many originations like Yahoo, facebook, LinkedIn, and

Twitter hadoop become a core part of the computing

infrastructure.

Hadoop is an open source framework for writing and running

distributed applications. Hadoop is based on two key

technologies HDFS and MapReduce. To process large

amount of data in serial manner is not possible so MapReduce

process that data in parallel to accomplish work in less time

which is main objective of hadoop. MapReduce requires

special file system that is Hadoop Distributed File System.

MapReduce is basically divided into two part: Map and

Reduce. In map phase master node takes the input and divided

into small sub-problems and it takes input as key and value

pair. In Reduce phase master node collects the answer to all

sub-problems and combines them in such way to from a

output which is answer to the problem it was originally trying

to solve.

In this process there are potential duplicate computations

begin performed and MapReduce does not have any

mechanism to find such duplicate computation. One way to

avoid processing of such duplicate task is to introduce cache

which keeps track of all execution, which not only help to find

duplicate computation but also saves execution time.

II. BACKGROUND

a. MapReduce :

MapReduce is a software framework for processing a big

data set in distributed fashion. The core idea behind

MapReduce is mapping your data sets into <key, Value>

pairs and then reducing overall pair to the single which is the

result we are trying to obtain. The overall data need to be

mapped in key and value pair. Key and value may be any

type of data: string, integer etc. [2]

Fig 1. Map/Reduce framework shows working of Map and

Reduce. First it split the input into segment, passing each

segment to a different machine. Each machine execute map

task on data i.e. key and gives value. For e.g if we wanted

word count in a text file then our <key, value> will be <word,

count>

Fig 1. Working of Map/Reduce

[1]

 Our map task generate

a <word, count> pair for each word in

input stream but it does not aggregate word count, reducer

does this job. Emitted <key, value> pairs are then “shuffled”,

MCache :

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS061125 1448

which basically means that pairs with the same key are

grouped and passed to a single machine, which will then run

the reduce script. But output of map phase does not store

anywhere, after processing of map task it thrown away.

The reduce script takes a collection of <key, value> pairs and

“reduces” them according to the user‐specified reduce script.

In our word count example, we want to count the number of

word occurrences so that we can get frequencies. So in first

phase we have text that is divided into three parts and given

to three mappers which generates word and count as output

then that is shuffled and given to reducer and then reducer

gives final result.

III. DESIGN OF THE SYTEM

When MapReduce process computation which is divided into

map and reduce task. In execution of map task a very large

intermediate data is generated and which is thrown after a

processing is done. Map cache refers to the intermediate data.

A piece of cached data is stored in the distributed file system.

The content of the cache item is described by three tuples:{file

name, Operation, Resultfile}. The file name is the name of the

file on which operation is performed, operation specifies

which operation is done on file and result file contain result of

the operation. For example, in the word count application

mapper / reducer emit {word ,count} which gives word and

count of word in that file. MCache store this file in cache for

next use as { word .txt , item count, resultcount.txt}.

Fig2. Design of MCache System

As shown in fig 2 suppose client request NameNode to

execute problem statement NameNode divides that problem

statement into number of sub-problems and then it request to

cache find sub-problem file name in cache table with

operation. If cache finds file name and operation performed on

that file in cache table it directly returns the result file name to

the NameNode . NameNode find resulted file and directly

gives to Reducer for next execution. If file name and

operation performed on that file is not found then all sub-

problem is given to DataNodes for execution then there results

are given to reducers. Mapper and Reducer nodes record there

result into local storage. When operations completed, the

items are forwarded to cache manager. Cache manager stores

file name, operation performed on that file and resultant file

name in cache table. The cache item should be put on the

same machine as the worker process that generates it because

this improves data locality mechanism.

 If cache manager is not able to find exact match of file name

and operation performed on that file then after all processing

is finished it copies file name and operation performed on

that file with result file in cache table.

The Cache manager need to decide how much time item can

be kept in cache table. If item kept in cache for infinite

amount of time then it may happen that older result will be

used for some reducer task.

Here we allocate fixed storage size for storing cache items. If

there is no space in cache to store new result then old cache

item are deleted for storing new one.

IV. PERFORMANCE EVALUATION

A. Experiment Setting :

Hadoop is running in pseudo-distributed mode on a server

that has an 8-core CPU, each core running at 3GHz, 16GB

memory, and a SATA disk. The number of mappers is 12 in

all experiments, the reducers’ count varies. We use word

count program to know the speedup of hadoop. Word-count

counts the number of unique word in large input file.

B. Result:

Fig 3. Speed up of Mcache over the hadoop and their completion time of

word-count program.

 As shown in fig 3. Completion time and speed up of hadoop

using Mcache is increased as compare to hadoop completion

time and speed up.

V. CONCLUSION

We present the design of Mcache which eliminate all

duplicate task and increase speed up and completion time of

hadoop . In future we are trying to implement reduce cache as

well.

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS061125 1449

REFERENCES

1. Hadoop. http://hadoop.apache.org/.

2. Jeffrey Dean and Sanjay Ghemawat. Mapreduce:

simplified data processing on large clusters.

Commun. of ACM, 51(1):107–113, January 2008.

3. Patrick Th. Eugster, Pascal A. Felber, Rachid

Guerraoui, and Anne-Marie Kermarrec. The many

faces of publish/subscribe. ACM Comput. Surv.,

35(2):114–131, June 2003.

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS061125 1450

