
Memory Efficient Suffix Array Construction

Maninder Kaur
Haryana College of Technology and Management

Kaithal,Haryana

17122003.

ABSTRACT—Suffix array is an indexing data structure that

stores all the suffixes (Suffixes means substrings of a string) of

a string in sorted order (lexicographically). In numerous

applications like pattern matching, data compression, string

processing, and in the field of biology suffix array is the choice

of the most. Over 20 years many researchers have put their

efforts to make suffix array construction space efficient. In

this paper we have proposed a new algorithm for constructing

space efficient suffix array. Also we have made a memory

comparison of our algorithm with MM Prefix-Doubling

algorithm introduced by Manber and Mayer. Experimental

results show our approach is better than MM Prefix Doubling

algorithm in terms of memory.

 Keywords: suffix array, lexicographically, Prefix Doubling

I. INTRODUCTION

Suffix array is an indexing data structure that stores all the

suffixes (Suffixes means substrings of a string) of a string

in sorted order (lexicographically). Manber and Mayer in

1993[1] introduced suffix array as a space efficient

alternative to suffix tree. As the size of textual database is

increasing day by day so there is a need to store and

maintain it efficiently. Large size of textual database

requires more space for storing the data in them. There are

several indexing data structures that full fill this goal.

Suffix array is one of them. Suffix array store the indexes

of the sorted suffixes of a string. Introducing a memory

efficient construction of suffix array is a bottleneck. Over

20 years many researchers have put their efforts to make

suffix array construction space efficient.
In this paper we have introduced a new algorithm named

HeapSA for constructing space efficient suffix array. Also

we have made a memory comparison of this algorithm with

MM Prefix-Doubling algorithm [9] proposed by Manber

and Mayer.

Also in Section 2 we present the overview of basic

notations used. In Section 3 we present our new algorithm

HeapSA. Then in Section 4 Experimental results are given

and draw conclusions about their space efficiency in

Section 5.

II. BASIC NOTATIONS

Let |Ʃ| be a constant, indexed alphabet consisting of

symbols αᵢ, i= 1, 2.....|Ʃ| ordered α1, α2... α|∑|. In this paper

we will assume the common case that |Ʃ| Є 0...255, where

each symbol requires one byte of storage. Throughout we

consider a finite, nonempty string s= s[0....n] = s [0] s

[1]........s[n] of n+1symbols. The first n symbols of s are

drawn from |Ʃ| and comprise the actual input. The final

character s[n] is a special “end of string" character,$,

defined to be lexicographically smaller than any other

character in |Ʃ|. For i = 0........... n we write s[i..n] to denote

the suffix of s of length n-i + 1, that is s[i....n] = s[i]s[i + 1]

.... s[n]. For simplicity we will frequently refer to suffix

s[i...n] simply as “suffix i". We are interested in computing

the suffix array of s, which we write SAs or just SA. The

suffix array is an array SA [0....n] which contains a

permutation of the integers 0....n such thats [SA[0]....n] <

s[SA[1]...n] < < s[SA[n]....n].

III. NEW ALGORITHM

We have proposed a new algorithm HeapSA. In HeapSA

an array of type TreeMap is used to store <key,value> pair.

To sort the elements of array Heap Sort is used. Heap can

be a min heap or max heap but satisfy the heap property. In

max heap the largest element is stored at the root, and the

subtree rooted at a node contains values no larger than the

root node. The description of the algorithm is given later in

this section. HeapSA algorithm is as follow...

HeapSA

1. Create an array A of type TreeMap

2. string←file

3. create_suffixes(String s)
4. Intialize index=0;

5. Repeat steps 6 to 7 for all suffixes

 6. index← index + 1.s

 7 . Insert into array A (suffix, index)

8. heapsort_TREEMAP(array A)

9. for all elements of array A

 SA← A[i].index

create_suffixes (String s)

1. Intialize i=0

2. Repeat steps 3 to 4 while length≠ zero

 3. Create suffix by reading string from string[i] to string

[length]

 4. i←i+1.

return suffixes

heapsort_TREEMAP(array A)
1. BUILD-HEAP(A)

2. for i → length[A] down to 2

3. do exchange A[1] ↔ A[i]

4. heap-size [A] ← heap-size[A] -1

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS060617

International Journal of Engineering Research & Technology (IJERT)

636

5. M_HEAPIFY(A, 1)

BUILD-HEAP(A)
1. heap-size [A] ← length [A]

2. for i ← length [A]/2 down to 1

3. do M_HEAPIFY (A, i)

M_HEAPIFY(A, i)
1 l ← LEFT(i)

2 r ← RIGHT(i)

3 if l ≤ heap-size [A] and A[l].suffix > A[i].suffix

4 then largest ← l

5 else largest ← i

6 if r ≤ heap-size[A] and A[r].suffix > A[largest].suffix

7 then largest ← r

8 if largest != i

9 then exchange A[i] ← A[largest]

10 M_HEAPIFY (A, largest)

First of all, we created an array of objects one object of

which is capable of taking a <key value> pair as

information part. The suffix will be the key part and index

will be value part of node. Next, the file is read in a string

and by leaving one character at a time from starting of

string, the suffixes are created. Index values are

incremented by one every time a new suffix is added to

array. When all the suffixes are stored in array as (suffix,

index) pair, heapsort_TREEMAP (array A) is used to sort

the suffixes. In heap sort root is maximum among its left

and right child. For sorting root node is replaced by the last

node and array A is updated. Then check the heap property

if it is violated then maintains the max heap property by

using M_HEAPIFY. After that heap is built and again

replace the root with last node and do the same. At last the

index part of every object from array is retrieved as suffix

array.

For example consider the string s= “Apple$”

1 2 3 4 5 6

A p P L E $

Step 1: Its Suffixes are stored in array A along with

indexes.

A<suffix,index>

Suffix Index

Apple$ 1

pple$ 2

ple$ 3

le$ 4

e$ 5

$ 6

Step 2: Apply Heap sort on array A for sorting the suffixes

 Build heap with 6nodes

Fig.1. Heap of array A

Fig. 2. Updated array A

 Replace Root node with the last node and update

array A. Heap size is reduced by 1. Again build

heap if maxheap property is violated. „$‟ is

smallest among all the suffixes but when „pple$‟

is exchanged with „$‟, „$‟become the root of heap

violated the max heap property. So build the heap

again with 5 nodes. Again do the same process.

$ 6

le$ 4

ple$ 3

Apple$ 1

e$ 5

pple$ 2

 a)

b)

Fig. 3.a) updated array A1
and

b) Heap

pple$ 2

le$ 4

ple$ 3

Apple$ 1

e$ 5

$ 6

pple$, 2

le$, 4 ple$, 3

Apple$, 1 e$, 5 $, 6

ple$, 3

le$, 4 $, 6

Apple$, 1 e$, 5

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS060617

International Journal of Engineering Research & Technology (IJERT)

637

 Now exchange „ple$‟ with „e$‟and update the

array A. Now build heap for 4 nodes by

maintaining max heap property.

e$ 5

le$ 4

 $ 6

Apple$ 1

 ple$ 3

pple$ 2

a)

b)

Fig. 4. a)updated array A2 and b)Heap

 Now exchange „le$‟ with „Apple$‟ and update the

array A. Build heap with 3 nodes

Apple$ 1

e$ 5

 $ 6

le$ 4

 ple$ 3

pple$ 2

a)

b)
Fig. 5. a) updated array A3 and b) Heap

 Now exchange „e$‟ with „$‟and update the array

A. Build heap with 2 nodes.

$ 6

Apple$ 1

 e$ 5

le$ 4

 ple$ 3

pple$ 2

a)

b)

Fig. 6. a) updated array A4

and b)Heap

 Now exchange „Apple$‟ with „$‟ and update array

A. Finally suffixes are sorted as shown in fig.7.

Suffix Index

$ 6

Apple$ 1

e$ 5

le$ 4

ple$ 3

pple$ 2

Fig.7: Array A

Step 3: Retrieve indexes of sorted array and store in suffix

array SA.

SA={6,1,5,4,3,2}

In this approach memory used by HeapSA is reduced for

constructing suffix array SA. Experimental results shows

the memory used by HeapSA and MM prefix doubling

algorithm in the next section.

IV. EXPERIMENTAL RESULTS

We have implemented our algorithm in Java. Also the

implementation of MM prefix doubling algorithm is taken

from

http://algs4.cs.princeton.edu/63suffix/Manber.java.html.For

e$, 5

le$, 4

Apple$, 1

$, 6

e$, 5

$, 6 Apple$, 1

Apple$, 1

$, 6

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS060617

International Journal of Engineering Research & Technology (IJERT)

638

testing the memory performance of both the algorithms we

have used YourKit Java Profiler tool. Different text files

are taken from http://textfiles.com/directory.html.Testing

results are shown in table 1 and Graph 1.

File File

size(KB)

Memory used by

algorithms(MB)

MM HeapSA

Gnu 24 2.2 1.6

Email 22 2.1 1.5

Aaa 24 2.2 1.7

alphabet 11 1.2 0.9

protogen 30 2.6 1.9

Fbi 28 2.4 1.8

Table 1: Memory used by algorithm MM and HeapSA

Fig.8.

Graphical representation of

Memroy Usage by algorithms.

V. CONCLUSION

The present work has focused on reducing the space in

suffix array construction. we have proposed a new suffix

array construction algorithms that is memory efficient than

existing algorithm MM Prefix Doubling. By using 2d data

structure and different sorting methods, we have achieved

the goal of reducing memory in suffix array construction.

In this approach an array of type TreeMap stores the

suffixes along with indexes and then Heap sort is applied

for sorting the suffixes. At last indexes are retrieved and

stored in suffix array. In this approach 30% of memory is

reduced than MM Prefix Doubling.

From results it is clear that memory used by new algorithm

is less but time taken by them is more than existing

algorithm. In large scale applications as biological genome

analysis, the space requirement is a severe drawback. As

new suffix arrays require less space therefore these can be

used to index and analyse very large biological genome

which was not feasible before.

REFERENCES

[1]. U. Manber and G. Myers, “Suffix arrays: a new method for on-line

search”, SIAM Journal on Computing, vol. 22, pp. 935-48,1993.

[2] M. A. Maniscalco and S. J Puglisi, “ Faster lightweight suffix array
construction”, In J. Ryan and Dafik ,editors, Proceedings of 17th

Australasian Workshop on Combinatorial Algorithms, pp. 16–29,

2006.
 [3] H. Itoh and H. Tanaka, “An efficient method for in memory

construction of suffix arrays”, In Proceedings of the sixth

Symposium on String Processing and Information Retrieval,
Cancun, Mexico, IEEE Computer Society, pp. 81-88.

[4] J. Dhaliwal, S. J. Puglisi and Andrew Turpin, “Trends in suffix

sorting: a survey of low memory algorithms”, In Proceedings of the
35th Australasian Computer Science Conference (ACSC'12), 2012.

 [5] J. Karkkainen and P. Sanders, “Simple linear work suffix array

construction”, In Proceedings of the 30th International Colloq.
Automata, Languages and Programming, Lecture Notes in

Computer Science, Springer-Verlag, Berlin, vol. 2971, pp. 943-955,
2003.

[6] D. K. Kim, J. S. Sim, H. Park, and K. Park, “ Linear-time

construction of suffix arrays”, In Baeza-Yates, E. Chavez, and M.
Crochemore, editors, Proceedings of the 14th Annual Symposium

CPM 2003, Lecture Notes in Computer Science, Springer-Verlag,

Berlin, vol. 2676, pp. 186-199, 2003.
[7] K. Schurmann and J.Stoye , “An incomplex algorithm for fast suffix

array construction”, In Proceedings of The Seventh Workshop on

Algorithm Engineering and experiments (ALENEX05) SIAM, pp.77–
85,2005.

[8] G. Manzini and P. Ferragina, “Engineering a lightweight suffix array

construction algorithm”, Algorithmica, vol. 40, pp. 33–50, 2004.
[9] S.Puglisi, W.Smyth and A.Turpin, “A taxonomy of suffix array

construction algorithms”, ACM Computing Surveys, vol. 39, no. 2,

doi:10.1145/1242471.1242472.
[10] G. Nong, S. Zhang and W. Hong Chan, “Linear time suffix array

construction using d-critical substrings”, In Proceedings of CPM,

France, Jun. 2009.
[11] R. Grossi , J. S. Vitter, “Compressed suffix arrays and suffix trees

with applications to text indexing and string matching”, In

Proceeding of 32nd ACM Symposium on Theory of Computing, pp.
397–406, 2000.

[12] J.L. Bentley, R. Sedgewick, “Fast algorithms for sorting and

searching strings”, In Proceeding of 8th Annual ACM-SIAM
Symposium On Discrete Algorithms, pp. 360–369,1997.

[13] S. Kurtz, “Reducing the space requirement of suffix trees”,

Software—Practice & Experience, vol. 29, no.13, pp. 1149–1171,
1999.

[14] T. Kasai, G. Lee, H. Arimura, S. Arikawa, K. Park, “Linear-Time

Longest-Common-Prefix Computation in Suffix Arrays and Its
Applications”, In Proceeding of12th Annual Symposium on

Combinatorial Pattern Matching CPM, Lecture Notes in Computer

Science, vol. 2089, pp. 181–192, 2001.
[15] N. J. Larsson, K. Sadakane, “Faster Suffix Sorting”, Technical

Report LU–CS–TR, Lund University, pp .99–214, 1999.

[16] G.Nong, S. Zhang, W. Hong Chan, “Two Efficient Algorithms for
Linear Time Suffix Array Construction”, IEEE Transactions on

Computers, vol. 60, pp. 1471-1484,Oct. 2011.

[17] S. Rajasekaran , M. Nicolae, “An elegant algorithm for the

construction of suffix arrays”, Journal of Discrete Algorithm, DOI:

0.1016/j.jda.2014.03.001, 2014.

[18] S. Burkhardt, J. Karkkainen, “Fast lightweight suffix array
construction and checking”, In R. Baeza-Yates, E. Chavez and M.

Crochemore ,editors, Proceeding of 14th Annual Symposium on

Combinatorial Pattern Matching , LNCS 2676, Springer-Verlag, pp.
55–69, 2003.

0

0.5

1

1.5

2

2.5

3

gn
u

em
ai

l

aa
a

al
p

h
ab

et

p
ro

to
ge

n

fb
i

M
EM

O
R

Y
(M

B
s)

INPUT FILES

MM

HeapSA

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS060617

International Journal of Engineering Research & Technology (IJERT)

639

