
Memory Efficientlow Dendity Parity Check Codes On FPGA
Shrugal Varde 1, Dr. NishaSarwade 2

Electrical Engineering department,VJTI,Mumbai,India

Electrical Engineering department,VJTI,Mumbai,India

Abstract

 Low-density Parity Check(LDPC) codes have been

in focus of intense research in Error-correction Cod-

ingin recent years. High throughput decoder design

for them has been a big challenge for these codes. In

thispaper, we introduce decoder design based on

projective geometry (PG) structure of LDPC code

sum product algorithm. The corresponding fully-

parallel VLSI architecture was implemented on Xil-

inx LX110T FPGA. MATLAB was used to simulate

the code.

Keywords : LPDC , MATLAB, Projective geometry,

Virtex 5,Xilinx.

1. Introduction
LDPC codes are an emerging class of codes which

exhibit superior bit error rate(BER) performance.

Relative ease of decoder design, coupled with better

performance, has made LDPC codes useful in recent

digital transmission and storage systems. All LDPC

decoding algorithms need large number of parallel

working memories. Hence designing for memory

efficiencyis one of the significant task in its decoder

design. In this work, we introduce an LDPC decoder

design that uses on chip memory for storing data. In

general, different code structures result in different

architectures, and hence different memory manage-

ment schemes. Our choice of structures is derived

out of geometry of projective planes. We report

prototype implementation results on FPGA, to dem-

onstrate simplicity of design, and high efficiency of

the hardware, for PG based LDPC codes, apart from

throughput improvement. The design has been im-

plemented on Xilinx Virtex 5 FPGA board.

2. Low density parity check codes
LDPC codes are generally decoded using probabilis-

ticsoft decision decoding process. The knowledge

of channel noise statistics is used to generate prob-

abilistic information for received bits, and given to

the decoder. The reliability of this bit information

is then successively improved over iterations, and

hard decisions on bit values made. Such decoders

make use of graphs known as Tanner graphs to rep-

resent codes, passing probabilistic messages along

the graph’s edges iteratively. The matrix of

this graph is called parity-check matrix H. A Tanner

graph has two sets of nodes: n bit nodes, and m

parity-check nodes, for a m*n sized parity-check

matrix. Each parity-check node is connected by an

edgeto bit nodes corresponding to the code bits in-

cludedin that parity-check equation. The sequence of

stepsinvolved in iterative decoding using log-sum-

product

Algorithm is as follows

1. The initial message is first sent by bit nodes

to check nodes. This message is based on

the calculated log-likelihood ratio(LLR) of

received signal.

2. Next, check nodes calculate and send up-

dated LLRs to the bit nodes using the re-

ceived messages. The formulae is as given

Ej,i – data sent from jth check node to ith

bit

 node.

Mj,i - data sent from ith bit node to jth

check

 node.

3. Bit node add all the data received form the

check nodes connected to that bit node

4. Hard decision is done based on sign of Li.

If in some iteration syndrome vector is zero

then code word Li belongs to code block,

else process is repeated.

5. Updates messages are sent back to check

node. Formula for updating the check data

is as given

ri – intrinsic data or apriori data received by

bit node at the start of decoding process.

520

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70227

Figure 1: Data representation format

 3. Design

In this design fixed point data format is used to

represent binary data. The advantage of using the

fixed point data representation is that arithmetic

operation is much simpler compared to floating

point arithmetic operation. In the design 16 bits

are used to represent the data .MSB indicated the

sign bit. Integer data is represent by 5 bits and re-

maining 10 bits are used to represent fractional

data . The data format is as shown in figure 1

The choice of message precision is dictated by the

biterror rate and the resources of storage and compu-

tation available on the FPGA.

 4. Bit node design
The bit nodes are relatively simpler to implement as

they do only addition of several check node mes-

sages. As the number of check node messages is

relatively more in our case, we employ a partly se-

rial adder for our design. The check node messages

are first stored in a register bank. Addition process

of 9 check nodes along with apriori data is com-

pleted in 4 clock .Architecture is as shown in figure

2Then,each check node message is subtracted from

this total sum to get the individual bit-to-check mes-

sages.

5. Check node design
The check nodes are comparatively much more

complex.Check node computation includes calucu-

lating hyperbolic tan , multiplication and natural

logarithm of nine set of 16 bit data. These arithmetic

operations are calculated by simple shift and add

algorithm called CORDIC algorithm first proposed

by Volder in 1961.Hyperbolic tan structure is as

shown in figure 3

 Figure 3 : Hyperbolic tan structure

The absolute block separates the sign and the magni-

tude part of the angle entered. The magnitude

part of the values is given to the decision block

The decision block checks the range of the angle . If

the value is out of range(greater than 3.5) then deci-

sion block generates a done_all control signal. If not,

then decision block initializes the value of X, Y and

Z and generates a control signal done. These values

are given to the computation block.

The computation block implements the hyperbolic

CORDIC equation given by walther. This block at

the end of 13 iterations generates the values of hy-

perbolic sin and hyperbolic cos. These values are

given to division block. To increase the speed barrel

shifters are used.[5]

The division process used in this code is

also implemented using CORDIC algorithm. It

computes the value of tanh (tanh = sinh/cosh). Af-

ter calculating the value of hyperbolic tan sign value

is taken into consideration and final result is gener-

ated

Multiplier block structure using CORDIC algorithm

is as shown in figure 4

Figure 2 : Bit addition architecture

521

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70227

Figure 4 : Multiplier block structure

The absolute block separates the sign and the

magnitude part of the angle entered. The magni-

tude part of the values is given to the decision

block

The algorithm block performs the most impor-

tant task of multiplying two 16 bit binary data

using CORDIC algorithm .Matlab simulation

results have shown that the multiplication block

using CORDIC algorithm provides accurate

results with error less than 0.01% when the

number of iteration used to calculate the multi-

plication result is more than 12. After the com-

putation process the decision block decides the

sign of the result. For positive number the sign

bit is 0 and for negative sign bit is 1.

Natural logarithm block structure is as shown in fig.

5

Buffer data receive the data from multiplication

block. The main task of the buffer block is to

generate set of data which is (1 + input) and (1 –

input). Depending on the condition (control sig-

nals) buffer data either gives (1+ input) as output

or (1- input). The decision block decides the input

and adjustment value depending on the input data

of decision block. The compute block performs

the actual operation of calculating the natural

logarithm of the input data. At the end compute

block performs the task of log(1+input) + log(1-

input).

Each check node is connected to nine bit nodes .

Hence check node at start should calculate hyper-

bolic tan of nine input data. After the calculation of

hyperbolic tan eight 16 data should be multiplied .

If multiplication is done serially then 192 clock

cycles would be required to generate the result

which will act as input to natural logarithm block.

To increase the speed of the system semi parallel

structure is adopted for multiplication for 8 16 bit

data. Structure is a shown in figure 6

Figure 6 : semi parallel multiplication structure

6. Control logic
Due to the simplified logic of the decoder, the con-

trol unit design becomes extremely simple. This is

implemented in terms of a simple FSM as shown in

Figure 7. The strobe input is given a strobe after a

data block has been input. The output signal goes to

select the intrinsic information. Whenever all the

parity check equations have been satisfied, they are

output one and the unit becomes ready to accept

new input blocks.

Also, a one cycle wide pulse is generated on the end

output to notify the external device of the comple-

tion.

Figure 7 : Control unit schematic

Figure 5 : Natural logarithm block structure

522

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70227

7. Results and simulations
The vhdlcodes of sum product algorithm was im-

plemented on VIRTEX 5 FPGA board. The device

used is xc5vlx110t-1ff1136. For synthesis of vhdl

code we used XILINX ISE DESIGN SUITE 14.1 .

The code were verified on the board with the help of

Xilinx IMPACT tool . MATLAB 2012a was used to

generate the simulation graphs.

The synthesis report is as shown

Number of Slice registers 16909 of 69120

(24%)

Number of slice LUT’s 69100 of

69120(86%)

Number of fully used

LUT’s

11200 of 1208

(13%)

Number of bonder IOB’s 147of 640 (22 %)

Number of

BUFG/BUFGCTRL’s

2 of 32 (6%)

Maximum clock frequency at which system can

work is 120 MHz. As block RAM is used in the sys-

tem the number of interconnects have reduces.

For simulation purpose a matlab code was written

that generates 73 random values in the range of -5 to

5. These values were then converted in 16 bit binary

format used in the design. The values are stored in

on chip RAM. The decoder was simulated using

Xilinx ISIM simulator. After simulation it was ob-

served that the system takes 2 to 3 iteration to gen-

erates the final result.The utilization of the resources

is almost 86 %.As block RAM was used to transfer

data from bit node to check node and vice versa the

interconnection have reduced thus reducing the

complexity of the system.Since the cross over prob-

ability of the channel is almost 5 % the number of

bits in which error is allowed is 73*0.05 =3.6

,approximately 4. Decoder was able to decode upto

4 bit errors with number of iterations required for

decoding to be less than 3.

8. References

[1] R.G.Gallager,_Low Density Parity Check

codes M.I.T.Press,1963

[2] D.J.C.MacKay and R.M.Neal,_Near Shannon

limit performance of low density parity

checkcodes, Elec-

tronLett.,vol.32,no.18,pp.1645- 1646,1996.

[3] Y. Kou, S Lin, and M. P.C. Fossorier, "Low

density parity check codes based on _nite ge-

ometries: a rediscovery", Proc. IEEE ISIT,

Sorrento, Italy, p. 200, Jun 2000.

[4] Sarah J. Johnson, “Introducing Low-Density

 Parity-Check Codes”.

[5] N.Karmarkar,_A New Parallel Architecture

for Sparse Matrix Computation Based on Fi

niteProjective Geometries_,AT&T Bell

Labs,1994.

[6] William E Ryan, University of Arizona,

 “INTRODUCTION TO LDPC CODES”,2001

[7] Hrishikesh Sharma, Subhasis Das,” HIGH

THROUGHPUT MEMORY-EFFICIENT

VLSI DESIGNS FOR STRUCTURED

LDPC DECODING”,IIT Bombay.,May

2010.

[8] Subhasis Das, Hrishikesh Sharma, Sachin Pat

kar,” A Min-Sum based 800 Mbps LDPC de

coder on FPGA”,IIT Bombay,March 2010

523

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70227

