
Method for Evaluation of Quality Properties in

SaaS Rejuvenation using Markov Model

Huynh Quyet-Thang, Nguyen Ngoc-Dung, Nguyen Hung-Cuong

School of Information and CommunicationTechnology

Hanoi University of

Science and Technology

Hanoi, Vietnam

Abstract - Software fault-tolerance techniques have been

widely used in computing systems to achieve high level of

quality. Rejuvenation, a modern software fault-tolerance

technique, has attracted a large number of researchers in

software engineering area. Evaluating the effectiveness and

feasibility of this technique becomes extremely important in

selecting, comparing and applying it in actual software systems.

The study of important-quality-attributes is the scientific basis

for assessing the performance of software fault-tolerance

techniques. This paper presents availability, reliability, safety

evaluation of rejuvenation systems. Derived mathematical

relations between failure probabilities and modeling parameters

enable us to gain a great deal of quantitative results.

Keywords—software reliability, software availability, software

safety, Markov chain

I. INTRODUCTION

Nowadays, computer science has more and more application

in human life, from economic to society, from education to

medicine. So there is a requirement that developer has to build

a high quality system to support user work. Most regular

properties of software quality are reliability, availabilityand

safety, that are studied in many fields: in component based by

Larsson [1], consider maintenance and security issues by

Xiong [2], base on properties and architecture of system by

Roshandel [3], etc… The reliability relates with the

correctness of result of work, whereas the availability ensures

that system is ready to serve and the safety minimize the

probability that a serious accident occurs in running time.

There are two main approaches to analysis those properties of

fault-tolerant software: practical testing and modeling. Results

of practical testing are more believable than those from

modeling, which is more well-known. However, testing can

only establish the presence of errors but cannot assure their

absence. Also, for highly dependable systems, the testing

method is not always feasible and tends to be expensive to

implement and then, to obtain statistically significant results.

Since the concept of fault-tolerant software was presented

so far, many techniques has been proposed and applied

successfully in practice. Rejuvenation (preventive

maintenance - PM) is a new software fault tolerance

technique, which Y.Huang was proposed in 1995 [2] and now

it has attracted the interest and the research of many scientists

[2], [3], [4], [5]. Assessing effectiveness and feasibility of this

technology becomes extremely important in choosing,

comparing andapplying it to practical software systems.

Markov chain (more specific: discrete-time Markov chain)

is a stochastic math system, containing a set of finite (or

countable) number of possible states and a set of transitions

between two of them. Given the past and present circumstance

of Markov chain system, future behavior only depends on the

present state and not on the past one. This model has large

number of applications in natural science.

There are several techniques to evaluating quality
properties of computer system with different approaches
[6,7,8]. Thus, based on advantages of Markov chain model,
this study introduces a model and applies it to evaluate the
quality attributes of rejuvenation-software systems.

This paper is organized as follow: after this introduction
section, section 2 explains definition of three aspects of
software quality: reliability, availability and safety. Next,
section 3 introduces rejuvenation - a software fault-tolerance
technique. Section 4 proposes a method for evaluation those
quality properties in rejuvenation systems using Markov
model. Then section 5 shows experimental result of proposed
method in simulation experiments. In this section we present
also the experiment results in real system – BKOJ software,
run as SaaS in the BKCLoud system. Section 6 discusses
some related and future problem to extend current work.

II. BASIC ASPECTS OF SOFTWARE SYSTEM

QUALITY

Larsson [1] introduce dependability is the main
qualityattribute of safety-critical system development.
Althoughsoftware quality has complex meaning and depends
on manyproblems, there are three aspects that are discussed
following.

A. Reliability

Definition of reliability is based on probability that a system
will fail in a specific period of time in given context and can
be reflected by mean time to failure (𝑀𝑇𝑇𝐹) equation:

Reliability(𝐴) =
1

𝑃𝑓(𝐴)
 (1)

While A is a module and 𝑃𝑓(𝐴) is a probability that this

module fails per time unit. Being an important property of
system, reliability is focused widely by researchers:
Roshandel [3], Hoang P. [4], etc... It often used as an indicator
for software release policy and can be got by using practical
analysis of math models. Roshandel [3] introduce technique to
calculate system reliability from this property of element.
Hoang P. [4] summaries some statistical models and focuses
on NHPP models.

1852

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041922

International Journal of Engineering Research & Technology (IJERT)

B. Availability

Although problems of availability is larger than

reliability,Xiong [2] notes that availability is a probability

that systemisready-for-work in given time and given

environment. Relate with reliability attribute, Larsson [1]

introduce formalcalculation:

Availability(𝐴) =
𝑀𝑇𝑇𝐹(𝐴)

𝑀𝑇𝑇𝐹(𝐴) + 𝑀𝑇𝑇𝑅(𝐴)
 (2)

While 𝑀𝑇𝑇𝑅 is mean time to repair. This attribute of

systemhas high commercial contribution: users will satisfy if

theycan use product service at every time. The difference

between reliability and availability is that availability

dependson the dynamic state of the system.

C. Safety

Larsson [1] consider software safety as an attribute thatrelates

with the interaction between the system and the environment.

It is a full-system property, either a component or an

assembly property. Safety depends on where and howthe

system is deployed, in other way is dependent on the

environment of system, so a top-down approach should be

used in analyzing process. Safety of system is more important

inthe safe-critical systems, which will cause heavy damage

topeople or environment if they encounter a failure.

D. General method to evaluate fault-tolerantsystems

Authors K. S. Trivedi and Goseva-Popstojanova [5, 6]have

proposal to use Markov model in evaluating fault-

tolerantsystem:

Step 1. Markov model implementation

In the first step,the Markov state map is being developedby

identifying the status of the system and the transition between

states.

Step 2. Building Chapman-Kolmogorov equations

In the second step, the Markov state chart, whichhas been

developed, is being converted to a collection of the Chapman-

Kolmogorov equations to find the matrix of transition state

probability of the system.

Step 3. Solving Chapman-Kolmogorov equations

Solving Chapman-Kolmogorov equations is

relativelycomplex. Some current resolutions such as analytics

analysis, Laplace-Stieltjes transform or use ODEs inMatlab

can simplify this task.

Step 4. Calculating and assessing the attributes of the fault-

tolerant software

With each specific system, the software attributes will be

evaluated according to specific parameters.This is general

mechanism when using Markov chain in modeling. Real

application depends on properties of environment, context

and meaning.

III. SOFTWARE REJUVENATION

When software applications execute continuously for

longperiods of time (scientific and analytical applications

runfor days or weeks, servers in client-server systems are

expected to run forever), the processes corresponding to

thesoftware in execution age or slowly degrade with respect

toeffective use of their system resources. The causes of

process aging are: memory leaking, unreleased file locks,

filedescriptor leaking, data corruption in the operating

environment of system resources, etc. Process aging will

affect the performance of the application and eventually cause

theapplication to fail [2].

If an application is developed in a perfect

developmentenvironment and it operates correctly in the

scenario work,the implementation process associated with

this applicationwill not be aging. However, practical software

systems rarelyare perfect. Therefore, their processes will be

aging in theoperating environment. The process aging and the

softwareaging are fairly different. Software aging is related to

sourceprogram, which will be inappropriate when

requirements andmaintenance are changing after many years.

On the contrary, process aging is related to the decrease of

applicationfunctions after several working days or weeks.

Figure1.Status model of Rejuvenation system

Software preventive maintenance (software rejuvenation)

is a concept related to periodically reboot the system and turn

the application back to the initial clean status after each

maintenance [2], [3]. Here, we have an overview figure

describing four states of the system when

rejuvenationtechnique is applied (Figure1).

IV. PROPOSED METHOD FOR EVALUATION OF

RELIABILITY, AVAILABILITY AND SAFETY OF

REJUVENATIONSYSTEMS

A. System Status Implementation

Used symbols are showed in table 1 as followed:
Table 1.MEANING OF SYMBOLS

Symbol Meaning

𝑃𝐴𝐵 Probability when changing from state 𝐴(available) to state 𝐵
(recovery)

𝑃𝐴𝐶 Probability when changing from state
𝐴(available) to state 𝐶 (rejuvenation)

𝑝𝑖(𝑡) Probability when having 𝑖 transactions inqueue at the time 𝑡

𝛾𝑓 Estimated time to complete the process ofrecovering from

errors

𝛾𝑟 Estimated time to complete the process ofpreventive

maintenance

𝑈 Time when system is in state 𝐴

𝜆 Speed of transactions to system

𝜇(.) Speed for serving

𝜌(.) Failure rate

𝐿(𝑡) Mean processing time since the system rejuvenated last

Supposed that software system is built following server-

client model with a queue containing finite number of

requests. System exists only errors, which seriously

affectingthe functionality of total system and we are not

Rejuvenation System

failure

Completion of

rejuvenation
Completion

of repair

Operating

Potential

Error

Error
Preventive

Maintenance

1853

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041922

International Journal of Engineering Research & Technology (IJERT)

interestedin the other errors, which are considered as they

occur andare repaired immediately, do not decrease the

reliability ofthe system. When the system encounters serious

error, allrequests will be canceled and the system will become

unsafe(state 𝐵), then evoke the error-recovery process.

Figure2.Status and behavior of rejuvenation system

We consider two different policies, which determine the

timeto perform preventive maintenance:

 Policy I. Purely time based: Preventive maintenance is

initiated after a constant time δhas elapsed since it was

started (or restarted).

 Policy II. Instantaneous load and time based: The

actualpreventive maintenance interval is determined by

the sumof preventive maintenance wait and the time it

takes forthe queue to get empty from the point onward.

Let 𝜋𝑖be the steady state probability that software is instate

𝑖(𝑖 ∈ 𝐴, 𝐵, 𝐶). From the well know relation 𝜋 = 𝜋𝑃 ,we

have:

𝜋 = [𝜋𝐴 , 𝜋𝐵 , 𝜋𝐶] = [
1

2
,
1

2
𝑃𝐴𝐵 ,

1

2
𝑃𝐴𝐶] (3)

Let 𝑈 be a random variable denoting the sojourn time instate

𝐴 with its expectation𝐸[𝑈]. The steady state availability can

be given as:

𝐴𝑆𝑆 = Pr{System is in state 𝐴}

=
𝜋𝐴𝐸[𝑈]

𝜋𝐴𝐸[𝑈] + 𝜋𝐵𝛾𝑓 + 𝜋𝐶𝛾𝑟

(4)

Substituting the values of𝜋𝐴 , 𝜋𝐵 ,𝜋𝐶 :

𝐴𝑆𝑆 =
𝐸[𝑈]

𝑃𝐴𝐵𝛾𝑓 + 𝑃𝐴𝐶𝛾𝑟 + 𝐸[𝑈]
 (5)

The steady state safety can then be obtained as followed:

𝑆 = 1 − Pr{System is in state 𝐵} (6)

And:

𝑆 = 1 −
𝜋𝐵𝛾𝑓

𝜋𝐴𝐸[𝑈] + 𝜋𝐵𝛾𝑓 + 𝜋𝐶𝛾𝑟
 (7)

Substituting the values of𝜋𝐴 , 𝜋𝐵 ,𝜋𝐶 :

𝑆 = 1 −
𝑃𝐴𝐵𝛾𝑓

𝐸[𝑈] + 𝑃𝐴𝐵𝛾𝑓 + 𝑃𝐴𝐶𝛾𝑟
 (8)

In policy I, system is surveyed in the period (0, δ] , so

averagereliability can be obtained as:

𝑅𝑚𝐼 =
 [𝑝𝑖(𝑡)𝑖]𝑑𝑡

𝛿

0

𝛿
 (9)

In policy II, system is surveyed in the period (0, ∞) , so

average reliability can be obtained as:

𝑅𝑚𝐼𝐼 = lim
𝑇→∞

 [𝑝𝑖(𝑡)𝑖]𝑑𝑡
𝑇

0

𝑇
 (10)

Figure3.Markov process with policy I

B. Policy I

𝑑𝑝0 𝑡

𝑑𝑡
= 𝜇 ∙ − 𝜆 + 𝜌 ∙ 𝑝0 𝑡 (11)

𝑑𝑝𝑖 𝑡

𝑑𝑡
= 𝜇 ∙ 𝑝𝑖+1 𝑡 + 𝜆𝑝𝑖−1 𝑡

− 𝜇 ∙ + 𝜆 + 𝜌 ∙ 𝑝𝑖 𝑡

1 ≤ i ≤ k

(12)

𝑑𝑝𝐾 𝑡

𝑑𝑡
= 𝜆𝑝𝐾−1 𝑡 − 𝜇 ∙ + 𝜌 ∙ 𝑝𝐾 𝑡 (13)

𝑑𝑝𝑖′ 𝑡

𝑑𝑡
= 𝜌 ∙ 𝑝𝑖 𝑡

1 ≤ i ≤ k

(14)

For 𝜇 ∙ = 𝜇 𝐿 𝑡 (.) and ρ ∙ = 𝜌 𝐿 𝑡 where L(t) is

defined by:

𝐿 𝑡 = 𝑐𝑖𝑝𝑖 𝜏 𝑑𝜏

𝑖

𝑡

𝜏=0

 (15)

The set of ODEs is first augmented by the following

differential equation:
𝑑𝐿 𝑡

𝑑𝑡
= 𝑐𝑖𝑝𝑖 𝑡

𝑖

 (16)

Figure4.Markov process with policy II

λ μ •

ρ • ρ • ρ • ρ • ρ •

μ • μ • μ •

λ λ

1 2 3 k-1 k

1’ 2’ 3’ k-1’ k’

0

ρ • ρ • ρ • ρ • ρ •

μ • μ • μ •

λ λ λ

1 2 3 k-1 k

1’ 2’ 3’ k-1’ k’

Error

Recovering

A

Operating

Preventive

Maintaining

B C

1854

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041922

International Journal of Engineering Research & Technology (IJERT)

The initial conditions: 𝑝0 0 = 1, 𝑝𝑖 0 = 0 for1 ≤ i ≤ L

and𝑝𝑖′ 0 = 0 for0′ ≤ i′ ≤ k′. Then

𝑃𝐴𝐵 = 𝑝𝑖 𝛿

𝐾

𝑖=0

 (17)

And

𝑃𝐴𝐶 = 1 − 𝑃𝐴𝐵 (18)

The expected sojourn time in state 𝐴 is given by:

𝐸 𝑈 = 𝑝𝑖 𝑡

𝐾

𝑖=0

 𝑑𝑡

𝛿

𝑡=0

 (19)

C. Policy II

In this case, we need to distinguish between𝑡 ≤ 𝛿and𝑡 > 𝛿,

as policy II assumes that preventivemaintenance will be

initiated if and only if the buffer isempty after time 𝛿 has

elapsed. Similar to policy I, onstep transition probability 𝑃𝐴𝐵

is computed by solvingthe system ofODEs at𝑡 = ∞ and is

given as:

𝑃𝐴𝐵 = 𝑝𝑖 ∞

𝐾

𝑖=0

 (20)

Then

𝑃𝐴𝐶 = 1 − 𝑃𝐴𝐵 = 𝑝0 ∞ (21)

The mean sojourn time in state A is now given by:

𝐸 𝑈 = 𝑝𝑖 𝑡

𝐾

𝑖=0

 𝑑𝑡 +

𝛿

𝑡=0

 𝑝𝑖 𝑡

𝐾

𝑖=1

 𝑑𝑡

∞

𝑡=𝛿

 (22)

⇔ 𝐸 𝑈 = 𝑝0 𝑡 𝑑𝑡 +

𝛿

𝑡=0

 𝑝𝑖 𝑡

𝐾

𝑖=1

 𝑑𝑡

∞

𝑡=0

 (23)

V. RELIABILITY, AVAILABILITY AND SAFETY

EVALUATIONBY SIMULATION EXPREMENTATION

The models are solved for multiple values of δ and optimum

value is determined. Using programming solution tool

inMatlab, we can estimate Chapman-Kolmogrov equations,

thereby simulating the variability of Ass, Ploss and the upper

bound of response time Tres with system parameters.

Model parameters: 𝛾𝑓 = 0.85(h); 𝜆 = 6.0(h−1);

𝑘 = 50; 𝑀𝑇𝑇𝐹 = 240(h)Where h = hours.

A. Simulation experiment I

In this experiment,𝛾𝑟 is varied to ascertain the effect on the

measures and on optimal 𝛿. Service rate and failure rate are

assumed to be functions of real time, i.e., 𝜇 ∙ =
𝜇 𝑡 and 𝜌 ∙ = 𝜌 𝑡 , where 𝜌(𝑡) = βα𝑡𝛼−1 , which is the

hazard function of Weilbull distribution. 𝛼isfixed at 1.5 and

𝛽 is calculated from 𝛼 and the 𝑀𝑇𝑇𝐹 as:

𝛽 =
Γ 1 +

1

𝛼

𝑀𝑇𝑇𝐹

𝛼

 (24)

And𝜇(𝑡) is defined as:

𝜇 𝑡 =
𝜇𝑚𝑎𝑥 1 −

1

𝑀𝑇𝑇𝐹
 if 𝑡 ≤ 𝑎

𝜇𝑚𝑖𝑛 if 𝑡 > 𝑎
 (25)

Where

𝛽 =
𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛

𝜇𝑚𝑎𝑥

𝑀𝑇𝑇𝐹 (26)

𝜇𝑚𝑎𝑥 = 15ℎ−1 ;𝜇𝑚𝑖𝑛 = 5ℎ−1 . Under both polices, itcan be

seen that the higher the value of 𝛾𝑟 , the lower isthe

availability for any particular value of 𝛿.

Figure 5.Availability under policy I

Figure 6.Availability under policy II

Figure 7and Figure 8show that safety will decrease when

increasing the value of parameter𝛿 , while safety increases

when raisingthe value of parameter𝛾𝑟 . Since then, we can

commentthat under the policy I, the sooner the preventive

maintenance will be conducted, the safer the system will be.

Figure 7.Safety under policy I where𝛾𝑟= 0.35

𝛿

𝛾𝑟 = 0.55

①

②

④

③

①𝛾𝑟 = 0.15

②𝛾𝑟 = 0.35

③𝛾𝑟 = 0.55

④𝛾𝑟 = 0.85

∎ maximum

𝛿

𝛿

①𝛾𝑟 = 0.15

②𝛾𝑟 = 0.35

③𝛾𝑟 = 0.55

④𝛾𝑟 = 0.85

∎ maximum
point

①

②

④

③

Av

ail

abi

lit

y

Safe

ty

Av

ail

abi

lit

y

1855

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041922

International Journal of Engineering Research & Technology (IJERT)

Figure 8.Safety under policy I where 𝛾𝑟 varies

The safety of system under policy II will increase with

thedecrease of 𝛾𝑟 (Figure 9). However the dependency is

relatively small. In addition, the safety will reduce

rapidlyalong with the increase of 𝛿 to a threshold (marked

onthe drawings) and then will be almost unchanged.

Fromtheoretical calculation, we can see the average reliability

of the system does not depend on𝛾𝑟 . Therefore, we fixthe

value𝛾𝑟 = 0.55and survey the influence of the reliability on

the time to wait to perform the preventivemaintenance 𝛿. The

average reliability of system underpolicy I rises with the

decrease of parameter 𝛿 (Figure 10).Clearly, under policies I,

the sooner the preventive maintenance is conducted, the

higher the level of reliability ofsystem is kept. Under policy

II, the reliability is calculated throughout the time domain. It

can see that thereliability will increase along with the

increase of 𝛿 to athreshold and then be kept stable.

B. Simulation experiment II.

In this experiment,𝛾𝑟 is fixed at 0.15; 𝛼 is an assigned value

of 1.0,1.5 and 2.0, respectively.

Figure 9.Safety under policy II where 𝛾𝑟 varies

For 𝛼 = 1,the time to failure has an exponential distribution,

which,because of its no-memory property, contradicts aging.

Itis better not to perform Rejuvenation in this case if

theobjective is to maximize availability. For other two values

of 𝛼, however, rejuvenation maximizes availability atcertain

𝛿. For a specific policy, the bigger the failure density, i.e.,

higher the value of 𝛼, the higher is the maximumsteady state

availability. Also, with higher values 𝛼, thismaxima occurs at

lower values of 𝛿.

Figure 10.Reliability under policy I and II where𝛾𝑟 = 0.35

Figure 11.Availability under two policies where 𝛼varies

Figure 12and Figure 13show that the higher the failure density α

is, the higherthe value of safety will be in the low value

domain of𝛿.

On the other hand, when 𝛼 increases, the ability in

whichsystem in the state 𝐴 will decreases, so the reliability

ofsystem will be improved. In addition, the average reliability

of system under policy II will increase a threshold(marked on

the drawings) along with the increase of 𝛿,and then stops and

be kept relatively stable. Meanwhile, the value of parameter 𝛿

does not influence the reliabilityof the system any great deal.

C. Experimental results

In this section we will show some experimental result of the

proposed method in a real application such as Online Judge

system.

𝛿

①

②

④

③ ⑥
⑤

①𝛼 = 1.0

②𝛼 = 1.5

③𝛼 = 2.0

④𝛼 = 1.0

⑤𝛼 = 1.5

⑥𝛼 = 2.0

Policy II Policy I

𝛿

𝛾𝑟 = 0.55

𝛿

𝛾
𝑟
 = 0.55

𝛿

①

②

④

③

①𝛾𝑟 = 0.15

②𝛾𝑟 = 0.35

③𝛾𝑟 = 0.55

④𝛾𝑟 = 0.85

Sa

fet

y
①

②

④

③

①𝛾𝑟 = 0.15②𝛾𝑟 = 0.35

③𝛾𝑟 = 0.55④𝛾𝑟 = 0.85

𝛿

Re

lia

bil

ity

Re

lia

bil

ity

Av

ail

abi

lit

y

Sa

fet

y

1856

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041922

International Journal of Engineering Research & Technology (IJERT)

Figure 12.Safety under two policies where 𝛼 varies

Figure 13.Reliability under two policies where 𝛼varies

1) Online Judge

An online judge is an automated judge which checks a

submitted solution for an existed problem and generates the

output. It checks if the generated output was correct with

respect to the output set that is saved as a full proof judge

output set for that particular problem thus generate the result

for the user such as Accepted, Wrong Answer, Runtime Error,

etc.

An online judge is in general a server, which contains

descriptions of problems from different contests, as well as

data sets to judge whether a particular solution solves any of

theseproblems. A user from anywhere in the world can

register himself (or herself) with an online judge for free and

solve as many problems as he likes. He can send as many

solutions as he want till receiving satisfactory information,

not only about the verdict, but also about the time that the

code takes to run after improving the program and/or the

algorithm used to solve the selected challenge. One of the

main distinctive trait of the online judges is that they allow

the users this self-competitive behavior to learn informatics,

not only algorithms but also programming.

There are several existing popular online judges all over

the World Wide Web. Here mentioned some of them:UVA

Online Judge, Sphere Online Judge, and BKOJ Online Judge.

2) BKOJ Online Judge

BKOJ is an online judge of Ha Noi uninversity of Science

and Technology. It was built with the primary purpose of

being used as a training tool for ACM /ICPC teams of the

university.

Figure 14.Block diagram of BKOJ

BKOJ system consists of two major parts: Web (as

Frontend) and Core (as Backend). The Web part plays as

distributed information management system, managing

information such as user registration, problem submission,

solution submission, problem modification,etc.

The Core part as kernel of BKOJ system provides a

method to judge all solutions, which were submitted by any

users. In this paper, we only focus on the functions of the

Core part.

BKOJ system has been installed in BKCloud platform as

a software service running from 2012. Figure 15 shows its

deployment in the platform.

The Core part as kernel of the system provides a method

to judge all solutions, which were submitted by any users. In

Re

lia

bil

ity

δ

Re

lia

bil

ity

δ

Policy I

①

②
③

①𝛼 = 0.1
②𝛼 = 0.15
③𝛼 = 0.2

Policy II

①
② ③

①𝛼 = 0.1
②𝛼 = 0.15
③𝛼 = 0.2

Sa

fet

y

δ

Policy I

①

②

③

①𝛼 = 0.1

②𝛼 = 0.15

③𝛼 = 0.2

Sa

fet

y

δ

Policy II

①

②

③

①𝛼 = 0.1
②𝛼 = 0.15
③𝛼 = 0.2

1857

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041922

International Journal of Engineering Research & Technology (IJERT)

this disscussion, we only focus on the functions of the Core

part.

Figure 15. BKOJ deployment in the BKCloud system

3) BKOJ - Core working process

Figure 166.The judgment process of BKOJ - Core

Figure 177.The probabilites of checking outputs

4) The experimental results in detail

In this expreriment, we only consider applying the Policy

I to BKOJ. We createdavirtualcontestwiththe simultaneous

participation of 500 virtual contestants during 8hours. The

contestusingthe data,collectedfrommany private contest of

our university – HUST - from 2012 to 2013.

Somebasicinformation about the contest is showninthe

following table:

Server Software Apache/2.2.14

Document Path /JudgeOnline/status.php

Concurrency Level 500

Time taken for tests 32,239 seconds

Complete requests 1000

Failed requests 207
(Connect: 0, Receive: 0, Length: 207,

Exceptions: 0)

Total transferred 7262294 bytes

HTML transferred 6956196 bytes

Requests per second 31.02[#/sec](mean)

Time per request 16119.251[ms](mean)

Time per request 32.239[ms]

(mean, across all concurrent requests)

Connection Times(ms)

 min median max

Connect 1 229 3000

Processing 296 2009 32200

Waiting 0 1002 15725

Basedon theinformation mentionedinthe above tablewedrew

thecontinuos theoreticalcurvesof the Availability, the Safety

and the Reliability of BKOJasin Figures 18,19 and

1858

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041922

International Journal of Engineering Research & Technology (IJERT)

20respectively. In contrast, the black discretepoints

representthe actual valueofthe relating properties ofBKOJ.

Model parameters: 𝛾𝑟 = 0.5 (h);𝛾𝑓 = 0.5(h); 𝜆 = 6.0(h−1);

𝑘 = 30 ; 𝑀𝑇𝑇𝐹 = 240(h) ; 𝜇 ∙ = 𝜇 𝑡 and 𝜌 ∙ = 𝜌 𝑡 are

the same as (24)(25)(26);𝛼 is fixed at 1.0; 𝛿 is a assigned

values of 96(h), 144(h), 192(h), 384(h) respectively (where h

= hours)

Figure 188. Availability of BKOJ under policy I

Figure 199. Safety of BKOJ under policy I

Figure 20. Reliability of BKOJ under policy II

The experimental resultsshow thatthe

theoreticalcurvesfitquitewell withlimitedpracticalvalue,

which confirmedthe practical valueofthe method for

evaluating the quality properties in a rejuvenation system

using Markov model.

VI. CONCLUSIONS

Applying the theory of mathematical Markov model, the

theory of rejuvenation, we have built a model to evaluate the

software attributes of rejuvenation systems. The proposed

approach used two Markov chain models with corresponding

policy I and II. We showed expanding math calculation of

model of this method by using the Matlab. The experiments

with BKOJ SaaS on BkCloud system are confirmed its worth.

In the future, based on the relationship between these

software attributes and fault tolerance techniques on cloud

environment, the research will be further developed. From the

evaluation of the software attributes of fault-tolerant software

in cloud environments, we can deliver the construction cost in

rejuvenation-applied software. In addition, we can use the

obtained results in the evaluation of the software attributes of

the rejuvenation systems to study about client-server systems

with K queues (K> 1) and distributed fault-tolerant software.

ACKNOWLEDGMENT

This research is sponsored by the research Grant

KC.01.01/10-15 by Ministry of Science and Technology

Vietnam

VII. REFERENCES

[1] M. Larsson, "Predicting quality attributes in a component-based software

systems". Malardalen University Press, 2004, ISBN: 91-88834-33-6;

ISSN: 1651-4238.
[2] X. CHENGJIE, “Availability and reliability analysis of computer

software systems considering maintenance and security issues”, PhD

Thesis 2011. http://scholarbank.nus.edu.sg/handle/10635/25829
[3] R. Roshandel, “Calculating architectural reliability via modeling and

analysis,” in Proceedings of the 26thInternational Conference on

Software Engineering, pp. 69–71, IEEE Computer Society, 2004.

[4] H. Pham, System software reliability. Springer, 2006.

[5] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi,“Analysis of

software aging in a web server,” Reliability, IEEE Transactions on, vol.
55, no. 3, pp. 411–420, 2006.

[6] T. Dohi, K. Goseva-Popstojanova, K. Vaidyanathan, K. S. Trivedi, and S.

Osaki, “Software rejuvenation: modeling and applications,” in
Handbook of ReliabilityEngineering, pp. 245–263, Springer, 2003.

[7] Michael R. Lyu. Software Reliability Engineering: A Roadmap.

International Conference on Software Engineering 2007 Future of
Software Engineering, pp. 153-170, ISBN:0-7695-2829-5

[8] Pham Thanh Trung, Huynh Quyet Thang. Building the Reliability

Prediction Model of Component-Based Software Architectures.
International Journal of Information Technology, Volume 5, No. 1,

2009, pp. 17-25.

1859

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041922

International Journal of Engineering Research & Technology (IJERT)

