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Abstract—This dissertation concerned with the micromechanical 

analysis of the unidirectionally fiber reinforced composites. Two 

idealized packing have been developed to carry out the analysis 

in finite element software package ABAQUS. Translational 

symmetric transformation has been applied to make the 

simplest model for the analysis which can save the time for the 

analysis. Appropriate periodic boundary conditions have been 

derived for both the packing by using uniform microscopic field.  

Unit cell obtained from this section can be subjected to arbitrary 

combination of the macroscopic strains and the response of the 

unit cell is observed to take out the effective material properties 

using the simple elasticity approach. Mathematical models are 

presented to obtain the values of the effective material 

properties so that they can compared with the numerical model. 

Further parametric study has been carried out to check the 

dependency of fiber and matrix on the overall effective material 

properties. More significant analysis has been done on effective 

material properties to make it useful for the selection of the 

appropriate material for the specific application 

 

Keywords-Effective material properties, finite element method, 

ABAQUS, unit cell 

I. INTRODUCTION 

Composites are defined as a multiphase material which 

consists of different materials in order to obtain desired 

properties that the individual constituent by themselves 

cannot attain. Composite materials can be tailored for various 

properties by appropriately choosing their components, their 

proportions, their distributions, their morphologies, their 

degrees of crystalline, their crystallographic textures, as well 

as the structure and composition of the interface between 

components (Deborah 2009). Due to this strong tailor ability, 

they are capable for different applications like automobiles, 

aerospace, construction, electronics, energy, biomedical and 

other industries. Composites are popular for their high 

strength to weight ratio and stiffness to weight ratio. 

Composites are broadly classified as fibrous, laminated, 

particulate, and hybrid composites. Present study aims on 

developing analysis procedure for unidirectional fiber 

reinforced composites. Usually fiber reinforced composites 

consist of two phases: one is matrix and the other is fiber. 

Micromechanics 

Micromechanics is an increasing trend in order to 

understand the behaviour of modern material with 

sophisticated microstructures, e. g. fibre or particulate 

reinforced composites, textile composites, etc. (Li 2007). 

Micromechanics have become an important means of 

understanding the mechanical behaviour of the composite 

material. Certain assumptions are taken into account like 

idealized packing of the fibre in the matrix. First step for this 

kind of analysis is to introduce representative unit cell and 

then apply uniform strain boundary condition to analyze the 

material properties of the composite. 

A physical property of the composites depends upon 

the microstructure, which is design during its manufacturing. 

Volume fraction of the reinforcing material must be known 

before its processing. However, final design of composite is 

limited to some extent, which results in complex and 

micromechanical interaction. This develops dilemma in 

modelling the relation between microstructure and the 

characteristics of the material. In many studies assumption 

has been taken that the dispersion of the reinforcing element 

is regular within the matrix material. Due to this assumption 

it significantly simplifies the calculations and gives 

acceptable results. It also helps to simplify the finite element 

model to some extent but in case of crack propagation and 

plastic zones this assumption leads to seriously incorrect 

results (Pyrz 2008). So, it is required to mention the 

dispersion characteristics of microstructure if one analyzes 

the micro cracks and plastic zones. 

If the material is statistically homogeneous, which 

means that the local material properties are constant when 

averaged over a representative volume element, then it is 

possible to replace the real disordered material by a 

homogeneous one in which the local material properties are 

the averages over the representative volume element in the 

real material. Modern technology has found extensive use for 

unidirectionally fibre-reinforced composite materials. To 

make effective use of these materials, knowledge of their 

properties and performances when subjected to loads is 

essential. Many aspects of their behavior are directly 

associated with the microscopic structure of these materials. 

The desire to understand these materials drives the research 

in this field into the micromechanics of this type of materials 

(Hashin 1983). 

               Unidirectionally fiber reinforced composites has 

been considered in this dissertation, by assuming idealized 

fiber-matrix arrangement in square packing and hexagonal 

packing. In previous study square packing is analyzed in 

(Adams, Crane and Donar 1984), (Li 1999) and for 

hexagonal packing in (Avril and Carman 1992), (Li 1999) 
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and (Zou and Li 2000). The superiority of the hexagonal 

packing to the square packing is that it preserves this 

characteristic while the effective properties obtained from 

square packing show significant transverse anisotropy. The 

transverse isotropy achieved through a hexagonal packing, 

however, is at a price, i.e. the unit cell from it is substantially 

more sophisticated than that from a square packing (Li 2000). 

Apart from the square and hexagonal many author have tried 

different symmetries like cylindrical unit cell,  used in 

literature of (Rosen and Hashin 1964) and (McCartney 1992). 

This model showed good results for the material properties. 

II. LITERATURE REVIEW 

In (Xia, et al. 2006), the macrostructure was 

considered as a periodic array of a repeated unit cell (RUC). 

RUC was constructed assuming a uniform distribution and 

the same geometry for the reinforcing phase. The uniqueness 

of solution by applying unified displacement difference 

periodic boundary conditions on the repeating unit cell 

models (RUCs) was proved. Illustrative examples were 

presented and advantages of applying this type of boundary 

conditions were discussed. Uniqueness was proved by 

analyzed the RUCs in displacement based FEM analysis. By 

applying enough sets of global strains in the unified periodic 

boundary condition, entire stiffness or a flexibility matrix for 

a periodic composite structure was predicted. Further it was 

suggested that the proposed unified boundary conditions can 

also be applied to non-linear micro mechanical analysis of 

composites under any combination of multi axial load.  

The mechanical behavior of the composites was 

derived from the use of the micromechanics modeling 

method which provide the whole behavior by using the 

known properties of the constituents. Nature of the 

composites was predicted using the repeating volume element 

or unit cell model in (Aboudi 1991).A mathematical 

presentation of periodic composites, called asymptotic 

homogenization theory, can be found, e.g. (Moorthy, et al. 

2001)in among others. 

(Aboudi 1991) Has developed a unified micro-

mechanical theory based on the study of interacting periodic 

cells, and it was used to predict the overall behavior of 

composite materials both for the elastic and inelastic 

constituents. In his work and many other references, 

homogeneous displacement boundary conditions equivalent 

to the „„plane-remains-plane‟‟ conditions were applied to the 

RVE or unit cell models. In fact, the „„plane-remains-plane‟‟ 

is only valid for the symmetric RUC subjected to normal 

tractions. Many researchers, e.g., (Needleman and Tvergaard 

1993), have indicated that the “plane-remains-plane” 

boundary conditions are over-constrained boundary 

conditions. 

(Li 2008) Has devoted his study to the generation of such an 

account, where boundary conditions were derived entirely 

based on the symmetries which present in the microstructure. 

The implication of the boundary condition was discussed. 

Also, it was demonstrated that unit cell of same appearance 

but subject to boundary condition derived based on the 

different symmetry consideration may behave rather 

differently. It also depicted to inform the user of unit cell that 

to introduce a unit cell one needs not only the mechanically 

correct boundary condition but also a clear sense of 

microstructure under consideration.  

(Paley and Aboudi 1992) Has analyzed fibrous 

composites with periodic structure, the repeating volume 

element consists of four interacting sub-cells. It also offers 

generalization of method to an arbitrary number of sub-cells 

for the modeling of multiphase periodic composites. Effective 

constitutive laws that govern overall behavior of the elastic-

visco-plastic composite material were established. 

Comparison between the response of boron/aluminum 

composite obtained and finite element solution were given. 

Finite element method is very useful in analyzing 

the RUCs. It determines the mechanical and damage 

mechanisms of composites. Many authors have done the 

finite element analysis on different types of composites like 

unidirectional laminates (Allen and Boyd 1993), cross ply 

laminates (Bigelow 1993), woven and braided textile 

composites (Dasgupta, Agrawal and Bhandarkar 1996). High 

computer performance in combination with easy-to-use 

commercial model-creation software (Pro/Engineer, 

AutoCAD, etc.) and FEM software has contributed to this 

development. Thus it has become relatively easy to apply 

FEM to solid RUCs with all levels of complexity.  

III. METHODOLOGY 

Representative unit cells (RUCs) 

  Figure 1 shows continuum and point Q is 

surrounded by infinitesimal material elements. When the 

micro element is magnified, it may have a complex structure 

consisting of voids, cracks, inclusion, grains and other 

defects. 

 
Figure 1: Representative Volume element (Pyrz 2008) 

 
Figure 2: Cross-section of unidirectional glass/epoxy composites from X-ray 

microtomographic scanning (Pyrz 2008) 
  

Figure 2 shows random distribution of the fibre in matrix by 

using X-ray microtomographic scanning. As shown in the 

figure the rich area of fibre may behave differently than 

matrix rich area. Therefore, the matrix rich areas constitute 

the smallest entity of the microstructure and are judged to 

have pronounced effects on the overall response of the 

continuum. The representative volume element is expected to 

have the same effective properties that the whole material 

(Pyrz 2008). 
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Figure 3 shows the cross-section of unidirectional 

fiber reinforced composites with different selection of 

periodic elements. By taking an assumption of idealized 

arrangement of fiber in matrix, many different unit cells can 

be chosen to simplify the geometric consideration. 

 
Figure 3: Square and Hexagonal fiber-matrix layout and various periodic 

elements 

 As shown in fig.3 many different shapes of the 

repeating element can be considered. When this periodic 

element (D1, D2 and H) is translated in two selected direction 

60° apart and X- direction, the whole region can be covered. 

Similarly, the rectangular shapes R can be chosen and 

translation in X-direction and y-direction, the whole region 

can be covered. Also by employing symmetries about x=0 

and y=0 respectively, various geometries can be obtained as 

shown in the figure 2.3 by shaded region. Triangular 

elements can be obtained from D1 and D2, trapezoidal unit 

cell from H and smaller rectangular element from R1, R2 and 

R3 (Li 1999). As mentioned earlier this dissertation concerns 

with idealized packing of the fibers in matrix, which 

simplifies the geometry and also reduce the cost of modelling 

in finite element software. Also this dissertation focuses on 

the 2D problems rather than 3D problem, which reduce the 

simulation time. So, layouts were selected for the analysis i.e. 

square layout and hexagonal layout. Layouts are shown in the 

figure 4 and 5. 

 
Figure 4: Square packing 

 
Figure 5: Hexagonal packing 

Voronoi tessellation method for unit cells 

Assumptions are considered for the unidirectionally 

fiber reinforced composites are that the fibers are 

infinitesimally long and every cross-section of the composite 

perpendicular to the fiber are identical. The micromechanical 

analysis of such a material can then be simplified to a two-

dimensional problem in the plane of a cross-section of the 

composite. In this plane, a mathematical approach, the 

Voronoi tessellation, can be adopted to tessellate the domain 

of interest in the plane with the centers of the fibres being the 

centers of Voronoi cells as mentioned in (Li 2000). These 

cells are called Voronoi cells.  

In this method cells are separated by segments and 

passing through mid-point of the cell and those neighboring 

cells. Such a method can be employed the unidirectional fiber 

reinforced composites consists of random arrangement of the 

fibers. However, the performance of random distributed fiber 

in matrix is still unavailable. Square and hexagonal packing 

can be obtained from this method in which all Voronoi cells 

are identical and can be reproduced more by using 

translational symmetry transformation. Thus, the obtained 

cells are the natural choice for the unit cell method involves 

square and hexagonal packing. 

Geometrical consideration 

A. Square packing 

As shown in the figure 2.4 the obtained unit cell S from 

Voronoi tessellation gives region covered by two pairs of 

sides. 

x = ± b and y = ± b                                                                                                                           

So, if we consider an unit cell, then b=1 

x = ± 1 and y = ± 1                                                                                                                                                                                                   

Where, b is the half spacing between two fibers. Area of the 

unit cell will be 

A= 4𝒃𝟐                                                                                                                                           

(1) 

Let us consider the radius of the fiber than fiber volume 

fraction will be, 

 Vf = 𝝅𝒂𝟐/𝟒𝒃𝟐                                                                                                         

(2) 

To evaluate the compactness of the unit cell, the maximum 

achievable fiber volume fraction is,  

Vf = π/4 =78.54 %, when a = b                   

 

Below table 2.1 shows the corresponding value of the fiber 

radius using the equation 2. 

 
Fiber volume fraction (%) Fiber radius a (mm) 

40 0.35 

50 0.39 

60 0.43 

70 0.47 

Table 1: Corresponding value of fiber radius 

B. Hexagonal packing 

As shown in figure 2.5, hexagonal unit cell can be obtained 

from the use of the Voronoi tessellation which consists of 

three pair of sides 

x = ± b and ± x + √3 y = ± 2b                                                                                                

Where, b is the half spacing between two fibers. Then the 

area of the unit cell will be 
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A = 2√3 𝒃𝟐                                                                                                                 

(3) 

Similarly, as shown in the relation between fiber volume 

fraction and fiber radius can be obtained as, 

Vf = π𝒂𝟐/ 2√3𝒃𝟐                                                                                                                                 

(4) 

The maximum achievable fiber volume fraction is, 

Vf = π/2√3 = 90.69%, when a=b 

 In this dissertation, the analysis has been done for the 

fiber volume fraction of 40%, 50%, 60% and 70%, which 

covers most of the available material criteria. Below table 2.2 

shows the corresponding value of the fiber radius using the 

equation 4. 
Fiber volume fraction (%) Fiber radius a (mm) 

40 0.33 

50 0.37 

60 0.40 

70 0.43 

Table 2: Corresponding values of fiber radius 

 The maximum fiber volume fraction in both the 

packing is different. As specially in hexagonal packing any 

fiber remains at equal distance from the next fiber which does 

not happen in the square packing. In square packing the 

distance between 0°, 90° direction of the fiber are same but 

for 45° direction it does not remain same. This is because of 

the large transverse isotropy in hexagon packing and 

transverse anisotropy in square packing. (Li 2000). This 

obtained value of radius was used for the modeling of the unit 

cells in ABAQUS finite element software package. 

IV. PERIODIC BOUNDARY CONDITIONS 

A. Displacement field under uniform macroscopic strain 

Use of translational symmetry has been made to 

derive the boundary condition for the square unit cell and 

relation between displacement and strain was found out...As, 

this dissertation concerned with the 2D problem, the strains 

applied to the unit cell are εxx, εyy and γxy and displacements 

are u and v. Then, kinematic equations can be given by:  

 

εxx = 
𝝏𝒖

𝝏𝒙
   ,    εyy = 

𝝏𝒗

𝝏𝒚
   ,   γxy  = 

𝝏𝒖

𝝏𝒚
   + 

𝝏𝒗

𝝏𝒙
                                                

(5) 

Equation 5 can be written as, 

u =  𝜺𝒙𝒙𝒅𝒙  + f1(y) = εxx.x + f1(y)                                                                                                     

(6) 

v =  𝜺𝒚𝒚𝒅𝒙  + f1(y) = εyy.y + f1(x)                                                                                                             

(7) 

Substituting the equation 6 and 7 in equation 5 of shear strain, 

γxy = 
𝜕𝑢

𝜕𝑦
   + 

𝜕𝑣

𝜕𝑥
          

      = 
𝜕𝑓1(𝑦)

𝜕𝑦
   +  

𝜕𝑓2(𝑥)

𝜕𝑥
                         

Where, 

f1 = ay + b, and          

 (8) 

f2 = cx + d                                                                                                                                            

(9)                                                                                                                        

Substituting equation 8 and 9 in equation 6 and 7respectively, 

u = εxx.x + ay + b                                                                                                                               

(10)                                                     

v = εyy.y + cx + d                                                                                                                               

(11) 

Further substitution if displacement in the kinematic equation 

gives, 

γxy = a + d 

At x = y = 0 and u = v = 0 then,       (rigid body constraint) 

b = 0, d = 0 

At x=1, y= 0 and v = 0 then, 

c = 0 and a = γxy   

Substituting all the obtained values in equation 10 and 11 will 

give, 

u = εxx.x + γxy y,                                                                                                                                  

(12) 

v = εyy.y                                                                                                                        

(13) 

Where, x and y are co-ordinate of arbitrary point P in x-y 

axis.  

Similarly, the relation for the image point P‟ can be given by, 

u‟ = εxx.x’ + γxy y’,                                                                                                                             

(14)                                                                                                              

v’ = εyy.y’                                                                                                                                            

(15)                                                                            

Subtracting equation 14 and 15 with equation 12 and 13,  

u‟ – u = εxx .(x‟ - x) +  γxy. (y’-y)                                                                                                      

(16) 

v’ – v =  εyy. (y‟ - y)                                                                                                                                     

(17) 

 Above equations will be used to derive the 

displacement boundary conditions for the required unit cells 

derive from the Voronoi tessellation.  

 

B. Displacement boundary condition for the square unit cell 

Use of this type of packing is fully justified because 

of the assumption of regular arrangement of the fiber in 

matrix. The results of this type of packing will be compared 

with the hexagonal packing. Also this type of packing was 

considered by many authors because of its simplicity inn 

modeling and easy derivation to find the boundary condition 

for the square unit cell. Square unit cell is shown in the figure 

2.4. In this dissertation x-y plane is considered for the 2D 

problem. By considering area S‟, arbitrary point P(x, y) on S 

can be mapped on S‟ as P‟ (x‟, y‟). But square unit cell has a 

unit dimension in both x and y direction. So, the distance 

between these two arbitrary points will be unity i.e. Δx = Δy 

=1.  

Thus, 

u‟ – u = εxx .Δx +  γxy .Δy                                                                                                                                       

(18)                                                                                                                                                                                        

v’ – v = εyy . Δy                 

For the micromechanical analysis of the square unit 

cell, it is necessary to apply boundary condition around the 

edge of the unit cell. Translational symmetry transformation 

was used to derive these boundary conditions. The selection 

of an arbitrary point P and P‟ is important for the analysis. If 

point P is on one side than P‟ must be on opposite side of the 

unit cell. 

Then, the equation boundary condition for two pair of sides 

are given by, 

For E4 and E2 (Δy = 0, Δx = 1), 
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u4 – u2 – εxx = 0 and                                                                                                                         

(19) 

v4 – v2 = 0                                                 

For E3 and E1 (Δx=0, Δy = 1), 

u1 – u3 – γxy = 0 and                                                                                                            

v1 – v3 – εyy= 0   

It is also needed to consider corners because corners 

are not fully independent. Corners are shared by two sides. 

Many publications did the mistake to formulate the boundary 

condition for the corners. As shown in the figure 8 corners 

V1, V2, V3, V4 are selected precisely to formulate the 

boundary conditions for them. Symmetry transformation has 

been used for the formulation. Corners were selected on the 

basis of their sharing to the next unit cell. Pair of corners are 

selected which was like V1 and V2, V4 and V3, V2 and V3. 

Boundary condition for them is as follows: 

For V1 and V2 (Δy = 0, Δx = 1) 

u1 – u2 – εxx = 0 and                                                                                                                        

(20)                                                                                    

v1 – v2 = 0          

For V4 and V3 (Δy = 0, Δx = 1) 

u4 – u3 – εxx = 0 and        

v4 – v3 = 0                                                

For V2 and V3 (Δx = 0, Δy = 1) 

u2 – u3 – γxy = 0 and                 

v2 – v3 – εyy = 0                              

Where, subscript indicates displacement of the 

corresponding corner in the square unit cell. Input file for 

ABAQUS is created in which these boundary conditions were 

introduced to simulate micromechanical analysis. With the 

use of this boundary condition micromechanical analysis has 

been performed. Many publications had taken an assumption 

of the sides keep straight after the deformation which restricts 

the use of unit cell. No such a restriction has been applied in 

this dissertation. As mentioned by the (Li 2000) only 

displacement boundary conditions are not enough to 

determine the solution yet, traction boundary conditions are 

required for the completeness of the presentation of the 

problem. But in this dissertation traction boundary conditions 

are eliminated from the analysis.  

C. Displacement boundary condition for Hexagonal packing 

 As stated by the (Li 2000) hexagonal packing 

delivers the transversely isotropic characteristics which a real 

composite possesses in a statistical sense by having fibres 

distributed in matrix completely at random over the cross-

section perpendicular to the fibres. In this dissertation 

symmetry has been employed translation in x-y direction, 

rotation and reflection about x-y axis about a special point. 

As shown in the figure 2.5 chosen arbitrary point P (x, y) in 

H is transformed to P‟ (x‟, y‟) in H‟. So, by using equation 

18, boundary condition for the hexagonal packing can be 

derived. But before deriving the boundary condition one 

needs to assign each side and corner with specific variable 

and also the distance between the each corner and edge are 

needed to derive the boundary condition for the hexagonal 

packing.  

            To determine the distance between the corresponding 

edge and the corner trigonometric mathematics has been 

used. Let the horizontal distance between E1E4 and V1V3 

will be a, horizontal distance between the pair of E2E5, 

E3E6, V1V5, V2V4, and V2V6 will be b, vertical distance 

between pair of E2E5, E3E6, V1V5, V2V4, and V2V6 will 

be c. Distance are formulated as follows: 

a = 2 ∗ cos 30 ∗ 0.5   = 0.8660 

b = cos 30 ∗ 0.5  = 0.4330 

c = 1 −  sin 30 ∗ 0.5  = 0.75 

Then, substitute the values in equation 18 will provide the 

boundary condition for the hexagonal packing. 

For E1 and E4 (Δx = a, Δy = 0) 

u4 – u1 – a. εxx = 0 and                                                                                                                    

(21) 

v4 – v1 = 0        

For E2 and E5 (Δx = b, Δy = c) 

u4 – u1 – b. εxx – c. γxy = 0 and 

v4 – v1 – c. εyy = 0     

For E3 and E5 (Δx = b, Δy = c) 

u4 – u1 – b. εxx – c. γxy = 0 and 

v4 – v1 – c. εyy = 0        

For V1 and V3 (Δx = a, Δy = 0) 

u4 – u1 – a. εxx = 0 and 

v4 – v1 = 0        

For V1 and V5 (Δx = b, Δy = c) 

u4 – u1 – b. εxx – c. γxy = 0 and 

v4 – v1 – c. εyy = 0       

For V2 and V4 (Δx = b, Δy = c) 

u4 – u1 – b. εxx – c. γxy = 0 and 

v4 – v1 – c. εyy = 0       

For V2 and V6 (Δx = b, Δy = c) 

u4 – u1 – b. εxx – c. γxy = 0 and 

v4 – v1 – c. εyy = 0        

Equations 21 are all required displacement boundary 

conditions for the hexagonal unit cell. Subscript indicates the 

displacement of the corresponding corner or edge. According 

to the (Li 2000) use can be made to reduce the size of the unit 

cell to quarter of it, However , this is at the price of having to 

apply different boundary condition for different loading 
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condition. Many publications are published which used the 

quarter model of the hexagon.  

V. MODELLING AND ANALYSIS 

A. Type of analysis 

                In previous sections the boundary conditions and 

mesh are derived for the square and hexagonal unit cell. 

Macroscopic strains are introduced for the derivation of the 

boundary conditions. Nodes of the edges and corners are 

extracted from the meshed model and then applied each node 

an individual degree of freedom. Concentrated force was 

applied as a loading condition for the unit cell. Longitudinal, 

transverse and shear load was applied to derive the effective 

material properties of the fiber reinforced composites. 

Macroscopic stress and strain can be obtained from the post 

processing section of the ABAQUS. Data file provides the 

needed results from the corresponding unit cell model. The 

effective material properties can be calculated using elasticity 

approach. 

  Element used for the square unit cell was CPS4R 

(4 node quadratic element) for both matrix and fiber. 

Displacement is selected for the output data. After submitting 

the job file the input file executes and creates another file 

called data file, in which the all the input and output data are 

stored.  

B. Effective material properties 

The two basic approaches to the micromechanics of 

composites material are mechanics of material and elasticity. 

The mechanics of material embodies the vastly simplifying 

assumptions regarding hypothesized behavior of mechanical 

system. The properties of the composites can be defined in 

terms of its constituent properties and also in terms of relative 

volume fraction. 

Many mathematical models have been found to 

determine the effective material properties of the composites. 

Several authors have devoted their study to develop the 

mathematical model to determine longitudinal young‟s 

modulus, Transverse young‟s modulus, Shear modulus, and 

poison‟s ratio. This mathematical model can be referred in 

(Chamis 1984), (Peters 1997), (Kuno 1996), (Tsai and 

Thomas 1980), (Vinson and Sierakowski 1987). 

C. Material selection 

 Isotropic materials were selected for the 

micromechanical analysis of the unit cell. Both matrix and 

fiber are isotropic, and homogeneous in nature. The input file 

is independent for the material selection. One can change the 

Young‟s modulus and Poisson‟s ratio of the matrix and fiber 

according to their need for the analysis. By just editing the 

input file the analysis can be done for various materials. 

Effective material of the combination of two different parts 

can be derived using ABAQUS and available mathematical 

model by the different authors. For the analysis one particular 

material is chosen whose material properties are shown in the 

below table 5.1 which was also used by the (Li 2000). So that 

the result obtained for the numerical model can be validated.  

 

Material properties Fiber Matrix 

Young‟s Modulus(GPa) 10 1 

Poisson‟s Ratio 0.2 0.3 

Table 3 material property of glass epoxy 

The relation between the stresses and force can be obtained as 

follows. 

σx =
𝐹𝑥

𝐴
  ,σy =

𝐹𝑦

𝐴
  , τxy = 

𝐹𝑥𝑦

𝐴
  . 

Where, Fx, Fy, Fxy are the longitudinal, transverse 

and shear force  which can be obtained from the ABAQUS 

input file attached in Appendices A and B. the 2D model the 

volume considered is the area of the unit cell model i.e. 1x1 

mm
2
. So, by using these stresses one can easily find the 

effective elastic material properties of the unit cell 

considering microscopic strain and the applied concentrated 

force of 100N. These effective material properties can be 

derived as follows. 

Ex = 
𝜎𝑥

𝜀𝑥
 =  

𝐹𝑥

𝐴
∗

1

𝜀𝑥
 = Ey, 

νxy = νyx = 
−𝜀𝑦

𝜀𝑥
, 

Gxy = Gyx =
𝜏𝑥𝑦

𝛾𝑥𝑦
. 

Where, Ex, Ey, νxy and Gxy are the effective material 

properties of the material combined by two different phases. 

εx, εy and γxy are the strains related to the node where the 

force was applied. From this equation one can able to find out 

the required material properties of the unit cell consist of two 

different materials. 

D. ANALYTICAL MODEL 

 Mathematical models are based on the translational 

symmetry in y-z direction. Mathematical model for Young‟s 

Modulus, Shear modulus and Poisson‟s ratio are described 

below. 

(1) Mathematical model for Young‟s modulus 

1. Rule of mixture:- 

Ey = Ez =  
𝐸𝑚 𝐸𝑓𝑦

𝑉𝑓𝐸𝑚 + (1−𝑉𝑓 )𝐸𝑓𝑦
 

2. Puck:- 

Ey = Ez = 
𝐸𝑚∗(1+0.85∗𝑉𝑓

2)

𝑉𝑓∗
𝐸𝑚 ∗
𝐸𝑓

+ 1−𝑉𝑓 
1.25             Where, Em* = 

𝐸𝑚

1−𝑉𝑚
2  

3. Chamis:- 

Ey = Ez = 
𝐸𝑚

1−𝑉𝑓
0.5(1−

𝐸𝑚
𝐸𝑓𝑦

)
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4. Halpin-Tsai:- 

Ey = Ez = 
𝐸𝑚 (1+𝛽𝛼 𝑉𝑓)

1−𝛼𝑉𝑓
                    Where, α = 

𝐸𝑓

𝐸𝑚
−1

𝐸𝑓

𝐸𝑚
+𝜷

 

β = 1, for hexagonal packing 

β = 2, for square packing 

(2). Mathematical model for Poisson‟s ratio 

1. (Hull and Clyne 1996) 

νyz = νzy = 1- ν* - 
𝑬𝒚

𝒌
 , 

Where, ν* = 𝑽𝒇𝝂𝒇 + 𝑽𝑚𝜈𝑚  
𝐸𝑦

𝐸𝑥
 

 𝑘 =  
𝑉𝑓

𝑘𝑓
+

𝑉𝑚

𝑘𝑚
 , 

Where, 𝑘𝑓 =  
𝐸𝑓

3(1−2𝜈𝑓 )
  and, 𝑘𝑚 =  

𝐸𝑚

3(1−2𝜈𝑚 )
 

2. Chamis:- 

νyz = νzy = 
𝐸𝑦

2𝐺𝑦𝑧
− 1            or 

νyz = νzy = 𝑉𝑓𝜈𝑓 + 𝑉𝑚𝜈𝑚   
1+𝜈𝑚 −𝜈∗

𝐸𝑚
𝐸𝑥

1−𝜈𝑚
2 −𝜈𝑚 𝜈∗

𝐸𝑚
𝐸𝑥

 , 

Where, ν* = 𝑉𝑓𝜈𝑓 + 𝑉𝑚𝜈𝑚  
𝐸𝑦

𝐸𝑥
 

(3). Mathematical model for Shear Modulus 

1. Elasticity approach:- 

Gyz = 
𝐸𝑦

2(1−𝜈𝑦𝑧 )
 

2. Tsai- Hahn:- 

Gyz =  
1

𝑉𝑓+𝛽𝐺𝑉𝑚
 
𝑉𝑓

𝐺𝑓
+ 𝛽𝐺𝑉𝑚

1

𝐺𝑚
   

Where, 𝛽𝐺 = 0.62 

3. Chamis:- 

Gyz = 
𝐺𝑚

1−𝑉𝑓
0.5 1−

𝐺𝑚
𝐺𝑓𝑦𝑧

 

 

Where, 𝐺𝑓𝑦𝑧 =
𝐸𝑓𝑦

2(1+𝜈𝑓 )
 

  40% 50% 60% 70% 

Young 

modulus 2.3213 2.7502 3.3018 4.0484 

shear 

modulus 1.5690 1.3219 1.0747 0.8276 

poison's 

ratio 0.3671 0.3531 0.3392 0.3252 

 

Table 4 Material properties of different volume fraction by analytical model 

C.  SIMULATION 

 
 

Figure 6.Stress value for 60% hexagonal packing 

 

 
 

Figure 7.Strain value for 60% hexagonal packing 

 

 
Figure 8.Stress value for60% square packing 

 

 
Figure 9.Strain value for 60% square packing 
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VI. RESULTS 

 
property Analytical 

model 

Numerical model 

(ABAQUS) 

Square Hexagonal 

Young modulus 3.3018 2.87 2.72 

shear modulus 1.0747 0.87 1.09 

poison's ratio 0.3392 0.20 0.24 

 
Table 5.comparison of mathematical and numerical model 

 

    
 

Graph 1 comparison of analytical and numerical model 

VII. CONCLUSION 

 In this dissertation methodology is introduced to 

formulate the effective material properties of the model 

consists of two different materials. 2D Square and hexagonal 

repeating unit cell have been established for the comparison 

of the obtained results. Mathematical model has been 

introduced to validate the numerical model created by 

ABAQUS finite element package. Different fiber volume 

fractions have been considered to present the graphical 

presentation or behavior of the each material property and 

dependency of each material property on the effective 

properties was carried out. Finally, some observations on 

micromechanics behavior of the effective material properties 

have been presented.    
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