
Middleware Layer for Replication between

Relational and Document Databases

Susantha Bathige
Sri Lanka Institute of Information Technology (SLIIT)

Malabe, Sri Lanka

PPG Dinesh Asanka

Pearson Lanka (Pvt) Ltd

Colombo – 09, Sri Lanka

Abstract— Effective and efficient data management is key to

today’s competitive business environment. Data is a valuable

asset for any organization. Data is information and information is

knowledge. Today’s enterprise applications generate large

amount of data especially because of high usage of the internet.

As a result, enterprise applications should be able to scale out

and perform as required. Otherwise, these applications will not

be able to handle their data load, leading to trouble in business

continuity. Data replication is one widely used phenomenon in

distributed environments, where data is stored in multiple sites,

within same or differing geographical areas. Thus enterprise

applications will be able to scale out, so that they perform well.

Many modern Database Management Systems (DBMSs) provide

in-built methods for data replication. Replication is possible

between heterogeneous database systems. In this research, the

aim is to design and implement a middleware layer for data

replication from RDBMS to document oriented DBMS. The

middleware layer includes a Java program, source and

destination DBMSs. The research approach is to capture

DML/DDL changes in source relational DBMS and then convert

and stores them in an intermediate XML format. Then the java

program continuously looks for such data changes and then push

them to the destination DBMS. A replication method like this can

address the need of application scalability in situations where

both types of DBMSs are used. In live environments, there are

areas of possible performance improvements to the middleware

layer, especially when dealing with large data volumes.

Keywords— NoSQL, Document Databases, Relational

Databases, Data Distribution, Replication

I. INTRODUCTION

Many database systems are being used to store data. Data
growth is exponential [1] [2]. Internet growth is almost
synonymous to data growth. Main reasons for high usage
internet are the introduction of Web 2.0, use of latest devices
like Tabs, Smart phones, increased IT literacy, etc.

Data can be categorized into three;

1. Structured data

2. Semi-structured data

3. Unstructured data

RDBMS pioneered in handling structured data which has a
fixed structure and less dynamic.

Most of the database systems are based on the well-known,
popular concept of relational theory [3]. There are other
DBMSs such as object oriented, object relational, NoSQL, etc.

Each of these DBMSs has its own strengths and weaknesses.
An enterprise has the freedom to use a single database system
or multiple database systems to meet the data management
needs.

The vast popularity of the Internet caused to generate more

data for applications. There should be proper DBMS(s) [4] to

manage these data effectively and efficiently. If an enterprise

uses many different database systems due to various reasons,

there might be a need to exchange data between database

systems. Obvious reasons are like performance, scalability and

availability.

There are various data distribution methods available in

different DBMS, such as import / export, log shipping,

replication, database mirroring etc.
The objective of this research is to build a middleware layer

to replicate data from a RDBMS to a document DBMS in real-
time.

MS SQL Server [5] and MongoDB [6] were chosen as
sample DBMSs to demonstrate the model. MS SQL Server is a
dominant market database product [7] and it is considered as
post-RDBMS whereas MongoDB is an emerging DBMS
product [8] which can be categorized as document oriented
DBMS.

Presently there is no in-built method of integrating these
two DBMSs to replicate data.

II. PREVIUS WORK

 Research paper, “MyStore: A High Available Distributed

Storage System for Unstructured Data” [9] makes a meaningful

attempt to introduce a new methodology and implementation to

combine several NoSQL DBMSs and provide a new

distributed storage system called MyStore. The objective of the

research is to take unique advantages provided by each NoSQL

database system (MongoDB, Cassandra and Dynamo) and

combine into one. As per the paper, MongoDB provides

perfect query functions while Cassandra and Dynamo provides

data availability and scalability.

 Almost all the popular DBMSs have their own in-built

replication mechanisms as a data distribution method. A

replication which works within the same DBMS is known as

homogenous replication, whereas replication works between

different DBMSs is known as heterogeneous replication. Now

the question arises about the need of heterogeneous replication.

The middleware layer for data replication presented in this

678

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS050707

Vol. 3 Issue 5, May - 2014

research falls under heterogeneous category, as it distributes

data from RDBMS to non-relational document oriented

DBMS.

A. Heterogeneous data replication

 As stated in above paragraph, heterogeneous replication

replicates data between two different DBMSs. One of the

industry’s leading RDBMS, MS SQL Server supports

heterogeneous replication. [10] [12] With this, the users have

the option of publishing data from Oracle to MS SQL Server

and vice versa. However, in MS SQL Server 2012 which is the

latest release of MS SQL Server, has announced that this

feature will be removed from the future versions of SQL

Server. The alternate method they suggest is to use CDC,

change tracking and SSIS. MS SQL Server also supports DB2

for heterogeneous replication [11].

 As per the paper, the product DataJoiner is IBM’s strategic

gateway to enable transparent access to relational and non-

relational, IBM and non-IBM databases. This is especially

important to the current research because this product claims to

be working for both relational and non-relational databases.

The further reading of the paper reveals insufficient

information on non-relational support of the heterogeneous

replications. It could not find sufficient or valuable information

on DataJoiner product.

 Research abstract of “DataJoiner: A Practical Approach to

Multi-Database Access” [13] presented a solution to distribute

and migrate data across multiple DBMSs. It is also a

middleware. The paper published on 1994 before the NoSQL

technology emerged. The paper does not mention whether it

supports non-RDBMS. Since it is not mentioned the support

for non-RDBMS, here it is assumed that the “DataJoiner”

works only for RDBMS.

III. METHODOLOGY

Fig. 1 illustrates the overall replication architecture of the
middleware layer.

There are several techniques and methods that can be used
to build the replication middleware. The main two methods
used in the middleware layer are converting XML to JSON
documents and pushing of JSON documents to document
DBMS. The services run continuously in background and do
the conversion and importing as and when necessary.

Fig. 2 illustrates the main steps of replication process and it
can be categorized into two;

1. Activities inside RDBMS

2. Activities outside the DBMSs

The steps of each category are listed below;

A. Activities inside RDBMS

1. Identify the table(s) to be replicated.

2. Identify and capture DML/DDL changes.

DML changes are data modification through CRUD
(Create, Retrieve, Update, and Delete) while DDL is
limited to add/remove columns.

3. Convert captured DML/DDL changes to XML like

format and stores them in a central table named,

Document_Repl.

B. Activities outside the DBMSs

4. Extract XML data stored in Document_Repl and

convert them to JSON documents.

5. Push JSON documents to document DBMS.

Fig. 1. Replication architecture

Fig. 2. Replication process

There are several methods and techniques to capture
DML/DDL changes. In any RDBMSs, every data change is
written to a separate file named, transaction log. There are
several mechanisms available in RDBMS to read and capture
the transaction log data. However, the data in transaction log is
not exposed to users of RDBMS.

After evaluating several options such CDC, Trigger,
Change Data Tracking etc., it is decided to use a trigger based
mechanism to capture DML/DDL changes. Triggers are used
since they are common to many RDBMSs and easy to
implement.

There is a performance impact in use of triggers. However,
it can be minimized by using an alternative approach. The

Configuration file

DML/DDL

changes (XML)

JSON Converter

JSON Exporter

Relational Database

Document Database

679

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS050707

Vol. 3 Issue 5, May - 2014

performance impact due to triggers is measured for middleware
layer and it has been discussed in Section 5.

. In this research, trigger based mechanism is used for
prototype validation of the middleware. The implementer has
the freedom to use any mechanism of their preference
depending their needs.

Data in RDBMS stores in several tables due to
normalization. Normalization [14] is a process of database
designing in RDBMS.

The relational design of typical Sales Order system is
represented in document databases as un-normalized way. The
four tables, Customer, Item, SalesOrder and SalesOrderDetails
can be modelled in mostly three collections (collection is the
terminology for a table in document database) in document
DBMS. Fig 3 shows sample data for SalesOrderDetail table in
the relational database.

Fig. 3. Sample data set of SalesOrderDetail table

Figure 4, shows the document oriented database design for
sales order system. There are three collections as mentioned
below;

1. Item collection

2. Customer collection

3. Order collection

Both SalesOrder and SalesOrderDetail tables are de-
normalized into one collection, Order. Customer and Item
tables still may remain as separate collections.

When SalesOrderDetail table is marked for replication, it
captures DML/DDL changes of the table using triggers.

There has to be four triggers. Two triggers for INSERT and
UPDATE need to be added to SalesOrderDetail table while
SalesOrder table need another two triggers for UPDATE,
DELETE.

The DML/DDL changes which captured by the triggers are
not the net change. E.g.: Even a unit price changed for an Order
the entire Order is captured.

SQL command “XML AUTO” clause used to convert the
captured DML changes to XML format inside the trigger.
However the trigger code is not portable without modifications
to another RDBMS. Depending on the different syntax and
commands the trigger code has to go through some
modifications. The reason is a lack of cross-vendor portability
in SQL [15].

Fig. 4. Document oriented DB design for typical Sales Order system

All DML/DDL changes of tables being marked for
replication, writes to a core table, “Document_Repl” in the
source database.

XML to JSON conversion is done using the Java program.
It frequently searches the Document_Repl table and filter for
records where IsReplicated=0 and then picks them and
converts to JSON objects. This table has potential data growth
as it contain the data to be replicated. Nevertheless, the data in
the table can be cleaned periodically to flush out all the records
which has already replicated. This will lead to excessive
fragmentation and proper administrative tasks such as
rebuilding indexes can solve the problem.

Pushing JSON documents to document database is handled
by the same Java program. The converted JSON objects are
then pushed immediately to the target document database.

A Java program has been written in a configurable and
extendible manner using Factory and Singleton design
methods. The source database and target database connection
strings are configurable and new DBMSs could be added with
minimum changes to the program.

The main reason to use Java as the development platform is
to achieve platform independence. As a result the same
program could be run in both Windows and Linux platforms
without doing any modifications.

IV. SECURITY

Security is one of the major concerns and critical factors
when it comes to any software program. Same applies to the
replication middleware as well. There are several places that
security has to be addressed in the middleware layer. These are;

C. Data being subject to replication

 Since Document_Repl is stored in RDBMS, the security
features available in underlying RDBMS has to be used to
protect the data

D. Replication link

Replication link is the data path from RDBMS to document
database. Data replicates from RDBMS has to be protected
while transferring in the network path until they reached the
target database. There are various types of network data
protection which can be applied to secure the data, e.g.
Data encryption, Digital Signatures, Authentication

680

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS050707

Vol. 3 Issue 5, May - 2014

E. Configuration files

Middleware uses configuration files to keep connection string
information for both relational and document databases. The
connection strings have sensitive data such as user names and
passwords. As a result this data also needs to be protected. By
design, the middleware layer encrypts the sensitive data in
configuration files.

V. PERFORMANCE IMPACT ANALYSIS

The replication method has a performance overhead in several
aspects. Any method developed to solve business problems has
some kind of performance overhead. The same applies to the
replication middleware layer too.

Consider the performance overheads to the source DBMS.
There are two stages. They are;

1. Capturing of DML/DDL changes

2. Conversion of relational data to unstructured

format (XML)

The performance overhead differs with the method used on
each of the above two steps. As stated in previous sections,
there are various methods to capture DML/DDL changes of a
table.

Converting of relational data to unstructured format adds
additional overhead to the source RDBMS. The performance
overhead differs with the method used for the conversion.

 Adding an index to IsReplicated column in
Document_Repl table is been considered, and it is noted that
the introducing of index slows down the CRUD operations in
source tables which are marked for replication. The index will
not add much value, if archiving mechanism is implemented.
This layer is the only layer that adds performance impact to the
transactions in source DBMS.

There will not be any performance impact to the destination
database as we only do CRUD operations to the destination
database.

There is a delay in getting data to the destination DBMS.
This delay consists of the following components;

 Time taken to capture DML/DDL changes of the tables

marked for replication. (T1)

 Time taken to convert the relational data to database

independent XML format and store them in

Document_Repl table. (T2)

 Time take to convert data which is in XML format to

JSON documents. (T3)

 Time taken to push JSON documents to target

database. (T4)

Total replication latency = T1 + T2 + T3 + T4

This latency is generally a few milliseconds and it depends
on the source and target DBMSs driver software performance,
which is used to connect to the DBMSs. Time T4 is largely
depends on the performance of the network connectivity of the
DBMSs. As a result there is little or no control over the T4
time component of the replication latency to the replication
method.

There is another performance overhead when the records in
source DB changes frequently. In this case it replicated entire
record instead of the net change.

Table 1 shows the hardware/software configurations which
have been used for the performance testing and Table 2 shows
the versions of DBMSs used.

TABLE 1 MACHINE CONFIGURATION (HARDWARE/SOFTWARE)

Configuration Value

PC – Manufacturer Hewlett-Packard

Model HP ProBook 4530s

Processor Manufacturer GenuineIntel

Processor Intel(R) Core(TM) i7-2670QM
CPU @ 2.20 GHz

Number Of Logical
Processors

8

Number Of Cores 4

Total Physical Memory 8 GB

Hard disk 300 GB

TABLE 2. DATABASE VERSIONS

Product Version

MS SQL Server Microsoft SQL Server 2012 -
11.0.2100.60 (X64)

Feb 10 2012 19:39:15

Copyright (c) Microsoft
Corporation

Developer Edition (64-bit) on
Windows NT 6.1 <X64> (Build
7601: Service Pack 1)

MongoDB 2.06 64 bit

Followings matrices are collected in performance testing;

1. Process utilization

2. Memory usage

3. Time

 “perfmon.exe” is the tool used. By default this tool comes
with any version of Windows OS.

Performance matrices are collected in three stages;

1. With no transformation and no replication – Just
inserting 1 million sales orders into SalesOrder and
SalesOrderDetail tables in MS SQL Server.

2. With transformation and no replication – Inserting one
million sales orders into two relational tables (SalesOrder,
SalesOrderDetail) while transforming those data into
unstructured format and store them in another relational table
(Document_Repl) in MS SQL Server.

681

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS050707

Vol. 3 Issue 5, May - 2014

3. With transformation and replication – This stage has
transformation and replication in place, while creating one
million sales orders the order data replicate into MongoDB
real-time.

Fig. 5 shows the processor utilization of MS SQL Server,
MongoDB processes and total processor utilization for stage 3.
(With transformation and replication), it has secondary axis to
show only the MongoDB processor utilization for clarity
purposes.

Fig. 5. Processor utilization – “With transformation and replication”

Fig. 6 shows the memory utilization of the computer with
regard to stage 1 testing. (With no transformation and no
replication)

Fig. 6. Memory usage – “With no transformation and no replication”

Table 3 shows the detail time analysis of the performance
testing.

TABLE 3

 DETAIL TIME ANALYSIS OF STAGE WISE

Table 4 shows the summary of time analysis of the

performance testing.

TABLE 4: TIME ANALYSIS - SUMMARY

VI. LIMITATIONS

Following limitations were identified in the middleware.

 The data in RDBMS cannot be replicated to multiple

document databases.

 The developed prototype depends on the XML features

in RDBMSs. As a result the same prototype could not

be adapted as it is for other RDBMSs which do not

provide XML commands to XML conversions.

VII. FUTURE WORK

The following can be considered to improve the replication
model further.

 Platform independent solution to convert relational

data to XML. This could have been achieved by

writing a separate database independent component.

However, this would definitely increase the latency of

replication. The advantage of such a system would be

that the conversion process is immune to changes even

with different types of source DBMSs.

 Further improvement to Java program which builds the

replication link, so that replication latency could be

minimized.

 Implementation of synchronous replication

mechanism. This ensures high data integrity between

both databases.

 Bi-directional replication can be implemented to

improve the functionality of the middleware.

VIII. DISCUSSION AND CONCLUSION

The research question was to find an effective and efficient

way to replicate data from RDBMS to document oriented

DBMS. During the development of prototype application, it is

realized that it would take a lot more time and effort to create

an enterprise level application of this kind. However, the

research gap has been addressed substantially with the

middleware layer introduced in the research.

There could be more performance testing carried out in

various levels including multi user testing, load testing and

stress testing.

IX. REFERENCES

[1] "Internet World Stats," Miniwatts Marketing Group, 25 7 2011.

[Online]. Available:

http://www.internetworldstats.com/emarketing.htm. [Accessed 8 1
2012]. [1]

[2] D. Connolly, "A Little History of the World Wide Web," W3C, 07 10

2011. [Online]. Available: http://www.w3.org/History.html. [Accessed
8 1 2012]. [2]

[3] E. F. Codd, "A relational model of data for large shared data banks,"

Magazine, pp. 377-387, 6 6 1970. [4]
[4] "Relational Model," Wikimedia Foundation, Inc., [Online]. Available:

http://en.wikipedia.org/wiki/Relational_model. [Accessed 12 1 2012].

[5]

682

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS050707

Vol. 3 Issue 5, May - 2014

[5] P. Kahn, "Object Database Management Systems," IBM Academic

Initiative, Courseware, 2005-2012, [Online]. Available:
http://www.odbms.org/. [Accessed 12 1 2012]. [7]

[6] "NoSQL," [Online]. Available: http://nosql-database.org/. [Accessed 12

1 2012]. [8]
[7] "TOP 10 Enterprise Database Systems To Consider," ServerWatch, 20

5 2012. [Online]. Available:

http://www.serverwatch.com/trends/article.php/3883441/Top-10-
Enterprise-Database-Systems-to-Consider.htm. [Accessed 29 9 2012].

[9]

[8] 10gen, "mongoDB Customers," [Online]. Available:
http://www.10gen.com/customers. [Accessed 5 1 2012]. [10]

[9] L. Z. W. Q. H. J. Y. P. Wenbin Jiang, "MyStore: A High Available

Distributed Storage System for Unstructured Data," in 2012 IEEE 14th
International Conference on Communication, Networking &

Broadcasting ; Computing & Processing (Hardware/Software), Wuhan,

China, 2012. [17]
[10] "Heterogeneous Database Replication," Microsoft, [Online]. Available:

http://msdn.microsoft.com/en-us/library/ms151149.aspx. [Accessed 10

7 2012]. [19]

[11] Microsoft, "Non-SQL Server Subscribers," Microsoft, [Online].

Available: http://msdn.microsoft.com/en-us/library/ms151864.aspx.

[Accessed 06 12 2012]. [20]
[12] P. Haase, "Heterogeneous Data Replication," University of Rostock,

Department of Computer Science. [21]

[13] P. Gupta, "DataJoiner: a practical approach to multi-database access,"
in Proceedings of the Third International Conference, San Jose, 1994.

[23]
[14] T. J. Teorey, S. S. Lightstone, T. Nadeau and H. Jagadish,

"Normalization," in Database Modeling and Design, Morgan

Kaufmann, 2011, p. 352. [25]
[15] ITL Education Solutions Limited, "Structured Query Language," in

Introduction to Database Systems, Pearson Education India, 2008, p.

592. [26]

683

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS050707

Vol. 3 Issue 5, May - 2014

