
Model Driven Software Engineering
The model driven approach for software development

Mousami
B.E. Final Year- Information Technology

Department of Computer Science and Engineering
M.B.M. Engineering College, Jai Narain Vyas University

Jodhpur, India
Email: mousami.it@jnvu.edu.in

Abstract—Model Driven Software Engineering (MDSE) is the
practice of designing a complex software system in terms of
models and generating its code from them automatically. It
provides abstraction of software development from the domain
specific constraints of programming languages and conceives the
software at the same level as its problem specification. This paper
presents a brief study explaining the details and applications of
model driven software development approach. It traces the
history of Model Driven Engineering (MDE) in software
engineering field and studies how the abstract models are created
and converted into actual implementations. This paper also sheds
light on how to create models using different level of abstractions,
the basic techniques used for automated code generation using
the models and the comparison of those techniques. A brief
overview of the advantages and disadvantages of using MDE for
software development given at the end of this paper concludes
that MDSE is a major step towards the automation of coding and
thus is leading to the industrialization of software development.

Keywords—MDE; CASE; automated code generation; code
generators

I. INTRODUCTION
The software systems of today are a lot more complicated

than they were a few decades ago. The software in today’s
systems is often required to operate in distributed and
embedded computing environments consisting of diverse
devices and platforms and behave in a dependable manner.
Due to the increased platform complexity, developing intricate
and dependable software systems using code-centric
technologies is a very tough job. One of the major factors for
this difficulty in developing complex software is the huge gap
between the problem and the domain of implementation. And
trying to bridge this gap by techniques which require extensive
handcrafting of implementations gives rise to increased
accidental complexities which makes the development of
complex software systems more difficult and costly. The
growing complexity and the incompetency of the modern
programming languages to bridge the implementation gap
have generated the need of paradigm shift in software
development thus leading to Model Driven Engineering
(MDE) approach in software development. The paradigm shift
brought about by Model Driven Software Development has
become an increasingly popular approach to deal with the

complexity of software engineering. In this model of software
development, the aim is to develop models instead of source
code. The level of abstraction is raised from source code to
models.

The core idea of model driven approach is that it allows the
coding to be done automatically from a set of well defined
models as input.

II. HISTORICAL CONTEXT

A. Evolution of Abstraction
The notion of abstraction is not new in software

engineering field. First the assembly languages were used for
machine coding, thus making the complexities of machine
code abstract. After that more advanced programming
languages such as C raised the level of abstraction over
assembly language. And now the next level of abstraction is
modeling. A lot of work has been done in the field of models.
A reference of models and their use in code generation was
seen in the Computer-Aided Software Engineering (CASE)
tools in the 1980s which provided other abstractions with
some tooling.

B. CASE
Computer aided software engineering (CASE) was the

most prominent effort that begun in the 80s[1] for raising the
abstraction level of software programming. It emphasized on
developing software methods and tools that helped developers
to represent their designs in terms of general purpose graphical
programming representations, which included state machines,
structure diagrams, and dataflow diagrams. The major goals of
CASE were as under:

 To enable more thorough analysis of the less
complex graphical programs than the conventional
general-purpose programming languages like C.

 To generate artifacts from graphical representations
that can be used for implementation.

 To reduce the effort of manual coding, debugging,
and porting of the programs.

 Despite of the considerable attention in the research and
trade literature, CASE was not widely adopted in practice. It’s
major failing points are described below:

240

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ETRASCT' 14 Conference Proceedings

 The general-purpose graphical language
representations used for writing programs in CASE
tools mapped poorly onto the underlying platforms.

 CASE could not handle complex systems having wide
range of application domains.

 CASE tools did not support concurrent engineering,
so they were limited to programs written by a single
person or by a team that serialized their access to files
used by these tools.

 There was a lack of powerful common middleware
platforms for the CASE tools.

 CASE tools had “one-size-fits-all” graphical
representations which were very generalized and
could not be customized according to different
application domains.

 As a result of above failures, CASE had relatively little
impact on commercial software development during the
1980s and 1990s, focusing primarily on a few domains,
such as telecom call processing, that mapped nicely onto
state machine representations[1].

 The Model Driven Engineering approach which is used
now-a-days has evolved past most of the above faults of its
predecessor CASE and is hence the next big thing in
software engineering field.

III. MODEL DRIVEN ENGINEERING IN SOFTWARE
MDE can be defined as- “the use of relevant abstractions

that help people focus on key details of a complex problem or
solution combined with automation to support the analysis of
both the problem and solution, along with the mechanism for
combining the information collected from the various
abstractions to construct a system correctly”[2]. In other
words, Model Driven Software Development consists of two
parts:

 Defining models correctly for a complex problem and
its solution with appropriate abstractions so that they
focus on the important details relevant to the
software.

 Providing automated coding from the models
designed above through mechanisms that combine all
the abstractions consistently and in accordance with
the software to be generated.

IV. MODELS AND ABSTRACTION LEVELS
Models are the key artifacts in the MDE approach of

software development. They are the basic ingredients for
development of complex systems using MDE. They work in
the domain of problem itself. For creating a model for code
generation, we should first decide on the various levels of
abstractions. Some of the key abstractions can be categorized
into types which are described below:

 Structure (interfaces): abstraction is done on
structural level. For example systems, subsystems,
components, modules, classes, and interfaces (inputs

and outputs). Only the structural details are shown in
the model and rest details are abstracted.

 Behavior (functionality): in this category, only the
functionality of the software to be generated is
shown. Hence, all the behavioral details are presented
in the model while other details are hidden or not
shown.

 Timing (concurrency, interaction): in the models
consistent with timing, all the details regarding
concurrency protocols, interaction of processes with
shared resources and the constraints regarding the
real time execution of the software system are
addressed.

 Resources (environment): the models represent the
resources available to the software and its working
environment.

 Metamodels (models about models): a very
interesting category of models is the metamodel.
They are models about the models, i.e., they specify,
how a model should be designed for efficient code
generation with platform independency.

 Some of these abstraction concepts have existed and evolved
with programming languages, but within a programming
language the combination of these views is lumped or tangled
together (e.g., spaghetti code)[2]. Although through good
coding practices programs can be better structured and layered,
but models help in systematically separating the different
views. And since certain types of models are allowed to permit
only certain types of information, even complex software
systems can be broken into simpler models thus making the
software more readable and maintainable, a feat that cannot be
achieved through programming languages.

V. GENERATION OF CODE
MDE automation analyzes the views using automated

means, derives the required information from one or more
views, and then ultimately pulls sets of views together correctly
to produce the specified complex software system using
automatic code generator.

There are different ways how to design and implement a
code generator. Following are several well-known generation
patterns:

 Templates and filtering
 Templates and metamodel
 API-based generators
 Inline code generation

Different generation patterns have different advantages
and disadvantages

A. Templates and Filtering
Templates and Filtering describe the simplest way of

generating code. Code is generated by applying templates to
textual model specifications (often XML/XMI), typically after
filtering some parts of the specification. The code to be
generated is embedded in the templates. Fig.1 presents a
schematic of this technique of code generation.

241

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ETRASCT' 14 Conference Proceedings

Fig. 1. Templates and Filtering code generation technique

 Source model: The source model is in textual
XMI/XML form. It contains the set of all the models
designed on different levels of abstractions.

 Filter: Source model is filtered to obtain a subset of

the source model. This subset contains more
summarized and abstracted view of the system which
is simple enough for the code to be generated. This
filtered source model contains all the details
necessary for code generation and the extraneous
details are left out.

 Templates: There are readymade templates already
present for code generation. These templates are
instantiated using values of the filtered source model.

 Result yields the code/program
Following are some drawbacks of template and filtering

code generation:
1) Templates become very complex for larger examples
2) Approach tightly couples the generation definition

(templates) to the concrete syntax of the model
3) It yields low maintainability if source modeling

language evolves

B. Templates and Metamodel
Templates and Metamodel is an extension of the templates

and filtering pattern. Instead of applying patterns directly to the
model, first a metamodel is instantiated from the specification.
The templates are the specified in terms of the metamodel. The
metamodel can be extended to include domain or architecture
specific aspects. Executable code is generated from models. It
is based on the metamodel and uses templates to attach to-be-
generated source code.

By definition, a metamodel is the model of a model. Hence
in the case of templates and metamodel code generation
technique, it refers to the model representing the semantics of
the input source models. The templates are applied to this
metamodel instead of the input source model for generating the
code. The instantiated templates produce the final code as
output. Fig. 2 shows the generation of code by templates and
metamodel technique. The technique is described below:

 Source model is parsed in order to create instance of
source model meta model

Fig. 2. Templates and Metamodel code generation technique

 Templates are defined in terms of source model meta

model terms
 Templates are instantiated using values of the

instance of the source model meta model
 Result yields the code/program

C. API based generators
API-based generators provide an API against which code-

generating programs are written. This API is typically based
on the metamodel/syntax of the target language. Client
program uses API which is based on a Grammar. Fig. 3 shows
the schematic of this technique of code generation.

D. Inline Code Generation
Inline code generation describes a technique where code

generation is done implicitly during interpretation or
compilation of a regular, non-generated program, or by means
of a precompiler. This process typically modifies the program
that is then subsequently compiled or interpreted. Fig. 4 shows
the inline code generation technique.

 Code generation is done implicitly by means of a
precompiler

 The precompiler modifies the program which is then
compiled or interpreted

 Examples are common in the programming language
domain (C++ precompiler)

Fig. 3. API based generation technique

Templates Code Generation
Definition

Templates

Subset of
source
model

Source
Model Code/Program

Filter

Apply to Apply to

Source
Model

Instance
of source

model

Code/Program
Parse

Code Generation
Definition

Templates

Code Generation
Definition

Templates

API

Code/Program uses

Based on

Client/Program

242

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ETRASCT' 14 Conference Proceedings

Fig. 3.Inline code generation technique

VI. COMPARISON OF VARIOUS CODE GENERATION
TECHNIQUES

The various approaches for code generation discussed
above have their own advantages and disadvantages. One can
choose any technique of code generation that suits the
requirements and approach. Table 1 presents a brief
comparison of the various approaches discussed so far. The
serial numbers 1, 2, 3 and 4 correspond to 1)Templates and
Filtering, 2)Templates and Metamodels, 3)API-based and
4)Inline code generation respectively.

VII. MERITS AND DEMERITS OF MODEL DRIVEN SOFTWARE
ENGINEERING

As every other paradigm, model driven software
engineering also suffers from various drawbacks and has
many advantages too. The pros and cons of using MDSE
depend upon its merits and demerits which are discussed
below:

A. Advantages
1) Higher productivity: Since tedious and boring parts

of the code are generated automatically, productivity
is much higher. Code generators produce thousands

Table 1. Comparison of various approaches of Code generation [Source:
adapted from Voelter]

 Generated/

Ungenerat
ed code

Template
/ API

Learning
Complex

ity

Suitability
for

complex
uses

Suitability for
model-to-

code
transformatio

n

1 Separate Template Simple Not
very
good

Good

2 Separate Template
(plus m-

model API)

High Very
good

Very good

3 Separate/
integrate

API Depends
on API

Depends
on API

Not very
good

4 Integrate
d

Template
/ API

Simple Not
very
good

Not very
good

of lines of code in seconds therefore less time is
taken in software development.

2) Agile development: The software development
process using MDSE is agile, since any changes that
are thought of unexpectedly during or after
development are propagated quickly and efficiently.

3) Improved Quality: Bulky handwritten code have

inconsistent quality because of the discrepancies and
variations in knowledge during development. These
discrepancies result as various developers work on
different abstract views of the same software. Hence
the bug fixes and code improvements resulting due
to human incompetency are considerably reduced
using a generator, thus improving the overall quality
of the produced software.

4) Greater consistency in API design and naming

conventions because instead of programming the
code in fragments by various coders, it is done by a
single generator.

5) More time can be given to the designing part of the

software as time is reduced in coding and
implementation. This increased design time helps in
making the software more efficient and robust.

6) Architectural consistency: The resulting software is

consistent with the proposed design as the
programmers work within the architecture. Well-
documented and maintained code is generated which
provides a consistent structure and approach.

7) Abstraction: Abstraction is raised to a higher level

using MDSE approach. The software can be defined
independent of the language to be used for its
coding. Thus it can be ported to different platforms
and languages easily.

B. Disadvantages
1) Code generator has to be written first which is in

itself a herculean task and moreover it is not
guaranteed that once we write a code generator, it
will be sufficient for all the other software projects.

2) The generic approach is not always applicable to all

the cases.

3) There will always be some code that has to be hand
written pertaining to the peculiarity of the particular
domain of the problems.

4) Generality can be a drawback, for instance:

a) Databases must be well-designed and normalized
b) Grammars must be member of a specific class

Source Code
With variants

Source Code
With variants

Partially resolved
Code/Program

Compiler with Preprocessor

243

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ETRASCT' 14 Conference Proceedings

5) Many companies have invested huge amounts in their
existing traditional hard coded software systems and
thus are reluctant to adopt a new approach.

CONCLUSION
MDE is the next big thing in software technology. It has

industrialized the field of software engineering. Machine made
codes have greatly reduced the time and efforts needed to
develop software. In fact it has allowed us to make more
complex real time software systems which have higher
efficiency, high portability and are more readable and
maintainable. MDE has not only been successful in reducing
the gap between problem specification and implementation,
but also made possible the solving of problems in the domain
of their definition only rather than converting them into the
specific domain of some programming language.
 Models are created for the software according to different
abstract views based on structure, functions, environment etc
and then the required models are combined together and used
to generate the code for the software. There are various code
generating techniques which can be used based on their merits
and demerits and the software to be developed.
 This approach of Model Driven Engineering in software
development has its own advantages and disadvantages. But
the advantages outweigh the disadvantages by huge margins.
The only hindrance in adopting MDE on larger level is that
many industries have invested large sums of money in their
existing software systems and hence they do not want to

switch to MDE. Nevertheless this is the next step in software
evolution and will be accepted eventually.

ACKNOWLEDGMENT
The author has studied various research works on this topic

by different scholars and industry experts. All of the works
have been extremely helpful, but the work of Systems and
software consortium inc. deserves special acknowledgement.
Author would like to thank SSCI for its webinar series. Author
also thanks Rajesh Purohit, Professor and head, department of
computer science and engineering, M.B.M. Engineering
College, for his motivation for writing this paper and his
valuable feedback on the draft of paper.

REFERENCES
[1] Douglas C. Schmidt, Model Driven Engineering, Computer, published

by IEEE Computer Society(February 2006))
[2] Mark R Blackburn, “What’s model driven engineering (MDE) and how

can it impact process, people, tools and productivity”, Systems and
software consortium(September 2008).

[3] Dr. Jochen Küster, “Model-driven software engineering- code
generation”, IBM Reasearch, Zurich, 2011

[4] Markus Voelter, “Code generation” in Model Driven Software
Development, 2006.

[5] Mark van den Brand, “Program generators and model driven
architecture”, cbse 2007.

[6] Matthew J, Rutherford, Alexander L. Wolf, “A case for test-code
generation in model driven systems”, Technical Report CU-CS-949-03
April 2003, Dept of computer science, University of Colorado.

[7] Lionel Briand, Davide Falessi, Shiva Nejati, Mehrdad Sabetzadeh, Tao
Yue, “Research-based innovation: a tale of three projects in model-
driven engineering”, MODELS 2012, pp 793-809, Springer-Verlag
BerlinHeidelberg(2012)

244

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

ETRASCT' 14 Conference Proceedings

