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Abstract—Spring washers are elastic washers that have 

irregular disk-like shapes. They are flexible axially and deflect 

like springs when they are compressed. Spring washers have a 

preload between the two fastened surfaces and are used to 

prevent loose fastening, absorb shocks, eliminate play and 

uniformize load. Wave spring washers are wavy in the axial 

direction and have multiple curvilinear lobes. They provide 

spring pressure when the wavy surface is compressed. Wave 

spring washers are employed when radial space is constrained 

and moderate load is applied in the operation. In this paper, a 

systematic method is introduced for modeling, analyzing and 

designing wave spring washers. To model a wave spring washer, 

a sweep surface is first employed to describe the wavy surface. 

The solid model of the wave spring washer is then generated 

through extruding the swept surface by its thickness along the 

axial direction. The solid model of a wave spring washer is fully 

decided by five geometric parameters: the number of waves, 

inner and outer diameters, washer thickness and wave height. 

The design of a wave spring washer is thus systemized as 

optimizing its five geometric parameters. The analysis of a wave 

spring washer is conducted based on its solid model that is 

defined by its five parameters. Examples on modeling, analyzing 

and designing wave spring washers are presented in the paper to 

verify the effectiveness and demonstrate the procedure of the 

introduced method. 

Keywords—spring washer; wave washer; modeling; design; 

sweep surface; geometric parameter. 

I.  INTRODUCTION 

Washers are usually doughnut-shaped disks that serve to 
increase the area of contact between the bolt head or nut and 
the clamped part. A washer is normally used where the bolt 
compression load on the clamped part needs to be distributed 
on a larger area than what the bolt head or nut can provide. 
The use of a washer also prevents damage to the bearing 
surface adjacent to the fastener by the nut when it is tightened 
[1]. Washers are vital components in fastening and assembly 
operations. Besides acting as a seat for bolts, nuts, screws and 
rivets, washers perform many other functions that include 
insulating, sealing, locking, spacing, improving appearance, 
providing spring take-up, aligning, distributing loads. Washers 
are indispensible to the functions of many machines or devices 
and of importance to their operations [2]. 

There are many different washers for various applications. 
The configurations and specifications of washers are closely 
related to their applications and requirements. Washers are 
divided into six basic categories based on their configurations: 
flat, shoulder, tab, lock, countersunk and spring [2]. Flat 
washers have flat disk configuration and internal hole, but 
their external shapes can be round, square, rectangular, 
hexagonal or others based on applications. Shoulder washers 
are also called step or flange washers since there is an integral 

low cylindrical sleeve. They are mainly applied in electronic 
devices as insulators and are made of non-conductive 
materials. Tab washers have single or multiple internal or 
external protrusions in them. The protrusions or tabs prevent a 
washer from rotating under the bolt or in relation to a shaft. 
The internal protrusions prevent shaft rotation, whole external 
protrusions can lock into holes or over the edge of the 
assembly base. Lock washers have a bent or crimped surface 
to prevent a bolt or screw from turning or loosening. Lock 
washers provide great bolt tensioning for tight assemblies and 
protection against loosening resulting from vibration. 
Countersunk washers give a bearing surface for flat head 
screws. They can also provide a sealing function for flat head 
screws. Springs washers are elastic washers and have irregular 
disk-like shapes. They are flexible axially and deflect like 
springs when they are compressed. Spring washers have a 
preload between the two fastened surfaces and are used to 
prevent loose fastening, absorb shocks, eliminate play and 
uniformize load. This paper is on spring washers. 

Springs washers have three basic types: Belleville, curved 
or cylindrically curved, and wave [2-3]. Belleville washers 
have truncated cone or spherical shapes and are also called as 
conical or cupped spring washers. Belleville washers provide 
a small deflection range and have a high load bearing 
capacity. A Belleville washer initially has the form of a cone 
that progressively flattens as the bolt is tightened. In the initial 
tightening, the load-deflection curve has a constant positive 
gradient. As the tightening continues, the load-deflection 
curve will have a negative gradient due to the large geometric 
change in the shape of the conic washer. A Belleville washer 
should operate in the region where the gradient is negative [4]. 
In this way, it will increase the load on the bolt if the jolt is 
loosened, so that the loosening is counteracted. Curved 
washers are cylindrically curved in one direction and provide 
a uniform spring rate over a large deflection range. They are 
also known as crescent or bowed washers. They are best 
suited for applications that flexibility, frequent load cycling 
and light loads. In order for a curved washer to function 
properly, the formed portion has to be free to slide and bearing 
surfaces should be hard enough to prevent washer corners 
from scraping or digging in. Wave washers are wavy in the 
axial direction and have multiple curvilinear lobes. They 
provide spring pressure when the wavy surface is compressed. 
Wave spring washers are employed when radial space is 
constrained and moderate load is applied in the operation. The 
wave uniformity is important because the real load deflection 
gradient does not start until all waves are evenly loaded. Once 
all waves are uniformly loaded, a relatively linear spring rate 
will be obtained until the washer deflects close to its flat 
position. This paper is focused on wave washers. 
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To model a wave spring washer, a sweep surface is first 
employed to describe the wavy surface in this paper. The solid 
model of the wave spring washer is then generated through 
extruding the swept surface by its thickness along the axial 
direction. The solid model of a wave spring washer is fully 
decided by five geometric control parameters: the number of 
waves, inner and outer diameters, washer thickness and 
height. 

The analysis of a wave spring washer is conducted based 
on its solid model that is defined by its five geometric 
parameters. The design of a wave spring washer is thus 
systemized as optimizing its five control parameters. 

The remainder of the paper is organized as follows. The 
modeling on wave spring washers is presented in section II. 
The analysis of wave spring washers is provided in section III. 
Section IV is on designing wave spring washers. Conclusions 
are derived in section V. 

II. MODELING OF WAVE SPRING WASHERS 

The surface of a wave spring washer can be modelled as a 
sweep surface (also known as swept surface), which is 
generated by moving a profile curve, C(u), along a trajectory 
curve, B(v). The general formula for a sweep surface is as 
follows [5]. 

)()()(),( uvMvvu CBP   (1) 

In (1), P(u, v) is a point on the surface corresponding to 
the specific values of parameters u and v. M(v) is the 
transformation matrix that transforms the profile curve C(u) 
along the trajectory curve B(v) with functions of translation, 
rotation, scaling or shearing. A geometric transformation is a 
function that is both onto and one-to-one, and whose range 
and domain are points [6]. Transformation here refers to a 
geometric operation that applies to all the points of an object, 
which may move, rotate, scale or shear the object. Ordinary 
three-dimensional coordinate system (which is the Cartesian 
coordinate system for Euclidean geometry) is used in (1), so 
that a point on a surface or curve has x, y, and z coordinates, 
P(u, v), B(v) and C(u) in (1) are all 3x1 column vectors, and 
M(v) is a 3x3 transformation matrix. 

When homogeneous coordinates are applied, equation (1) 
can be represented as (2). 

)()(),( vTuvu CP   (2) 

P(u, v) and C(u) in (2) are point vectors in a homogeneous 
coordinate system. They are now 1x4 row vectors. T(v) is a 
4x4 transformation matrix.  

When a homogeneous coordinate system (which is the 
projective coordinate system for projective geometry) is used, 
one extra dimension is added into the Cartesian coordinate 
system, so every point (x, y, and z) in a three-dimensional 
Cartesian coordinate system has a corresponding set of 
homogeneous coordinates hx, hy, hz and h in a four-
dimensional projective coordinate system. Because hhxx / , 

hhyy / , and hhzz /

 

for all real h except 0h , there are 

an infinite number of points in the four-dimensional 
homogeneous coordinate system corresponding to each point 
in the ordinary three-dimensional Cartesian coordinate system. 
All the points on a line through the origin in the four-
dimensional homogeneous coordinate system have the same 

ordinary three-dimensional coordinates. Then, the point (x, y, 
and z) is the projection of the point (hx, hy, hz and h) onto the 
hyper-plane 1h . The origin is the center of projection and 

the hyper-plane is the ordinary three-dimensional coordinate 
system [7]. A point vector in (2) is a 1x4 row vector that has 
the form of (x, y, z, 1). 

A general transformation matrix T in (2) can be 
represented by its elements as follows. 
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t41, t42 and t43 in (3) represent translations along x, y and z 
directions, respectively. t11, t22 and t33 in (3) are responsible for 
scaling and reflecting. In scaling transformations, the 
coordinates of the profile curve are multiplied by scaling 
factors. A scaling transformation can be uniform or non-
uniform. A same scaling factor is used for all coordinates in 
uniform scaling transformations while non-uniform scaling 
transformations may have different scaling factors in different 
directions. The six off-diagonal elements (t21, t31, t32, t12, t13, 
t23) in the top left 3x3 sub-matrix in (3) are responsible for 
shearing. Rotation of the profile curve is from the joint effect 
of all the nine element in the top left 3x3 sub-matrix [8]. A 
general rotation is a rotation through any angle   along an 

arbitrary axis. If the unit vector of an arbitrary rotation axis is 

denoted as ),,( zyx uuuu , the general rotation matrix can 

then be represented as follows. 
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In (4),  cosC ,  sinS ,  cos1V . The 

rotation matrix represented by (4) is for a rotation whose 
rotation axis passes through the origin of the coordinate 
system. If an arbitrary rotation axis does not pass through the 
origin, we can first translate the axis to make it pass through 
the origin, then rotate the profile curve, and finally translate 
the rotation axis back to its original location. Similar 
procedure can be used for scaling transformations with 
arbitrary points that are not the origin.  

Different transformations can be combined into one 
compound transformation matrix that is nothing but the 
product of the individual transformation matrices. In general, 
matrix multiplication is not commutative. The order of the 
individual transformation matrices matter. 

If equation (2) is transposed on both side, it will be 
changed to equation (5). 

)()(),( uvTvu CP   (5) 
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T(v) in (5) is the transpose of T(v) in (2). Points 
represented by P(u, v) and C(u) in (5) are now 4x1 column 
vectors that has the form of (x, y, z, 1)

T
.  

The following shows some examples of sweep surfaces. 

The sweep surface shown in Fig. 1 is generated by 
translating a sine function curve that is on the x-y plane along 
z axis. The x, y and z coordinates of any point on the surface 
are represented by the following equation. 
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 (6) 

In (6), parameters u and v all change from 0 to 1. L is the 
length of the profile curve in the x direction and 2W is the 
width of the profile curve in the y direction. H is the height of 
the sweep surface in the z direction. 

The surface image shown in Fig. 1 is plotted by function 
"surf" of MATLAB [9]. Interpolated shading is used when the 
surface is plotted. 

The sweep surface shown in Fig. 2 is generated by rotating 
a sine function curve that is on the x-z plane through an angle 
with respect to z axis. The x, y and z coordinates of any point 
on the surface can be denoted by the following equation. 
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In (7), parameters u and v are in the interval of 0 to 1. H is 
the height of the profile curve in the z direction and 2W is the 
width of the profile curve in the x direction. R is the average 
distance of the profile curve from the rotation axis (z) and θ is 
the rotation angle of the profile curve. 

The sweep surface shown in Fig. 3 is generated by 
simultaneously translating and rotating a line segment that is 
on the x axis. The x, y and z coordinates of any point on the 
surface can be derived by the following equation. 
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Parameters u and v in (8) are the same as those in (6) and 
(7). Ri and Ro are the distances of the inner and outer ends of 
the profile line segment from the z axis, respective. H is the 
total translation distance along the z axis and θ is the total 
rotation angle of the profile line segment. 

Fig. 4 shows two different views of the surface of a wave 
spring washer. The sweep surface is from the simultaneous 
translation and rotation of a line segment on the x axis. The x, 

y and z coordinates of any point on the surface can be 
calculated by equation (9). 

 

Fig. 1 A sweep surface generated from a pure translation. 

 

 

Fig. 2 A sweep surface generated from a pure rotation. 

 

 

Fig. 3 A sweep surface generated from a combined translation and 
rotation. 
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Parameters u and v in (9) are the interval of 0 to 1. Ri and 
Ro have the same meanings as those in (8). 2H is the total 
translation distance along the z axis, which is the wave height 
of the surface. The total rotation angle (θ) is now 2π. N in (9) 
is the number of waves, which is 3 in Fig. 4. 
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Fig. 4 The surface of a wave spring washer. 

 

Each wave spring washer has a parameter of washer 
thickness. The solid model of a wave spring washer can be 
generated through extruding its wavy surface by its thickness 
along its axis. Fig. 5 shows a solid model of a wave spring 
washer that is from extruding the wave surface shown in Fig. 
4. 

The image of the 3D model shown in Fig. 5 is plotted by 
function "patch" of MATLAB [9]. The arguments of 
"FaceColor" and "EdgeColor" in patch function are set as "y" 
and "none", respectively. The red edge lines are added to the 
patch object by 3D line plotting function of "plot3." 

III. ANALYSIS OF WAVE SPRING WASHERS 

The analysis of wave spring washers is conducted in 
ANSYS, a popular finite element analysis software [10-11]. 
With the given five geometric parameters (the number of 
waves, inner and outer diameters, washer thickness and 
height) of a wave spring washer, its solid model can be 
created in ANSYS. It can also be created by a solid modeler 
and then imported into ANSYS. After the solid model is in 
ANSYS, it is discretized into elements for finite element 
analysis. 

Fig. 6 shows a finite element model of a wave spring 
washer. The washer is made of carbon steel with Young's 
modulus (E) of 207 GPa, Poisson's ratio of 0.3, strength of 
1700 MPa. There are 3 spring waves in the spring washer. Its 
inner and outer diameters (Di and Do) are 42 mm and 54 mm, 
respectively. The spring washer has wave height (h) of 5.0 
mm and thickness (t) of 0.5 mm, so the total free height of the 
spring washer is 5.5 mm. 

Shell element (SHELL181) in ANSYS is employed for the 
deflection and stress analysis of the wave spring washer. The 
bottom surface of the washer is placed on a fixed rigid surface 
while its top surface is in contact with another rigid surface 
that moves downward by its input displacement of 2 mm. The 
input displacement of 2 mm is divided into 2 even load steps 
and geometric nonlinearity command “NLGEOM” is turned 

on when the deflection and stress of the spring washer are 
analyzed in ANSYS. 

 

 

Fig. 5 The solid model of a wave spring washer. 

 

 

 

Fig. 6 The finite element discretization of the analyzed wave spring 

washer. 

When the input displacement is 2 mm, the deflected wave 
spring washer and stress distribution are shown in Fig. 7 and 
Fig. 8, respectively. The maximum stress in Fig. 8 is 1180.2 
MPa. The spring rate is 59.0 N/mm, which is calculated when 
its input displacement is at its middle value (1 mm in this 
example). 

 

Fig. 7 The deflected wave spring washer. 

 

When the number of spring waves is increased from 3 to 4 
and other parameters are kept as the same as Fig. 6, the 
element discretization, the deflected spring washer and stress 
distribution are shown in Fig. 9, Fig. 10 and Fig. 11, 
respectively.  

 

 

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090510

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

544



 

 

 

Fig. 8 The stress distribution of the wave spring washer. 

 

 

 

Fig. 9 The finite element discretization for N = 4. 

 

 

Fig. 10 The deflected wave spring washer for N = 4. 

 

The spring rate for N = 4 is 204.6 N/mm and is much 
stiffer than that of N = 3, but the maximum stress is now 
2290.87 MPa as is shown in Fig. 11, which is beyond its 
allowable value (1700 MPa). So the number of spring waves 
cannot be 4 for this set of geometric parameters in this 
example. 

IV. DESIGN OF WAVE SPRING WASHERS 

A wave spring washer is designed for its application 
requirements that include spring rate, spring deflection, spring 
diameter, spring width and spring height. There are five spring 
geometric parameters to be selected to meet its requirements. 
Moreover, the maximum stress within the spring has to be 
below the allowable value of its material.  

There is a formula shown below to calculate the spring 
rate approximately [3, 12]. 

 

 

 

Fig. 11 The stress distribution for N = 4. 
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43

4.2
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P and f in (10) are the spring load and deflection, 
respectively. D and b are the mean diameter and width of the 
spring, and can be derived by Di and Do as 0.5(Do + Di) and 
0.5(Do ‒ Di), respectively. The formula is approximate 
because it is based on the equations for simple beams with 
correction factors [3]. There is another approximate formula to 
calculate the stress within the wave spring washer [3]. 

224

3

Ntb

DP
S


  (11) 

Although equations (10) and (11) are not exact, they 
provide fast and convenient approaches to estimate spring rate 
and stress. However, they are not used in this work. Since the 
analysis of wave spring washers is conducted in ANSYS in 
this paper, the load, deflection and stress of an analyzed wave 
spring washer are directly from ANSYS.  

The design of a wave spring washer is to optimize its five 
geometric parameters (that are the design variables) to meet its 
application needs. The optimization of the design variables in 
this paper is through the Global Optimization Toolbox of 
MATLAB [13-14]. The communications between MATLAB 
optimization and ANSYS analysis are based on ANSYS 
Parametric Design Language [15]. 

A design example is presented below. The spring material 
is the same as that used in last section. The spring rate and 
spring deflection are desired to be 38 N/mm and 2.5 mm, 
respectively. The inner and outer diameters of the wave spring 
washer are in the range of 38 to 46 mm. The spring wave 
height is from 3.7 to 4.5 mm and spring thickness is in the 
interval of 0.37 to 0.43 mm, so the unloaded spring height is 
from 4.07 to 4.93 mm. 

The objective function to be minimized is as follows. 

am

rm
daobj WkkWF




21      (12) 

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS090510

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

545



ka and kd are the actual and desired spring rates, and σrm 
and σam are the real and allowable maximum stresses, 
respectively. W1 and W2 are the weight coefficients with their 
sum of 1. The intention of the objective function is to make 
the actual spring rate close to the desired one and the 
maximum stress low. W1 and W2 are chosen in this example as 
0.7 and 0.3, respectively.  

Each design variable has its lower and upper bounds. The 
maximum stress in the spring washer is constrained to be 
below its allowable value as follows. 

01
am

rm




    (13) 

To uniformize the spring force, the spring width is 

constrained to be no lower than a certain value. 

01
2




am

io

b

DD
    (14) 

bam is the allowable minimum spring width, which is 3.0 

mm in this example. 

The design result is shown in Fig. 12. The number of 

waves is 3. Its inner and outer diameters are 38 mm and 46 

mm, respectively. The wave height and thickness are 4.0 mm 

and 0.4 mm, respectively. The spring rate is 37.9 N/mm when 

the spring deflection is half (1.25 mm) of its maximum 

deflection. The maximum stress in the wave spring washer is 

1412 MPa. The deflected spring washer and stress 

distribution are shown in Figs. 13 and 14, respectively. 

 

 

 

Fig. 12 The design result of the wave spring washer example. 

 

 

 

Fig. 13 The deflection of the wave spring washer design example. 

 

 

 

 

 

 

Fig. 14 The stress distribution of the wave spring washer design example. 

V. CONCLUSIONS 

A method for modeling, analyzing and designing wave 
spring washers is presented in the paper. To model a wave 
spring washer, its wavy surface is first generated by a sweep 
surface. The swept surface is then extruded by the thickness of 
the spring washer along its axis to produce its solid model. 
The solid model of a wave spring washer is discretized into 
elements in ANSYS for its finite element analysis. The shell 
element (SHELL181) in ANSYS is employed for the 
deflection and stress analysis with its geometric nonlinearity 
command (NLGEOM) turned on. 

To design a wave spring washer, its five geometric 
parameters (the number of waves, inner and outer diameters, 
washer thickness and wave height) are considered as design 
variables and optimized by the Global Optimization Toolbox 
of MATLAB. The optimization objective is to make the actual 
spring rate to be the desired one and the maximum stress 
within the spring washer to be low. The deflection and stress 
of wave spring washer candidates are analyzed by using 
ANSYS during the optimization process. The data transfer 
between MATLAB optimization and ANSYS finite element 
analysis is based on the ANSYS Parametric Design Language. 
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