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Abstract— Electromyogram (EMG) signal generated by the 

skeletal muscles during contraction or relaxation plays a 

significant role in many clinical and biomedical applications. 

The analysis of EMG signals helps to detect the human intention 

for movement. One of the major applications of EMG signal is 

in the control of prosthetic devices and exoskeletons. 

                   The aim of this study is to develop a mathematical 

model with surface EMG (sEMG) signals acquired from the 

biceps and triceps muscle as input and corresponding angular 

velocity of motion of fore-arm as output. The problem that 

arises while modeling is that the system model is “black-box” 

model. For solving this problem system identification techniques 

are used. A linear parametric model called ARX model and a 

nonlinear model called Hammerstein model are used for system 

identification and the performances of these system 

identification models are compared. The platform used for the 

development and comparison of models is LabVIEW. 

Keywords— sEMG; System Identification; ARX model; 

Hammerstein model. 

I.  INTRODUCTION  

The electrical potentials or electrical activities generated 
by skeletal muscles during contraction or relaxation are 
known as Electromyogram (EMG) signals. In present days, 
EMG signals are used for many clinical and biomedical 
applications like control of prosthetic devices such as 
prosthetic hands, arms, lower limbs, etc. for disabled people 
and powered exoskeletons for elderly people, biomedical 
movement analysis, study of neuromuscular diseases, etc. 
There are two methods for acquiring EMG signals: (1) 
Intramuscular EMG method [1], which is an invasive method 
where a needle type electrode is inserted through the skin into 
the muscle and (2) Surface EMG method, which is a non-
invasive method where a surface electrode is placed on the 
skin over the muscle. Even though intramuscular EMG 
method has several advantages like extremely sensitive, less 
cross-talks, deep musculature, etc., surface EMG method is 
preferred as it is safe, does not require medical supervision 
and easy to handle. 

The main problem that arises while modeling sEMG signal 
is that it is a black-box model i.e. only input and output are 
known or measurable, while the parameters will be unknown 
or will have uncertain value. For solving this problem System 
Identification techniques are used. In recent years, study of a 
number of EMG signal models has been done for describing 
the motion of different human body moving parts like fingers, 
upper and lower arm, ankle [2], etc. In the case of study of 
arm movement, it is seen that in most of the papers [3], both 

biceps and triceps muscles were used for describing Flexion 
and Extension movements of arm and also for acquiring EMG 
signals. The EMG signal models developed in previous works 
were EMG-Force model or EMG-Torque model [3, 4] (i.e. 
EMG signals acquired were related to either the corresponding 
forces acting or to the torque developed) with a study 
condition of constant posture based on Maximum Voluntary 
Contraction (MVC) [3]. A model relating angular velocity of 
ankle and EMG acquired along Gactrocnemius-Soleus (GS) 
muscles were developed in paper [2]. In earlier works, system 
identification techniques using linear parametric models [5] 
(like AR, ARX, Output Error, etc.) were used for developing 
EMG signal models. In recent works, system identification 
techniques using nonlinear models like Hammerstein model 
[2, 3], Wiener model [3], etc. are used for developing the more 
accurate EMG signal model when compared to the linear 
models. 

This work comprises of two stages: (1) Data acquisition 
and processing stage, and (2) System Identification stage. The 
data acquisition and processing stage involves acquisition and 
processing of sEMG signals acquired from biceps and triceps 
muscle and corresponding angular velocities of motion of 
fore-arm, which is discussed in Section II. In system 
identification stage, a mathematical model relating sEMG 
signals and angular velocity using a linear parametric model 
(ARX model) and a nonlinear Hammerstein model are 
explained in section III. Finally, performance ARX model and 
Hammerstein model for different cases are compared, which is 
discussed in section IV. 

II. DATA ACQUISITION AND PROCESSING 

A. Data Acquistion 

The block diagram representation of data acquisition 

stage is shown in the Fig.1. For the acquisition of sEMG 

signals and angular velocities, two arm movements have been 

considered: Flexion and Extension. Based on different speeds 

of motion, there are four study conditions in this work: (1) 

Fast Flexion, (2) Fast Extension, (3) Slow Flexion and (4) 

Slow Extension. Signals are acquired from 3 subjects (2 male 

and 1 female, age ranging from 22 to 25 years) with sampling 

frequency of 1000Hz. Five signals (both sEMG and Angular 

Velocity) are acquired from each subject for each study 

conditions. Thus there are 15 signals for each study 

conditions. 
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Fig.1. Block diagram representation of Data Acquisition stage 

At first three surface electrodes are connected on the arm: 

two detection electrodes on the biceps and triceps muscles 

and one reference electrode on the elbow (which can be any 

bony part). The electrodes used are Ag-AgCl pre-gelled 

surface electrodes. The sEMG signals are acquired using a 

biomedical data acquisition device called BITalino. A 3-axis 

accelerometer – ADXL335 is used for acquiring acceleration 

of fore-arm corresponding to each sEMG signals, from which 

angular velocity is calculated. 

B. Data Processing 

The raw sEMG signals acquired from BITalino are in Bit 

form, which is first converted into voltage signals. These raw 

signals are then filtered by using a 4th order Butterworth band 

pass filter with cutoff frequency range of 50-150Hz [6].The 

acceleration values obtained by using ADXL335 and MyDAQ 

are in voltage form, which is to be converted to angular 

velocity in radian/sec [7]. For this acceleration values in 

voltage form are first converted into acceleration in g-force 

and then these g-force signals are converted into angles in 

radians. By taking the derivative of signals in angle form, 

angular velocity signals are obtained. Now the filtered sEMG 

signals and its corresponding angular velocity signals are sub 

divided into 20 segments and mean of each segment are found 

out. This is done for data reduction. 

III. SYSTEM IDENTIFICATION 

System identification can be defined as the process of 

deriving a mathematical model of a system using observed 

data (measured values of input and output data). In this paper, 

the measured data are sEMG signals and angular velocities. 

This stage consists of three steps:  

(1) Split data- In this step input- output data acquired 

are divided into two sets: one for model estimation 

and other for model validation.  

(2) Model Estimation- In this step system model based 

on different system identification methods is 

developed. 

(3) Model Validation- In this step system model 

estimated is validated by using model validation 

data. 

System identification models used in this work are: ARX 

model (linear model) and Hammerstein model (nonlinear 

model). Here out of 15 signals acquired, 9 are used for model 

estimation and remaining 6 for model validation. 

A. ARX Model 

ARX model is the simplest linear parametric model. Here 

ARX stands for Autoregressive (depending on past values) 

with Exogenous Input (input along with disturbance) model. 

The difference equation of ARX SISO model is given as: 

𝑦[𝑡] + 𝑎1𝑦[𝑡 − 1] + ⋯ + 𝑎𝑛𝑎
𝑦[𝑡 − 𝑛𝑎] = 𝑏0𝑢[𝑡 − 𝑑] +

              𝑏1𝑢[𝑡 − 1 − 𝑑] + ⋯ + 𝑏𝑛𝑏−1
𝑢[𝑡 − (𝑛𝑏 − 1) − 𝑑] +

              𝑒[𝑡]                                                                           (1) 

where a and b are the unknown model parameters, 𝑛𝑎 and 

𝑛𝑏are the order of model coefficients a and b, e[t] is the zero 

mean Gaussian white noise and d is the system delay.  

Let, 𝐴(𝑞) = 1 + 𝑎1𝑞−1 + ⋯ + 𝑎𝑛𝑎
𝑞−𝑛𝑎                                (2) 

        𝐵(𝑞) = 𝑏0𝑞−𝑑 + 𝑏1𝑞−1−𝑑 + ⋯ + 𝑏𝑛𝑏−1
𝑞−(𝑛𝑏−1)−𝑑     (3) 

where q is the shift operator. 

Combining equations (1), (2) and (3), complete ARX 
model equation, 

                            𝑦(𝑡) =
𝐵(𝑞)

𝐴(𝑞)
𝑢(𝑡) +

1

𝐴(𝑞)
𝑒(𝑡)                      (4) 

1) ARX Model Estimation-  

The first step in model estimation is optimum model order 
selection. The method used in this work for optimum order 
selection is Akaike Information Criteria. 

                             𝐴𝐼𝐶 =  𝑉𝑛 [1 +
2𝑝

𝑁
]                                   (5) 

where 𝑉𝑛is the prediction error, 𝑝 is the no: of parameters and 
𝑁 is the no: of data points. As per this criterion, lower the 
value of AIC, higher will be the quality of the model. 

Here the selected order ranges are: model transfer function 
denominator & numerator order (𝑛𝑎  & 𝑛𝑏) from 1 to 20 and 
system delay (d) from 0 to 10. The optimum order values 
obtained for different study conditions are given as: 
   Fast Flexion- 𝑛𝑎  = 18, 𝑛𝑏 = 20 and d = 9; 
   Fast Extension- 𝑛𝑎 = 20, 𝑛𝑏 = 20 and d = 8; 
   Slow Flexion- 𝑛𝑎 = 18, 𝑛𝑏 = 20 and d = 7; 
   Slow Extension- 𝑛𝑎 = 20, 𝑛𝑏 = 20 and d = 9. 

Root Mean Square Error (RMSE) can be defined square 
root of mean of square of error difference between model 
response and actually observed response. 

                     𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑚𝑖

−𝑦𝑎𝑖
)2𝑛−1

𝑖=0

𝑛
                          (6) 

where 𝑦𝑚𝑖
is the model response and 𝑦𝑎𝑖

 is the observed 

response of the system. 

     RMSE values obtained for different study conditions when 
estimation data set (signals used for model estimation) is 
given to the sEMG-Angular Velocity model developed are: 
Fast Flexion- 0.09655, Fast Extension- 0.11552, Slow 
Flexion- 0.117059 and Slow Extension- 0.12369. 
 

2) ARX Model Validation- 

     RMSE values obtained when validation data set (different 
signals) is given to the sEMG-Angular Velocity model 
developed are: Fast Flexion- 0.15282, Fast Extension- 
0.15139, Slow Flexion- 0.14183 and Slow Extension- 
0.2243. 
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B. Hammerstein Model 

 
Fig.2. Hammerstein Model 

 

The general block diagram representation of Hammerstein 

Model is shown in Fig.2. The main difference from a linear 

model is that it contains a static nonlinear function along with 

the linear dynamic function. The nonlinear function describes 

the nonlinearities present in the system. Here the nonlinear 

function used is a polynomial nonlinearity.  

Static nonlinear function (Polynomial Nonlinearity), 

𝑤(𝑡) = 𝑓[𝑢(𝑡)] = 𝛽1𝑢(𝑡) + 𝛽2𝑢2(𝑡) + ⋯ + 𝛽𝑚𝑢𝑚(𝑡) 

                                      = ∑ 𝛽𝑘𝑢𝑘(𝑡)𝑚
𝑘=1                                    

(7) 

where 𝛽 is the coefficients of polynomial nonlinear function 

and m is the order of the nonlinear function. 

Linear dynamic function, 

𝐺(𝑞) =
𝑏0𝑞−𝑑 + 𝑏1𝑞−1−𝑑 + ⋯ + 𝑏𝑛𝑏−1

𝑞−(𝑛𝑏−1)−𝑑

1 + 𝑓1𝑞−1 + ⋯ + 𝑓𝑛𝑓
𝑞−𝑛𝑓

=
𝐵(𝑞)

𝐹(𝑞)
 

                                                                                               

(8) 

where b and f are the unknown parameters of linear function, 

𝑛𝑏and 𝑛𝑓are the order of  coefficients b and f. 

Combining equations (7) and (8), complete Hammerstein 

model, 

                     𝑦(𝑡) =
𝐵(𝑞)

𝐴(𝑞)
∑ 𝛽𝑢𝑘(𝑡) + 𝑣(𝑡)𝑚

𝑘=1                       

(9) 

1) Hammerstein Model Estimation-  

In this work, a second order polynomial function is used 

as static nonlinearity. The values of nonlinear function 

coefficients obtained by trial and error method for all study 

conditions are: 𝛽1=1 and 𝛽1=2. 

For linear dynamic function, Akaike Information Criteria 
is used for optimum order selection. Here the selected order 
range is: model transfer function denominator & numerator 
order (𝑛𝑓 & 𝑛𝑏) from 1 to 20 and system delay (d) from 0 to 

10. The optimum order values obtained for different study 
conditions are given as: 
   Fast Flexion- 𝑛𝑓 = 4, 𝑛𝑏 = 12 and d = 2; 

   Fast Extension- 𝑛𝑓 = 5, 𝑛𝑏 = 14 and d = 0; 

   Slow Flexion- 𝑛𝑓 = 5, 𝑛𝑏 = 15 and d = 0; 

   Slow Extension- 𝑛𝑓 = 10, 𝑛𝑏 = 19 and d = 8. 

 

 RMSE values obtained for different study conditions 
when estimation data set (signals used for model estimation) is 
given to the sEMG-Angular Velocity model developed using 
Hammerstein system identification technique are: Fast 
Flexion- 0.09139, Fast Extension- 0.09505, Slow Flexion- 
0.09797 and Slow Extension- 0.08685. 

 

2) Hammerstein Model Validation- 

 RMSE values obtained when validation data set (different 
signals) is given to the sEMG-Angular Velocity model 
developed using Hammerstein system identification technique 
are: Fast Flexion- 0.13970, Fast Extension- 0.14149, Slow 
Flexion- 0.11436 and Slow Extension- 0.1903. 

IV. RESULTS 

The comparison between performance ARX model and 
Hammerstein model for different study cases are discussed in 
this section. 

TABLE 1. Comparison between ARX and Hammerstein models 

 

sEMG-Angular Velocity Model 

 

ARX Model 
Hammerstein 

Model 

Cases RMSE 

Fast Flexion 

Estimation 0.09655 0.09139 

Validation 0.15282 0.13970 

Fast Extension 

Estimation 0.11552 0.09505 

Validation 0.15139 0.14149 

Slow Flexion 

Estimation 0.117059 0.09797 

Validation 0.141825 0.11436 

Slow 

Extension 

Estimation 0.12369 0.08685 

Validation 0.2243 0.1903 

For all the four conditions RMSE values of Hammerstein 
model is less than that of ARX model which is shown in 
Table1. 

Case 1: Fast Flexion 

 
 

Fig.3. Fast Flexion model response. Upper Panel: Estimation Part. Lower 
Panel: Validation Part. 

 

The responses of ARX model and Hammerstein model for 
Fast Flexion condition are shown in Fig.3. Here upper panel 
shows the response when estimation input set is given to the 
models and lower panel when validation input set is given. 
Here white signal represents actual response (i.e., measured 
angular velocity values); red signal represents ARX model 
response and green Hammerstein model response.  
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Case 2: Fast Extension 

 
Fig.4. Fast Extension model response. Upper Panel: Estimation Part. Lower 

Panel: Validation Part. 

Fig.4 shows the responses of ARX model and 

Hammerstein model for Fast Extension condition, where 

upper panel shows estimation part response and lower panel 

shows validation part response. Here white signal represents 

actual response; red signal ARX model response and green 

Hammerstein model response. 

Case 3: Slow Flexion 

 

 
 

Fig.5. Slow Flexion model response. Upper Panel: Estimation Part. Lower 
Panel: Validation Part. 

     Fig.5 shows the responses of ARX model and 

Hammerstein model for slow flexion condition. Here white 

signal represents actual response; red signal ARX model 

response and green Hammerstein model response. 

 

 

 

 

 

 

 

 

 

 

Case 4: Slow Extension 

Similarly, Fig.6 shows the responses of ARX model and 

Hammerstein model for slow flexion condition. 

 
Fig.6. Slow Extension model response. Upper Panel: Estimation Part. Lower 

Panel: Validation Part. 

V. CONCLUSION 

In this paper, a mathematical model relating sEMG 

signals measured over biceps and triceps muscles and angular 

velocity of motion of fore-arm are developed using two 

system identification models: a linear parametric model 

(ARX model) and a nonlinear Hammerstein model. From 

results shown in Tables 1, it can be concluded that RMSE 

(root mean square error) values obtained for all the four study 

conditions, i.e. fast flexion, fast extension, slow flexion and 

slow extension based on Hammerstein model are less when 

compared to the linear ARX model. 
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