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Abstract 
Biotin limitation plays a key role in production of L-glutamic acid by fermentation whereas the biomass 

concentration also shows plausible effects. Monod and logistic equations were modified by incorporating the 

specific biotin concentration term. The growth data were found to be satisfactorily simulated with the logistic 

model and the modified form of Monod and logistic models. Whereas, Monod equation itself was not able to 

explain the growth pattern. Broader applications of graphical representation and statistical estimates were also 

shown  in support of modeling.  
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1. Introduction 
 

L-glutamic acid (LGA) is commercially one of the most important amino acids. Monosodium glutamate (MSG), 

the sodium salt of LGA is widely used as a flavor enhancer throughout the world [1]. As per a recent report, the 

annual production level is more than 2 million tons [2] and the demand is increasing by about 6% per annum 

[3].  

  Biotin is used as a growth factor and its optimized supply and/or addition of penicillin or treatment 

with various surfactants are must for efficient production of LGA during fermentation. Inhibition of the growth 

of LGA-producing bacteria (i.e. Corynebacterium glutamicum) by the substrate at higher concentrations and by 

the product at almost all concentrations was observed and growth data were defined by product inhibition model 

proposed by Khan et al. [4].   

  Presently, the batch and fed-batch fermentation processes are commonly used for the commercial 

production of LGA. The growing market has led to the demand for improvement in bioprocess technology. 

Modeling and simulation are the important steps leading towards process development.   

  The logistic model describes the characteristic sigmoidal curve of biomass growth:   

max

max

1
dX X

X
dt X


 

  
 

                                                    (1) 

 Monod’s model correlates the growth to substrate concentration:  

   
max .
S

SdX
X

dt K S





                                                                    (2) 

where, max and KS can be determined by appropriate linearization of the equation according to Lineweaver–

Burk plot or Eadie-Hofstee plot.  

  The logistic equation (1) was modified by Bona and Moser [5] in bio(logistic) form as:  

 min
max . . 1 *

bdX
X L

dt b


 
  

 
                                                 (3)  

where, L is a retardation term for lag phase. 

  The Monod-type growth model was modified by Yamashita et al [6] and used in the following form: 
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                                        (4)   

Here, b is the specific biotin concentration, defined as b = A0/X  and  bmin = A0/Xmax ,where A0 is the initial biotin 

concentration and Xmax is the maximum cell concentration.    

  Bona and Moser [5] used four different expressions for the lag phase term L as given by Pirt [6] i.e. 

( )LL t t  , Bergter-Knorre [8] i.e. 
/

(1 )Lt t
L e


  , and their own arc tangent and hyperbolic tangent 

functions i.e. { tan[( ) 10 ]/ 0.5}n

LL a t t      and {[tanh( ) ] 1}/ 2LL t t n    , respectively; with 

the models (3) and (4) and found good agreement of the model predictions with experimental data for growth of 

the cells. 

  In the present study, the Monod and logistic equations have been further modified and satisfactorily 

used for explaining the growth of Corynebacterium glutamicum. Attempts have also been made to simulate the 

data with Monod and logistic equations in their original forms. The paper also deals with the estimation of 

model parameters using nonlinear regression technique [9]. The modeling and simulation have been explained 

graphically as well as statistically.   

 

2. Materials and Methods 
 

2.1. Microorganisms and Inoculum 
  

Corynebacterium glutamicum MTCC 2745 supplied by the Microbial Type Culture Collection Imtech 

Chandigarh, India was used in the present study. Inoculum (seed culture) was prepared by transferring cells 

from agar slant into 500 mL Erlenmeyer shake flask containing 50 mL of the culture medium. 

 

2.2  Agar Slant and Seed Culture Medium 
  

The constitution of the medium for preparing agar slant in gl
-1

: beef extract, 1.0; yeast extract, 2.0; peptone, 5.0; 

sodium chloride, 5.0 and agar, 15.0. pH was kept at 7.0 and incubated at 30 
0
C  for at least three days depending 

upon the growth of the culture. The slants were preserved at 4 
0
C, and subcultured twice a month.                                                             

  Seed culture medium was used with the composition (gl
-1

): glucose, 50; urea, 5.0; corn steep liquor 

(CSL), 5 mll
-1

 , K2HPO4, 1.0; KH2PO4, 1.0; MgSO4 7H2O, 0.4; FeSO4 7H2O, 0.01; MnSO4 H2O, 0.01; biotin, 

5.0 gl
-1

 and thiamin HCl (vitamin B1), 80 gl
-1

. Biotin, thiamin-HCl and urea were sterilized by membrane 

filter (0.2m, Schleicher & Schull, Germany) whereas glucose and minerals were sterilized separately by 

autoclaving at 15 psi (121 
0
C) for 15 min. All components were mixed together aseptically. The initial pH was 

adjusted to 7.0 with potassium hydroxide and hydrochloric acid. The culture was incubated and shaken at 30 
0
C 

for 18 h in an orbital shaking incubator (CIS-24, Remi, India) at 120 rpm before transferring to the production 

medium.  

 

2.3 Fermentation (Production) Medium  
  

The composition of the production medium was same as the seed culture medium except that no corn steep 

liquor was used; urea and biotin concentrations were 8 g/l and 1 g/l, respectively. Temperature, pH and 

sterilization conditions were also the same. Batch fermentation was carried out for 36 hours in a 2l bioreactor 

(Biostat M, B. Braun, Germany) with a working volume of 1.8l and a stirring speed of 250 rpm was maintained. 

The fermentation medium was inoculated with 2% of inoculum. pH and foaming were controlled with 25% of 

ammonia solution and 10% of commercial antifoam, respectively. Dissolved oxygen tension was kept at 30% of 

air saturation. Samples were withdrawn from the bioreactor at every two hours and used for analysis of cell, 

glucose and LGA concentrations.   

 

2.4 Separation of Biomass (cells)   
  

Cells were separated from rest of the broth by using a table top centrifuge (R-24, Remi, India) at 10,000 rpm for 

5 min. The clear supernatant was carefully decanted from the centrifuge tubes for analysis of sugar and            

L-glutamic acid. 
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2.5. Analytical Methods 
 

2.5.1. Estimation of Cells 

 

Bacterial growth was estimated by measuring the optical densities (absorbance) at 610 nm with the help of a 

spectrophotometer (Lambda 35, Perkin Elmer, USA) between the absorbance 0.20.9 with the Beer’s law being 

followed. Whenever required the samples were diluted with double distilled water for attainment of desired 

range of absorbance. For estimation of cell dry weight (CDW), known volume of the sample with known 

absorbance was filtered by a filtration membrane (0.45m, Millipore, USA). Retained biomass was washed 

twice with double distilled water, and thereafter dried in an oven at 110 
0
C for 8 hours [10]. The differential 

weight of the membrane gives the dry weight of the cells. A standard graph was plotted for cell dry weight 

versus absorbance for further estimation of CDW. 

 

2.5.2 Estimation of Glucose and L-glutamic Acid 

 

Glucose was estimated by DNS method [11] while LGA was estimated by copper complex method [12] as also 

discussed in EICA [13]. All the results were reported as the average of three sets of experiments.   

 

3. Results and Discussions 
 

3.1 Models Used 
 

In view of the very small lag phase observed during the course of experiments, the logistic equation (1) and the 

Monod equation (2) have been used in their original forms. In order to reflect the effect of biotin concentration, 

these two equations have been further modified. The logistic equation (1) is modified as: 

   min
max . 1

bdX
X

dt b


 
  

 
  (5) 

 Whereas the Monod equation (2) is modified as:  

   min
max

min

( )
.

( )b

b bdX
X

dt K b b





 
  (6) 

There is no retardation term L used in the above equations for the lag phase.  

  The values of experimental data and the optimized kinetic parameters are given in      Table 1. The 

validity of the models and accuracy of the optimized model parameters have been shown by graphs (Figures 1 to 

6) with statistical error estimates (Tables 2 to 5).  

 

3.2 Assumptions Made 
 

(i) The model (1) was used with the assumption that biotin, glucose and other components in the 

medium are sufficiently available and the growth is controlled by the cell concentration itself.    

(ii) While using the model (2), it was assumed that the growth is limited by the substrate (glucose). 

(iii) Models (5) and (6) were used with the assumption that initial biotin concentration (A0) was 

absorbed immediately after inoculation. During growth phase the mother cell divide and transfer 

biotin to the daughter cells for acceptance of the specific biotin concentration [6].    

 

3.2 Estimation of Model Parameters 
  

The optimal values of the parameters of all the models used are estimated separately by nonlinear regression 

technique [9] with the help of computer programmes [14, 15]. Model predictions for the differential equations 

were calculated by a software package “Polymath” version 5.1 (CACHE Corpn., USA) using the method 

RKF45. The optimization programme for direct search of the minimum of a function was based on the original 

method of Rosenbrock [16]. For minimizing the difference between the model generated values and the 

corresponding experimental data, various error estimates were calculated as used by different researchers [15, 

17, 18]. These include the criterion of the minimization of the weighted sum of squares of residues, SSWR; the 

mean standard deviation, j



 ; the variance of error of residues, jS ; an error statistic,  ; and the root mean 

square error, RMSE. The weighted sum of squares of residues is defined as: 
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1 1

n m
ij

i j j

SSWR
w 


                                           (6) 

Where, n and m denote the number of experimental data points and the number of process variables, 

respectively. 
jw  is the maximal weight of the variable and 

ij  represents  the difference between model and 

experimental value of the jth variable in the ith  experimental point.  

  The method recommended by Bard [9] was used for the evaluation of the degree of reliability of 

hypothesis concerned with each model pertaining to the growth of Corynebacterium glutamicum in L-glutamic 

acid fermentation. The hypothesis, whether the estimate of parameters guarantees the zero mean deviation of the 

model and experimental data was tested. The mean standard deviation ( j



 ) of the variable was calculated as 

follows:  

j



  = 

1

1 n

ij

in 

                   j  =  1, m                            (7) 

 The variance of the error of residues ( jS ) was further estimated: 

2

1

1
( ) ;

1

n

jj ij

i

S
n





  

              j  =  1, m                           (8)                     

 The value of the statistic   defined as 

 

2

1

( )

( 1)

m
j

j j

n m n

n m s










                                                              (9) 

  The statistic   can be calculated by using Eqs. (8) and (9). It has the mF , n–m  distribution and is used to 

find out the statistical adequacy for  the acceptance of the model.  

  The root mean square error (RMSE), the commonly used estimate [19] to check the validity of the 

model for single variable can be determined as: 

 RMSE =  
2

1

1
(Observed - Modelled)

n

in 

  (10) 

 Closer the values of SSWR, jS  and RMSE to zero, the better are the estimates of the model parameters.  

 

Table 1. Parameters for dynamic simulation
a
 

Experimental data Optimized parameters 

X0 = 0.164 gl
-1

 P = 0.00 gl
-1

 YX/S  = 0.150 gg
-1

 µmax = 0.21 h
-1

 

S0  = 49.87 gl
-1

 Pmax = 11.952 gl
-1

 YP/S  = 0.4825 gg
-1

 Kb = 0.25 µgg
-1

 CDW 

Xmax = 3.88 gl
-1

 A0 = 1.0 µgl
-1

 YP/X  = 3.216 gg
-1

 L = 1.0 

 a) Values of yield coefficients were directly calculated from the experimental data applying the macroscopic 

approach. 

  

  Figure 1 represents the agreement of the logistic model with the experimental data. Product-inhibition 

plausibly occurs with substrate repression in L-glutamic acid fermentation [4, 20]. Since the substrate 

concentration (50 gl
-1

) used in the present work is lower than 100 gl
-1

 used by Bona and Moser [20], the 

substrate-repression may be neglected and product-inhibition may be thought of dominating. Cell growth and 

product formation in such situations are interrelated. Complete growth-inhibition occurs at Pmax, and 

consequently at Xmax .  At Pmax, the growth rate was found to be zero [4]. In other words the growth rate is zero at 

Xmax as evident from the logistic Eq. (1). The validity of model has also been proven for µmax = 0.21 h
-1

 with 

statistic   = 0.106 as given in Table 2. The value of    is lower than the value obtained for 1,18F  in the F-table 

for 99% confidence level. The accuracy of the optimized value of  µmax was also tested by varying it. It is shown 

graphically (Figure 1) as well as statistically (Table 2).  
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Table 2. Values of kinetic parameters and the error estimates for model Eq. (1) . 

Model  Parametric value 
jS    RMSE Figure 

 

(1) 

µmax = 0.19 h
-1

 0.013 31.231 0.189  

1 µmax = 0.21 h
-1

 0.004 0.106 0.062 

µmax = 0.25 h
-1

 0.039 29.403 0.313 

  

  Figures 2 and 3 show comparison of Monod’s model with the experimental data. In Figure 2, the graph 

with  µmax = 0.21 h
-1

 and  KS = 0.8 g/L,  appear to follow Monod’s kinetics initially and then deviates 

considerably as the time passes. This may be due to the accumulation of product which inhibits the growth [4]. 

The values of
jS ,   and RMSE as given in Table 3 are  

 

Table 3. Values of kinetic parameters and the error estimates for model Euation (2). 

Model with parameters Parameters varied 
jS    RMSE Figure 

(2) 

KS = 0.8 g/L 

µmax = 0.07 h
-1

 0.850 50.400 1.745  

2 µmax = 0.089 h
-1

 0.522 39.013 1.252 

µmax = 0.21 h
-1

 3.808 28.132 3.041 

(2) 

µmax = 0.21 h
-1

 

KS = 0.8 g/L 3.810 28.132 3.041  

3 KS = 10 g/L 3.51 16.190 2.910 

KS = 20 g/L 2.83 6.910 2.330 

 

considerably very high for all deviations. As a result, it is proved graphically as well as statistically that the 

growth of C. glutamicum in LGA fermentation does not follow Monod kinetics.  

  Figure 4 demonstrates the growth kinetics according to the modified form of logistic Equation (5). The 

graph shows that the data has good agreement with the model for  µmax = 0.21, where as the deviation from this 

value also shows deviation from the model. This is the optimized value of model parameter which have also got 

the least values of jS ,   and RMSE  in    Table 4 . This has more than 99% confidence level for its validity in 

the F-distribution table. 

  

Table 4. Values of kinetic parameters and the error estimates for model Equation (5). 

Model Eq. Parameters varied  
jS    RMSE Figure 

 

(5) 

 

µmax = 0.19 h
-1

 0.012 31.231 0.189  

4 µmax = 0.21 h
-1

 0.004 0.106 0.062 

µmax = 0.25  h
-1

 0.039 29.403 0.313 

 

  Figures  5 and 6 represent the plot of simulation according to the modified form of Monod  Equation 

(6) under biotin limitation, with variation of µmax and Kb, respectively. All figures show good agreement of the 

model for the experimental data with optimized values of kinetic parameters i.e. µmax = 0.21 h
-1

 and Kb = 0.25 

g/g CDW. The values of jS ,   and RMSE are also the least as shown in Table 5 as compared to the 

deviations.  

 

Table 5. Values of kinetic parameters and the error estimates for model Eq. (6). 

Model with parameters Parametric variation 
jS    RMSE Figure 

 

(4) 

Kb = 0.25 g/g CDW 

µmax = 0.19 h
-1

 0.012 28.774 0.176  

5 µmax = 0.21 h
-1

 0.004 1.271 0.070 

µmax = 0.25 h
-1

 0.041 30.770 0.328 

 

(4) 

µmax = 0.21 h
-1

 

Kb = 0.20 g/g CDW 0.015 13.220 0.162  

6 Kb = 0.25 g/g CDW 0.004 1.271 0.070 

Kb = 0.30 g/g CDW  0.008 26.324 0.085 

 

The values of    for all optimized kinetic parameters fall below the value of 1,18F  in the F-table for 99% 

confidence level. 
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4. Conclusion 
 

The optimized values of kinetic parameters in the models (1), (5) and (6) are numerically same. The values of 

  in all the three cases are very small as compared to the values of 
1,18F  obtained from the F-table for 99% 

confidence. This establishes the validity of the model. The variation of the model parameters around their 

optimized values is quite high as compared to the values for 
1,18F  in the F-table for 95% and 99% confidence 

levels. This establishes the accuracy of the values of optimized parameters. Therefore, it may be concluded that 

the growth of Corynebacterium glutamicum in L-glutamic acid fermentation may be modeled and simulated 

well with the logistic model (1), modified form of logistic model (5) and modified form of Monod model (6). 

The Monod model (2) alone is not able to represent the growth kinetics of Corynebacterium glutamicum in       

L-glutamic acid fermentation. This inability of the model may be attributed to the inhibitory effect of the 

product (L-glutamic acid) concentration towards growth.   

       

 

Nomenclature 
b   Specific biotin concentration  (µgg

-1
 CDW)   

bmin   Minimum specific biotin concentration (µgg
-1

 CDW)                                       

exp Experimental 

F   F-distribution  

Kb Monod constant for specific biotin concentration (µgg
-1

 CDW)   

S Substrate concentration (gl
-1

) 

S0 Initial substrate concentration (gl
-1

) 

Sim Simulated 

t  Time (h) 

tL Lag time (h) 

X Biomass (cell) concentration (gl
-1

) 

X0   Initial biomass concentration (gl
-1

) 

/dX dt  Biomass (cell) growth rate (gl
-1

h
-1

) 

YX/S   Yield coefficient (biomass from substrate) (gg
-1

) 

i   Experimental data points, 1 to n 

j   Process variables, 1 to m 

µ  Specific growth rate (h
-1

) 

 Dimensionless number, numerical value = 3.14   
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Figure 2. Simulation of the growth data with the model Eq. (2) for different values of max,  

where KS = 0.8 g/L.  
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Figure 1. Simulation of the growth data according to the model Eq. (1) with variation  

of max.  

max = 0.19 h
-1

 

max = 0.21 h
-1

 

max = 0.25 h
-1
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Figure 3. Simulation of the growth data according to the model Eq. (2) with variation of 

KS, where max = 0.21 h
-1

.  
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Figure 4. Simulation of the growth data according to the model Eq. (5) for different 

values of max. 
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Figure 5. Simulation of the growth data with the model Eq. (6) for different values 

 of max, where Kb = 0.25 g/g CDW. 
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Figure 6. Simulation of the growth data according to the model Eq. (6) for different 

values of Kb, where max = 0.21 h
-1

. 

Kb = 0.2 g/g CDW 

Kb = 0.25 g/g CDW 

Kb = 0.3 g/g CDW 
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