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 Abstract
 
-
 
Micro-Electro-Mechanical Systems, or MEMS, is 

a technology of very small scale devices. The dimensions of 

MEMS can vary from below one micron to several 

millimeters. MEMS have some mechanical functionalities 

such as the moving plate of a parallel plate capacitor 

(memcapacitor). 

 

MEMS researchers and developers have 

demonstrated an extremely large number of microsensors for 

almost every possible sensing modality including temperature, 

pressure, inertial forces, and chemical species. The equation 

of motion of the moving plate of a memcapacitor is governed 

by a non-linear differential equation with no known exact 

solution. Most research into determining the theoretical 

response of a memcapacitor to a time varying voltage, was 

done for the steady-state case. Non-linearity of the 

displacement of the plate in a memcapacitor presents a 

challenge in determining the plate’s position and capacitive 

detection.

 

This paper presents an analytical closed form 

solution to the non-linear differential equation, without the 

steady state assumption for

 

an

 

Impulse

 

input,

 

and an 

approximate solution for a

 

step, ramp, and sinusoidal inputs.

 
 Keywords—

 
ApproximateSolution, 

CapacitiveDetection, Memcapacitor.  

 

 I.  INTRODUCTION
 

       Many MEMS
 

devices
 

are electrostatic-driven 

such as capacitive pressure sensors[1], comb drives
 [2], RF switches [3], and inkjet printer head [4].

 Electrostatic
 
actuators are prevalent in Micro-Electro-

Mechanical systems (MEMS)
 

since they are 

compatible with microfabrication technology, have a 

low power consumption, and the electrostatic forces 

are large enough to drive a micro-motor. Electro
 
-
 static actuatorscan be

 

 

 
 

 

 

 

 

 

José Mireles García
4

 

Professor,Universidad Autonoma de Ciudad 

JuárezCiudad Juárez, Chihuahua, Mexico.

 
 

 

 

produced using the same micromachining technology 

that was developed for producing microelectronic 

systems [5], [6]. 

 

Due to the non-linear nature of some electrostatic 

forces, the electromechanical response of many 

electrostatic actuators is non-linear and their stable 

range may be limited by the pull-in-stability. The 

motion of the flexible plate of a MEMS device is 

governed by asecond order non-linear differential 

equation. There is no known general solution for that 

equation. However, with some approximations we 

can get anapproximate analytical solution that will 

reveal the characteristics of the solution for different 

inputs such as pulse, step, ramp and sinusoidal.  

 

This paper has four parts, one for each input, the 

pulse ( )t , the step ( )u t , the ramp t , and the sinusoid 

sin( ).wt  In each part, we discuss the analytical 

approximation of the characteristic differential 

equation for each input and then compare it with its 

numerical (MATLAB) solution. 

 

II. CHARACTERISTIC DIFFERENTIAL 

EQUATION OF A NON-FRINGING MEMS AND 

AN IMPULSE RESPONSE 

 

In this section the impulse response of a MEMS is 

analyzed. As a simple model, consider the MEMS 

shown in Fig.1. 

 

 
 

Fig.1. MEMS model. 
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The MEMS device under examination consists of a 

top electrode of mass m and area A

 

suspended from a 

linear spring with stiffness k

 

and a bottom fixed 

electrically grounded electrode. The initial separation 

of the electrodes is d. When a voltage is applied 

across the plates, the electric force applied on the top 

electrode pulls it towards the bottom electrode, once 

the electrode is displaced, an elastic recovery force by 

the spring tends to pull the upper plate back towards 

its original position

 

as shown in Fig.2.

 

[7].

 
 

 
 

Fig.2. Free body diagram of the top electrode.

 

 

 
The forces acting on the top electrode are:

 
The

 

damping force,

 
( )

d c

dy t
F d

dt
     (1)

 the

 

spring force,

 

 
( )sF ky t     (2)

 

 

 

and the electrostatic force,

 

 
2
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d y t
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
 

(3)

 

 
Where 𝑦 𝑡 is the displacement, A is the area of the 

upper plate,𝑑𝑐 is the damping coefficient,
0
 is

 

the 

permittivity of free space,

 

and 𝑉𝑠

 

is the input voltage. 

Applying the first principle of dynamics,

 

 
F ma

 
we get 
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0

22
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The displacement𝑦 𝑡 

 

depends on the value of the 

applied voltage. To avoid collapsing the two 

electrodes, the maximum distance that the upper plate 

can travel is[7]. 

3

d
y  (5) 

and that corresponds to the pull-in-voltage  
 

3

0

8

27
s

kd
V

A
 (6) 

 

Any voltage above the pull-in-value will cause the 

collapse of the two electrodes. 

 

 

If 
s

V is assumed to be a very narrow pulse,i.e. 

s
V = ( )t , equation (4) becomes: 

 

 
22

0

2 2

( ) ( ) ( )
( )

2( ( ))
c

d y t dy t A t
m d ky t
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 
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 (7) 

which has the exact solution  
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22
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A d

y t t c t
md c m
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where  

2

1

2

c
d k

c
m m

 
 
 
 

. 

 

With parameters for the MEMS device provided by 

the Universidad Autonoma de Ciudad Juarez, MX, 

which are parameters used in a design using 

SUMMIT-V technology and considering a vacuum 

level of 
5

1x10


 Torr, namely, 

 

0

2

12

6

4

6

8

8.854 x10 F / m

5 x10 m
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10 Kg / s

2 x10 Kg

9 x10 m

c
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A
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
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the pull-in-voltage becomes 3.811 V.Two plots of 

equation (8) for different impulse inputs (very narrow 

pulses with peaks of 1 and 0.033) are shown in Figs3 

and 4 respectively.  
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Fig.3. Impulse response with pulse 

( )sV t V. 

 

 

 
Fig.4.Impulse response with pulse 

0.033 ( )sV t V. 

 

The result in Fig.3 shows that there is overshooting 

caused by the electrostatic force due to the application 

of an impulse with magnitude 1 V which is less than 

the pull-in-voltage. That is, the system will overshoot 

if the voltage is ramped to its nominal value rapidly 

and the electrodes may collapse. Figure 4 shows that 

the system will not overshoot with a magnitude of 

0.033V.To avoid overshooting caused by the 

electrostatic force, the voltage should ramp up to its 

nominal value slowly or the structure should be 

heavily damped [7]. 

 

 

III. STEP INPUT RESPONSE AND ANALYSIS 

      In this section the step response is analyzed and 

an approximate closed form solution for the 

displacement y 

isobtained. Let𝑉𝑠 = 𝐵𝑢(𝑡),the step input with a 

magnitudeB, then (4) becomes 
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with ( ) dy t  for all t, we have 
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For a step input, ( )y t is an increasing function of 

time.The minimum value of ( )y t is 0, and the 

maximum value is the steady state value. The steady 

state value is obtained by solving (7) under steady 

state conditions that is solving [8] 
2

0

2
( )

2( ( ))

BA
ky t

d y t





(11) 

 

With thegiven parameters of the MEMS device,andB 

=1,(11)yields three solutions, which are

1

6
4.465x10y


 ,

2

8
5.207 x10y


  and

6

3 5.482 x10y


 . Solution 
3y d is not a physical 

solution, and by (5) solution
1

3

d
y  is not a stable 

solution, since for that value of y the two plates 

collapse, thus the only stable solution is 

2

8
5.207 x10y


 . 

Thus 
miny 0and

max

8
5.207 x10y




substitutingin(10)weget, 
 

 
2 6 8

1 2
1

1

0 for 0
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y
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d

y

y
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In either case the value obtained is too small 

compared with  
 

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080169

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

227



 

 

8

1 for 0
2 ( )

1

1.0208 for 5.207 x10

y
y t

d
y





 




 
 

  


 

 

 

Therefore, 

 
2 2

0

2

0

2
2

2
1

2

2
1 ( 1)

2

n

n
n

B A B y

d d

A y y
n

d d d

 



 
   
     

  


 

 

Thus (7) simplifies to 
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the solution of (12) is  
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Figs 5 and6 show the numerical (MATLAB) and   

analytical solutions respectively. 

 
 

 

 

 
 

 
 

The percentage error between the two analyses is 

%0 .  

Figs7 and 8 show the comparison between the 

numerical (MATLAB) and analytical solutions for 

inputs 2 ( )sV u t and 3 ( )sV u t respectively. The 

percent errors obtained were 0.6% and 

4.6%respectively. 

 

 

 
 

 

Fig.5. Numerical (MATLAB) solution 

with ( ) .sV u t  

Fig.6. Analytical solution  

with ( ) .sV u t  

Fig.7. Numerical (MATLAB) and Analytical   

solutions with  2 ( ) .sV u t  
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Since the electrostatic force is an increasing function 

of the voltage applied, the higher the voltage the 

larger the force and the longer the displacement of the 

plate. The error between the actual value of the 

displacement and the approximate one becomes larger 

but constant. At a voltage poV V , the pull-in voltage, 

the error found was 28%. However for all step inputs 

the transient part of the response is accurate enough to 

be used along with the steady state solution found by 

[8] and [9]. 

 

 

IV.RAMP INPUT RESPONSE AND ANALYSIS 

 

In the previous section, we discussed the response of 

a MEMS to a step input. Since the steady state value 

was independent of time or pulse width, we found out 

that the position of the moving plate could be 

determined with a high degree of closeness to the 

numerical (MATLAB) value. In the case of a ramp 

input, the final position of the plate depends on the 

pulse width. If ( )sV t t , then (4) becomes 
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With (0) 0, '(0) 0y y  , and B = 1, we can obtain 

the ramp response by integrating (13) twice to obtain  
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Figs9, 10, and 11 show a comparison between the 

analytical and numerical solutions for (14) with pulse 

widths of 1, 2, and 3 s respectively. The percentage 

error between the two analyses wereapproximately 

%, 6%,0 and 20% respectively. 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

Fig.8. Numerical (MATLAB) and Analytical    

solutions with  3 ( ).sV u t  

 

Fig.9. Numerical and Analytical    

 solutions with  .sV t  

                   Error = 0 % 

 

 

Fig.10. Numerical and Analytical 

solutions with  .sV t  

Error = 6 % 
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The analysis of a ramp input showed that the 

approximation done is impractical for 2.5t  . As 

shown in Fig.12,

 

at 2.5t  s

 

the error is 6% and 

increases rapidly to 20 % at 3t  s.

 

 
 

 

 

 

 

V. SINUSOIDAL INPUT RESPONSE AND 

ANALYSIS

 

 

In this section the sinusoidal response is analyzed and 

an approximate closed form solution for the 

displacement y

 

is obtained. Let ( ) sin( )s mV t V wt then (4) 

becomes
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side of (16) as a geometric 

serieswith 1mV  ,
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Since 0.0234 1 , then (15) reduces to 
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The solution to (17) is 
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Fig.11. Numerical and Analytical   

 

 

solutions with  .sV t

 

                 Error = 20 %

 

 

Fig.12. Percent Error between Numerical 

and Analytical solutions with  .sV t

 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 8, August - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS080169

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

230



 

 

 

 

 
where

 

 

   

    
    

    

2 2

1 0

2
2 2 2

2

1 2

1 1

2

1 1

1 1 1 1 1

1 1

/ 4

2 / 4 4

,
4

2

2

4 /

2 / 2

m

c

c c

c c

C A V d k

B kC d w k mw w d

A B k w

d k

m wd

M c a C A wB c

N C

d
c a

m m

A M

m



   

 

    

  

 





 

 
Figs 13 –

 

18 show the plots of the displacement y

 
with a sinusoidal inputs with different frequencies and 

amplitudes. 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

Fig.13. Numerical and Analytical 

 solutions with  sin(8000 )sV t .

 
              Error = 1%.

 

 

Fig.14. Numerical and Analytical 

 solutions with  sin(8 )sV t .

 
               Error = 2 %.

 
 

 

 

 

 

 

 

 

Fig.15. Numerical and Analytical  

solutions with  2sin(8000 )sV t . 

Error = 4 %. 
 

 

 

 

 

 

Fig.16. Numerical and Analytical  

solutions with  2sin(8 )sV t . 

Error = 8.7%. 

 

 

 

 

 

 

 

 

Fig.17. Numerical and Analytical  

solutions with  3sin(8000 )sV t . 

                    Error = 9 %. 
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For the low frequency inputs,the differences

 

between 

the numerical and analytical solutions were

 

higher 

than the high frequency inputs with the same peak-to-

peak values. For high frequency inputs the 

displacement yis smaller due to the more

 

frequent 

switching of the electrostatic force. Results show that 

for an input of almost 80% of the pull-in-voltage, the 

difference between the numerical and analytical 

values was less than 9% except for the case where the 

input was a sinusoidal with a frequency 4 Hz where 

the maximum difference was 22 %. 

 

 

For a low frequency input such as 4 Hz, the frequency 

of the electrostatic driving force is 8 Hz which is 

much smaller than

 
 

1
4.3453 kHz

2
MEMS

k
f

m
 

 

 

the natural frequency of the MEMS. That is the plate 

will travel a bigger distance than the case for higher 

frequencies. With larger values for y

 

at low 

frequencies, the approximation of the geometric series 

in y

 

with the first two terms will yield larger errors.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION

 

 

An approximate closed form solution to the non-

linear differential equation governing the motion of 

the upper plate of a MEMS device was derived for 

different input signals. Comparison between the 

approximate closed form and numerical solutions 

were made. We found that the differences between 

the solutions, numerical and analytical, with pull-in-

voltage of 3.81 V, were 0%, 0.6% and 4.6% for step 

inputs with magnitudes 1, 2 and 3 V respectively. For 

a ramp input, the differences were 0%, 6%, and 20% 

with pulse duration of 1, 2, and 3 seconds 

respectively. For the sinusoidal inputs of magnitudes 

1, 2, and 3 V, and a frequency of 4 KHz, the 

differences were 1%, 4% and 9% respectively, and 

2%, 8.7%, and 22% for a frequency of 4Hz. 
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Fig.17. Numerical and Analytical 

 

solutions with  3sin(8 )sV t .

 

Error = 22 %.
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