
Modified RR Algorithm with Dynamic Time

Quantum for Externally Prioritized Tasks

Lipika Datta
Computer Science and Engineering Department,

College of Engineering and Management Kolaghat

KTPP Township, West Bengal, India

Abstract—The objective of this paper is to modify Round Robin

scheduling for processes with user defined external priorities so

that the scheduling algorithm can be used to schedule processes

of soft real time systems. Simple Round Robin scheduling

algorithm and Priority scheduling algorithm, both have their

own drawbacks. In the paper a new scheduling algorithm is

introduced that will be appropriate for scheduling interactive

processes as well as will take into consideration the externally

defined priority of a process at the same time. It reduces the

average response time of the system and also variance in response

time to improve predictability of the system. Experimental

analysis reveals that the proposed algorithm gives better response

time and less number of context switches than some existing

algorithms useful for interactive systems.

Keywords— Operating System; Scheduling; Round Robin

Algorithm; Context switch; Response time; Variance in Response

time;

I. INTRODUCTION

In a multiprocessing and multitasking environment the scheduler

selects from among the processes in memory that are ready to

execute, and allocates the CPU to one of them. CPU scheduling

algorithm decides which of the processes in the Ready Queue (RQ) is

to be allocated to the CPU. First Come First Serve (FCFS), Shortest

Job First (SJF), Round Robin (RR), Priority scheduling algorithm and

Shortest Remaining Time Next (STRN) are some well known CPU

scheduling algorithms. Each of the algorithms has some advantages

and disadvantages. The selection of scheduling algorithm depends on

the workload and environment.

Ideally we want to maximize the CPU utilization and throughput and

minimize Average waiting time, average turnaround time and

response time. To guarantee that all users get good service, we try to

minimize the maximum response time. But this is not always

possible. Instead, we choose a scheduling algorithm based on its

ability to satisfy a policy.

 Minimize average response time - provide output to the

user as quickly as possible and process their input as soon

as it is received.

 Minimize variance of response time - in interactive

systems, predictability may be more important than a low

average with a high variance.

 Maximize throughput by minimizing overhead (OS

overhead, context switching) and by efficient use of system

resources (CPU, I/O devices)

 Minimize waiting time by giving each process the same

amount of time on the processor. This might actually

increase average response time.

In time-sharing (multi-tasking) systems, we try to minimize the
variance in the response time. Variance in response time is viewed as
more appropriate measure of the quality of service (predictability).
Minimum variance implies a higher quality of service. So
predictability is a dominant performance metric in real time systems
[1].

II. RELATED WORK

RR algorithm performs optimally in timeshared systems, but it is
not suitable for soft real time systems. Because it gives more number
of context switches, larger waiting time and larger response time.
Some researchers have already introduced some variations of RR
scheduling algorithm. But these algorithms have some limitations. In
[2] authors have proposed an algorithm in which according to the
given priority the CPU is allocated to the processes only once in RR
fashion for a given time quantum. Then processes are arranged in
increasing order of their remaining CPU burst time in the ready queue.
New priority is assigned to each process following the rule that lesser
the remaining burst time higher the priority. Then processes are
allocated CPU according to non-preemptive priority scheduling
algorithm. If this algorithm is used after first response from the system
user may have to wait long for next response. Fairness criteria is not
held. In [3] different time slices are calculated for different processes
based on three aspects: user defined priority, average CPU burst,
context switch avoidance time. An assumption is made on average
CPU burst. In [4] also different time slices are calculated for different
processes based on priority, shortest CPU burst time and context
switch avoidance time. In different rounds the time quantum for a
process goes on changing depending on the parameters i.e. the authors
have introduced dynamic time quantum. The authors only have taken
into consideration the processes with highest priority. Rest of the
processes’ priorities is ignored. In [5] the authors have introduced a
concept called intelligent time slicing which depends on priority and
context switch. The time slice is static. This algorithm is modified to
get different time slice values in different rounds for different
processes in [6]. It calculates the initial time slice for each process as
the previous algorithm [5] and in each round the time slices are
modified. In [7] the authors have made the priority and time slice for
a process dynamic by calculating the weighted mean values of time
quantums and priorities of the processes and considering the burst

time of the processes.

A. My contribution

In this paper, I have proposed an improved algorithm as compared to

the algorithm defined in [2],[3],[4],[5],[6] in terms of variance in

response time and number of context switch.

1379

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031225

B. Organization of paper

Section III presents the illustration of my proposed algorithm. In
section IV, Experimental results and its comparison with existing
algorithms is presented.

III. PROPOSED ALGORITHM

In my work the processes are allocated CPU according to their

priority defined by user. Static time being a limitation of RR

scheduling algorithm, in each round the time quantum is changed so

that processes with smaller remaining CPU bursts can have enough

time to complete their execution in that round.

The processes are arranged in the ready queue according to the

user defined priority, i.e. the process with highest priority will be
placed at the head of the ready queue. In the first round each process is
allocated the CPU in the order of their increasing priority for a fixed
time quantum. The processes which complete their execution within
the time quantum are removed from the ready queue. If new process
arrives in between it is placed in the ready queue in proper position
according to its priority. The average of the remaining burst times of
the existing processes is calculated and that is the time quantum for
the next round. This procedure continues until the ready queue
becomes empty.

1. Input: Process no, Burst time, Process priority, Original

time slice.

Output: Average response time, Variance in Response time,

Number of Context Switches

2. Initialize TQ= Original time slice, i=1

3. Sort the processes in the ready queue (RQ) according to

their priorities.

4. while (RQ!=NULL)

{

 if (i==1)

 allocate CPU to processes in the RQ according to

RR scheduling algorithm with time quantum TQ.

 else

 {

from RQ remove processes whose remaining

burst time == 0.

if new process arrives place it in proper position in

RQ according to its priority.

assign RT = sum of remaining burst times of

existing processes.

assign TQ = RT/m where m is number of processes

in RQ.

 Increment i by 1

 }

}

5. Calculate Average response time, variance in response

time, number of context switch.

 End

IV. EXPERIMENTAL RESULTS

A. Assumptions:

 Experiments are performed in single processor environment and on

independent processes. Original time slice is not more than maximum

burst time. All the parameters like number of processes, and burst

time, priority of all the processes are known before submitting the

processes to the processor. All processes are CPU bound and none

I/O bound. Context switching overhead is zero wile calculating

Average response time and variance in response time.

B. Data Set:

To compare the performance of the algorithm with the algorithms

described in [3] (SARTT) and [4] (PBDRR) 3 different data sets are

taken as the processes with burst time in increasing, decreasing and

random order respectively. For all the cases arrival time is considered

as 0 and original time slice is considered as 4 time unit. Again

comparison is done between algorithms introduced in [5] (MRR) and

[6] (TSPBRR) with a different set of data.

1) Same data set applied to SARTT, PBDRR AND

Proposed Algorithm:

a) Case 1: Processes with increasing Burst Time:

TABLE 1. Inputs for case 1

Process id Priority Burst time

P1 2 5

P2 3 12

P3 1 16

P4 4 21

P5 5 23

TABLE 2. Calculation of time quantum for proposed algorithm for

case 1

Process

id
Priority

Burst

Time

Remaining Burst Time after each round

1st
(TQ=4)

2nd
(TQ=12)

3rd
(TQ=6)

4th
(TQ=1)

P3 1 16 12 0 0 0

P1 2 5 1 0 0 0

P2 3 12 8 0 0 0

P4 4 21 17 5 0 0

P5 5 23 19 7 1 0

From Fig 1, Fig 2 and Fig 3 Average Response time, Variance in

Response Time and number of context switching can be calculated

for SARTT, PBDRR and the proposed algorithm for processes with

increasing burst time. Table 3 shows the comparison among the

algorithms.

Table 3. Comparison between algorithms for case 1

Algorithm
Average

Response Time

Variance in

Response
Time

No. of

Context
Switch

SARTT 9.2 40.56 19

PBDRR 6.8 49.71 16

Proposed

Algorithm
8 32 12

b) Case2: Processes with decreasing burst time:

TABLE 4. Inputs for case 2

Process id Priority Burst time

P1 2 31

P2 1 23

P3 4 16

P4 5 9

P5 3 1

1380

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031225

P1 P2 P3 P4 P5 P2 P3 P4 P5 P2 P3 P4 P5 P3 P4 P5 P4 P5 P4 P5

Figure1. Gantt chart for SARTT (case 1)

P1 P2 P3 P4 P5 P2 P3 P4 P5 P2 P3 P4 P5 P4 P5 P4 P5

Figure2. Gantt chart for PBDRR (case 1)

P3 P1 P2 P4 P5 P3 P1 P2 P4 P5 P4 P5 P5

0 4 8 12 16 20 32 33 41 53 65 70 76 77

Figure3. Gantt chart for Proposed Algorithm (case 1)

Table 5. Calculation of time quantum for proposed algorithm for

case 2

Process
id

Priority
Burst
Time

Remaining Burst Time after each round

1st

(TQ=4)

2nd

(TQ=16)

3rd

(TQ=7)

4th

(TQ=4)

P2 1 23 19 3 0 0

P1 2 31 27 11 4 0

P5 3 1 0 0 0 0

P3 4 16 12 0 0 0

P4 5 9 5 0 0 0

From Fig 4, Fig 5 and Fig 6 Average Response time, Variance in

Response Time and number of context switching can be calculated

for SARTT, PBDRR and the proposed algorithm for processes with

decreasing burst time. Table 6 shows the comparison among the

algorithms.

TABLE 6. Comparison between algorithms for case 2

Algorithm
Average

Response Time

Variance in

Response

Time

No. of

Context

Switch

SARTT 9.8 52.16 18

PBDRR 8.2 44.96 11

Proposed

Algorithm
6.8 19.76 11

c) Case 3:Processes with Random Burst Time:

TABLE 7. Inputs for case 3

Process id Priority Burst time

P1 3 11

P2 1 53

P3 2 8

P4 4 41

P5 5 20

Table 8. Calculation of time quantum for proposed algorithm for

case 3

Process id Priority
Burst

Time

Remaining Burst Time after each round

1st (TQ=4)
2nd

(TQ=23)

3rd

(TQ=2

0)

4th

(TQ=6

)

P2 1 53 49 26 6 0

P3 2 8 4 0 0 0

P1 3 11 7 0 0 0

P4 4 41 37 14 0 0

P5 5 20 16 0 0 0

From Fig 7, Fig 8 and Fig 9 Average Response time, Variance in

Response Time and number of context switching can be calculated

for SARTT, PBDRR and the proposed algorithm for processes with

random burst time. Table 9 shows the comparison among the

algorithms.

TABLE 9. Comparison between algorithms for case 3

Algorithm
Average

Response Time

Variance in

Response
Time

No. of

Context
Switch

SARTT 10.2 61.31 29

PBDRR 7 35.6 18

Proposed
Algorithm

8 32 12

2) Same data set applied to MRR, TSPBRR AND Proposed

Algorithm:
TABLE 10. Input data set

Process id Priority Burst time

P1 3 11

P2 1 53

P3 2 8

P4 4 41

P5 5 20

0 5 9 14 18 22 26 31 35 39 43 48 52 56 57 61 65 69 73 74 77

0 5 7 10 12 14 17 22 25 28 35 43 48 53 61 69 71 77

1381

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031225

P1 P2 P3 P4 P5 P1 P2 P3 P4 P1 P2 P3 P1 P2 P3 P1 P1 P1 P1

Figure4. Gantt chart for SARTT (case 2)

P1 P2 P3 P4 P5 P1 P2 P3 P4 P1 P2 P1

Figure5. Gantt chart for PBDRR (case 2)

P2 P1 P5 P3 P4 P2 P1 P3 P4 P2 P1 P1

0 4 8 9 13 17 33 49 61 66 69 76 80

Figure6. Gantt chart for Proposed Algorithm (case 2)

P1 P2 P3 P4 P5 P1 P2 P4 P5 P1 P2 P4 P5 P2 P4

0 4 9 17 21 26 30 35 39 44 47 52 50 61 66 70

P5 P2 P4 P2 P4 P2 P4 P2 P4 P2 P4 P2 P4 P2 P4

70 75 80 84 89 93 98 102 107 111 116 120 125 129 132 133

Figure7. Gantt chart for SARTT (case 3)

P1 P2 P3 P4 P5 P1 P2 P4 P5 P1 P2 P4 P5 P2 P4 P2 P4 P2 P4

0 2 5 13 15 20 23 28 31 41 47 55 60 65 77 85 103 115 122 133

Figure8. Gantt chart for PBDRR (case 3)

P2 P3 P1 P4 P5 P2 P3 P1 P4 P5 P2 P4 P2

0 4 8 12 16 20 43 47 54 77 93 113 127 133

Figure9. Gantt chart for Proposed Algorithm (case 3)

TABLE 11. Comparison between algorithms

Algorithm
Average

Response Time

Variance in

Response
Time

No. of

Context
Switch

MRR 16 139.6 11

TSPBRR 9.5 59.15 15

Proposed
Algorithm

10 50 9

Fig 10,Fig 11,Fig 12 graphically represents the performances

of the SARTT, PBDRR and proposed algorithms in terms of

Average Response Time, Variance in Response Time and

number of context switching. Fig 13 graphically represents the

performances of the MRR, TSPBRR and proposed algorithms

in terms of the same parameters.

Figure10. Analysis of performance among algorithms (case 1)

Figure11 .Analysis of performance among algorithms (case 2)

 0 4 10 15 20 21 25 31 36 40 44 50 55 59 64 65 69 73 77 80

0 2 8 13 18 19 22 34 45 49 54 59 80

1382

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031225

Figure12 .Analysis of performance among algorithms (case 3)

Figure13 .Analysis of performance among algorithms

CONCLUSION

From the above comparisons it can observed that the proposed
algorithm is better than some existing algorithms for real time task
scheduling in terms of variance in response time and number of
context switches. So the quality of service can improved and overhead
can be reduced. Thus memory space which is an important constraint
for embedded system applications can be saved. Deadlines of tasks
can be considered in future as a new parameter while calculating the

time quantum in each round.

REFERENCES

1. Shibshankar Halder, Alex Alagarsamy Aravind “Operating Systems”,
isbn=8131730220

2. Ishwari Singh Rajput, Deepa Gupta “A Priority based Round Robin

CPU Scheduling Algorithm for Real Time Systems”, International
Journal of Innovations in Engineering and Technology (IJIET) Vol. 1

Issue 3 Oct 2012
3. C.Yaashuwanth, Dr.R.Ramesh “A New Scheduling Algorithms for Real

Time Tasks”, International Journal of Computer Science and

Information Security, Vol. 6, No.2, 2009
4. Rakesh Mohanty , H. S. Behera , Khusbu Patwari , Monisha Dash , M.

Lakshmi Prasanna “Priority Based Dynamic Round Robin (PBDRR)

Algorithm with Intelligent Time Slice for Soft Real Time Systems”,
International Journal of Advanced Computer Science and

Applications,Vol. 2, No.2, February 2011

5. Yaashuwanth .C, Dr.R. Ramesh, “ Design of Real Time scheduler
simulator and Development of Modified Round Robin architecture”

IJCSNS International Journal of Computer Science and Network

Security, VOL.10 No.3, March 2010
6. Subasish Mohapatra, Subhadarshini Mohanty, K.Smruti Rekha,”

Analysis of Different Variants in Round Robin Algorithms for Load

Balancing in Cloud Computing, International Journal of Computer
Applications (0975 – 8887) Volume 69– No.22, May 2013

7. H.S.Behera, Sabyasachi Sahu, Sourav Kumar Bhoi, “Weighted Mean

Priority Based Scheduling for Interactive Systems” Journal of Global
Research in Computer Science, Volume 2, No. 5, May 2011

1383

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031225

