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Abstract 
We analyze here the structure of space-time singularities formed during the radial in-fall of a coherent stream of 

charged “photons”-a piece of the monopole radiating dyon metric. we study the nature of singularities which  

develop in the space time on the anti-de-sitter background. It is shown that the singularities formed in gravitational 

collapse of monopole-radiating dyon solution in anti-de-sitter background are not hidden inside the event horizon. 

It is also shown that final outcome of collapse depends sensitively on the electric and magnetic charge parameters. 

Further it is found that naked singularities are strong in Tripler’s sense. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2369

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110780



  
 

I  Introduction.   

          It would be interesting to investigate whether 

the singularity forming at the end of gravitational 

collapse is observable. There is an important 

conjecture related to the singularities known as cosmic 

censorship hypothesis (CCH) given by Penrose [1]. 

This states that the collapse of a physically reasonable 

initial data yields a space-time singularity which is 

always hidden behind the event horizon. It has two 

versions, i.e., weak and strong. According to the weak 

version, singularity formed by gravitational collapse is 

not visible to a far away observer. The strong cosmic 

censorship hypothesis states that the singularity cannot 

be observed even by an observer who is very close to 

it. Wald [2] discussed some examples to justify the 

validity of weak form of CCH. 

        When a massive star is on the verge of completing 

its nuclear cycle, then the thermonuclear reactions in 

the interior of the star cannot counter balance the 

immense gravitational pull of the star. Under most 

general conditions general relativity predicts that such 

a collapse must end in a singularity, which may or may 

not be clothed by an event horizon. A singularity may 

be physically described as a region in the space-time 

with extreme curvature, vanishing volume and 

unbounded gravitational forces. However, general 

relativity remains silent on the nature (BH or NS) or 

physical properties of such a singularity. This is 

basically due to the fact that mathematical structure 

breaks down preventing analysis at and beyond the 

singularity. This has triggered extensive research on 

Gravitational collapse during the past few decades. 

After all one would always like to know whether, and 

under what conditions gravitational collapse leads to 

the formation of a black hole (BH). A few decades 

back R. Penrose (1969) proposed the cosmic 

censorship hypothesis (CCH), which states that the 

singularities formed in gravitational collapse of 

physically reasonable matter cannot be seen by any 

distant observer in the universe. It implies that the 

singularities formed in asymptotically flat space-times 

are always bounded by event horizons and hence are 

destined to be black holes. With the announcement of 

this proposal, study of gravitational collapse has gained 

special importance, because one would always like to 

know that whether there exists any physical collapse 

solutions that lead to naked singularities (NS), which 

will serve as counterexamples of CCH [3]. Important 

cases of naked singularities analyzed so for include 

dust collapse [4-9], radiation collapse [10-17], collapse 

of perfect fluid [18,19] and strange quark matter [20-

21]. 

        A.Chamorro and K.S.Virbhadra have obtained an 

exact solution of the Einstein- Maxwell equations 

which are a magnetic charge generalization to the 

Bonnor-Vaidya solution and describe the gravitational 

and electromagnetic fields of a non-radiating massive 

radiating dyon [22]. The paper is based on the 

composite charges i.e. an electric charge and a 

magnetic charge bound together by their gravitational 

interaction. Hence it would be interesting to study the 

nature of the singularities formed in the gravitational 

collapse of such composite space-time [23]. In this 

paper, we study the Monopole-Radiating Dyon 

solution in anti-de-sitter space-time. We also show that 

gravitational constant does affect the nature of 

singularity. 

We conclude the paper in V section by some 

concluding remarks.   

 

II Monopole-Radiating Dyon Solution.  
 

The metric, which describes the gravitational field of 

non-rotating massive radiating 

dyon as found by Chamorro and Virbhadra [21] is        

𝑑𝑠2 = − 1 −
2𝑚(𝑢 ,𝑟)

𝑟
 𝑑𝑢2 + 2𝑑𝑢𝑑𝑟 +  𝑟2 𝑑𝜃2 +

𝑠𝑖𝑛2𝜃𝑑∅2 ,                                                                 (1) 

 Where  

   𝑚 𝑢, 𝑟 = 𝑓 𝑢 + 𝑔 𝑢, 𝑟 −
 𝑞𝑒

2 𝑢 +𝑞𝑚
2  𝑢  

2𝑟
−

𝛬𝑟3

3
   (2)                          

Here 𝑓(𝑢) is the standard Vaidya mass, 𝑔(𝑢, 𝑟) is 

monopole function,  𝑞𝑒(𝑢) and  𝑞𝑚 (𝑢)  are electric and 

magnetic charge parameters respectively. These 

parameters depend on the Eddington advanced time 

coordinate u. 

The model considered in this paper is obtained from an 

energy-momentum tensor of the form      

 𝐺𝑖
𝑘 = 𝑅𝑖

𝑘 −
1

2
𝑅𝑔𝑗

𝑘 = 8𝜋(𝐸𝑖
𝑘 + 𝑁𝑖

𝑘)                          (3)                                           

                 

Where 

        𝑥𝜇  =  𝑢, 𝑟, 𝜃, ∅ ,          𝜇 = 0, 1, 2, 3 . 
 

𝐸𝑖
𝑘  is related to the electromagnetic tensor 𝐹𝑘𝑖  in the 

familiar way 

                           

   𝐸𝑖
𝑘 =

1

4𝜋
 −𝐹𝑖𝑚𝐹

𝑘𝑚 +
1

4
𝑔𝑖
𝑘𝐹𝑚𝑛𝐹

𝑚𝑛                (4)                                                    

                𝑁𝑖
𝑘 = 𝑉𝑖𝑉

𝑘                                                  (5)                                                
is the energy-momentum tensor of the null fluid.  𝑉𝑘  is 

the null fluid current vector satisfying 𝑔𝑖𝑘𝑉
𝑖𝑉𝑘 = 0. 

Electric current vector  𝐽(𝑒)
𝑖   and magnetic current 

vector   𝐽(𝑚)
𝑖   are given by 

               
1

 −𝑔

𝜕

𝜕𝑥 𝑘
  −𝑔𝐹𝑖𝑘 = 4𝜋𝐽(𝑒)

𝑖            (6)                                                                            

                     
1

 −𝑔

𝜕

𝜕𝑥 𝑘
  −𝑔

ikF*
 = 4𝜋𝐽(𝑚)

𝑖              (7)                                                            

Where   ∗𝐹𝑖𝑘  is the dual of the electromagnetic field 

tensor 𝐹𝑖𝑘   and is given by 

   
ikF*

=
1

2 −𝑔
∈𝑖𝑘𝑙𝑚 𝐹𝑙𝑚                                 (8)                                                 

Where ∈𝑖𝑘𝑙𝑚  is the Levi-Civita tensor density. 

The non-vanishing components of the Einstein tensor 

for the above metric are given by 

            𝐺0
0 = 𝐺1

1 = −𝐺2
2 = −𝐺3

3 =
 𝑞𝑒

2 𝑢 +𝑞𝑚
2  𝑢  

𝑟4   ,   (9) 
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𝐺0
1 = 𝑘2 ,                                                          (10)                                           

Where 

                       𝑘2 =
2(𝑞𝑒𝑞𝑒 + 𝑞𝑚 𝑞𝑚 −𝑓 𝑟)

𝑟3                      (11)                                                           

Here the over dot denotes the derivative with respect to 

the retarded coordinate u. 

Energy-momentum tensor of the electromagnetic field 

and null fluids are given by 

  𝐸0
0 = 𝐸1

1 = −𝐸2
2 = −𝐸3

3 =
 𝑞𝑒

2 𝑢 +𝑞𝑚
2  𝑢  

8𝜋𝑟 4    ,           (12)    

                                                                                                                               

                                   𝑁0
1 =

𝑘2

8𝜋
                                           (13)                                                                               

 

III Nature of the Singularities in 

Monopole-Radiating Dyon Solution. 

 

           The physical solution is for < 0 , the space-time 

becomes flat with 𝑓 𝑢 = 0,   
𝑞𝑒 𝑢 = 0,  𝑞𝑚  𝑢 = 0 . At  𝑢 = 𝑇, Say, the radiation 

is turned off. For𝑢 > 𝑇, 𝑓  𝑢 =  𝑞𝑒 (𝑢) 𝑞𝑚 (𝑢) = 0, i.e. 

𝑓 𝑢 , 𝑞𝑒
2 𝑢  𝑎𝑛𝑑  𝑞𝑚

2  𝑢   are positive definite . Thus 

the metric for 𝑢 = 0 𝑡𝑜 𝑢 = 𝑇   is radiating dyon 

solution and for  𝑢 > 𝑇  it becomes a static dyon 

solution [24]. 

         To investigate the structure of the collapse, we 

need to consider the radial null geodesics define by  

𝑑𝑠2 = 0.     𝑘𝜃 = 𝑘∅ = 0 . The equation for outgoing 

radial null geodesic for metric (1) is given by 

 1 −
2𝑚 𝑢, 𝑟 

𝑟
 𝑑𝑢2 − 2𝑑𝑢𝑑𝑟 = 0 

i.e. 

𝑑𝑟

𝑑𝑢
=

1

2
 1 −

2𝑚 𝑢, 𝑟 

𝑟
 . 

Using  the mass function (2) , above equation 
becomes              

         
 𝑑𝑟

𝑑𝑢
=

1

2
 1 −

2𝑓 𝑢 

𝑟
−

2𝑔 𝑢 ,𝑟 

𝑟
+

𝑞𝑒
2 𝑢 +𝑞𝑚

2  𝑢 

𝑟2 +
𝛬𝑟2

3
           

                                                                                            (14)                                                                                           

In general, Eq. (14) does not yield an analytic solution. 

However, if  𝑓 𝑢 ∝ 𝑢, 𝑞𝑒
2 𝑢 ∝ 𝑢2,  𝑞𝑚

2  𝑢 ∝ 𝑢2 

,Eq. (14) becomes homogeneous and can be solved in 

terms of elementary functions[25]. 

In particular, we take  

𝑓 𝑢 = 𝜆𝑢,                            𝑔 𝑢, 𝑟 = 𝑎𝑟                  (15)                                                        

and       𝑞𝑒
2 𝑢 =  

0   ,                        𝑢 ≤ 0
𝜇2𝑢2

2
 ,              0 < 𝑢 ≤ 𝑇

𝜇2𝑇2 𝑐𝑜𝑛𝑠𝑡  ,         𝑢 > 𝑇

           (16)

                                                                

             𝑞𝑚
2  𝑢 =  

0   ,                        𝑢 ≤ 0
𝛿2𝑢2

2
 ,              0 < 𝑢 ≤ 𝑇

𝛿2𝑇2 𝑐𝑜𝑛𝑠𝑡  ,         𝑢 > 𝑇

          (17)                                                                  

Where 𝜆,  𝑎,   𝜇2 and  𝛿2 are some positive 
constants. Inserting the expressions for  
𝑓 𝑢 , 𝑔 𝑢, 𝑟 ,   𝑞𝑒

2 𝑢  𝑎𝑛𝑑  𝑞𝑚
2 (𝑢)   into Eq.(2) we 

obtain the mass function for monopole radiating 
dyon solution as  

        𝑚 𝑢, 𝑟 = 𝜆𝑢 + 𝑎𝑟 −
𝜇2𝑢2+𝛿2𝑢2

4𝑟
−

𝛬𝑟3

6
               (18)                                                                                  

It follows that with the choice of above mass function, 

the metric (1) becomes self-similar [1] (a spherically 

symmetric space-time is a self similar if 𝑔𝑢 𝑐𝑡, 𝑐𝑟 =
𝑔𝑢 𝑡, 𝑟  and 𝑔𝑟𝑟  𝑐𝑡, 𝑐𝑟 = 𝑔𝑟𝑟  𝑡, 𝑟  for every > 0 ) 

admitting a homothetic killing vector   𝜉𝑎   given by             

                𝜉𝑎 = 𝑢
𝜕

𝜕𝑢
+ 𝑟

𝜕

𝜕𝑟
                                       (19)                                                         

and satisfies    

      𝐿𝜉𝑔𝑎𝑏 = 𝜉𝑎 ;𝑏 +  𝜉𝑏 ;𝑎 = 2𝑔𝑎𝑏  ,                           (20)                                                         

Where L denote the Lie derivative. 

Defining  𝑘𝑎 = 𝑑𝑥𝑎 𝑑𝑘   as a tangent to radial null 

geodesics, where k is an affine parameter, it follows 

that  𝜉𝑎𝑘𝑎   is constant along radial null geodesics. 

Thus 

                    𝜉𝑎𝑘𝑎 = 𝑢𝑘𝑢 + 𝑟𝑘𝑟 = 𝐶,                      (21)             (22) 

Where C is a constant. Radial null geodesic equations 

of metric (1), on using the null condition  𝑘𝑎𝑘𝑎 = 0, 

takes the simple form 

               
𝑑𝑘 𝑢

𝑑𝑘
−  

𝑚 ′

𝑟
−

𝑚2

𝑟2   𝑘
𝑢 2 = 0,                     (22)                                                          

     
𝑑𝑘 𝑟

𝑑𝑘
+  

𝑚 

𝑟
−

𝑚 ′

𝑟
+

𝑚2

𝑟2 +
2𝑚𝑚 ′

𝑟2 −
2𝑚2

𝑟3   𝑘
𝑢 2 +

2  
𝑚 ′

𝑟
−

𝑚2

𝑟2  𝑘
𝑢𝑘𝑟 = 0                                              (23)         

Let 

                                        𝑘𝑢 =
𝑑𝑢

𝑑𝑘
=

𝑃(𝑢 ,𝑟)

𝑟
,              (24)                                                                          

Then from the null condition  𝑘𝑎𝑘𝑎 = 0 we obtain  

                                       𝑘𝑟 =  1 −
2𝑚

𝑟
 

𝑃

2𝑟
,             (25)                                                                       

Also  

                          𝑘𝑟 = 𝑘1 = 𝑔1𝑗𝑘
𝑗 = 𝑔10𝑘

0 

                          𝑘𝑟 =
𝑃

𝑟
                                             (26)                                                                                                  

And    
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                       𝑘𝑢 = 𝑘0 = 𝑔0𝑗𝑘
𝑗 = 𝑔00𝑘

0 + 𝑘1 

Therefore 

  𝑘𝑢 = −
𝑃

2𝑟
 1 −

2𝜆𝑢

𝑟
− 2𝑎 +

𝜇2𝑢2+𝛿2𝑢2

2𝑟2 +
𝛬𝑟2

3
        (27)                                                              

Eq. (22), (27) and (28) yields 

                              

𝑃 =
12𝐶

12+ 12−2𝛬𝑟2−6 𝑋+12𝜆𝑋2−3(𝜇2+𝛿2)𝑋3                    (28)                                                        

Where X is a self-similarity variable defined by 

𝑋 = 𝑢 𝑟 . The singularity occurring at  𝑟 = 0 is naked 

if the outgoing radial null geodesic equation has atleast 

one real positive root [26].  In the case of pure Vaidya 

space-time it has been shown that for a mass function 

𝑚 𝑢 = 𝜆𝑢 2 , the central singularity is naked for 

𝜆 ≤ 1 8 , and the collapse ends into black hole if  

𝜆 > 1 8  [27]. 

Hence it would be interesting to investigate whether 

the gravitational collapse of Vaidya space-time could 

yield a naked singularity under the influence of the 

gravitational constant and composite field produced by 

electric and magnetic charges. 

With the help of Eq. (18), the equations of the outgoing 

radial null geodesics for 

the metric (1) are given by    

              − 1 −
2𝑚

𝑟
 𝑑𝑢2 + 2𝑑𝑢𝑑𝑟 = 0         

Therefore 

                                     
𝑑𝑟

𝑑𝑢
=

1

2
 1 −

2𝑚

𝑟
                   (29)   

i.e.   

 
𝑑𝑟

𝑑𝑢
=

1

2
 1 −

2𝜆𝑢

𝑟
− 2𝑎 +

𝜇2𝑢2+𝛿2𝑢2

2𝑟2 +
𝛬𝑟2

3
               (30)                                

Let           𝑋0 = lim𝑢→0
𝑟→0

𝑢

𝑟
  = lim𝑢→0

𝑟→0

𝑑𝑢

𝑑𝑟
                     (31)                                                          

Hence Eq. (31) can be written as  

                             

𝑋0 = lim𝑢→0
𝑟→0

𝑑𝑢

𝑑𝑟
=

2

1−2𝜆𝑋−2𝑎+
𝜇 2

2
𝑋2+

𝛿2

2
𝑋2+

𝛬𝑟2

3

 

i.e.                       𝑋0 =
12

6−12𝜆𝑋−12𝑎+3 𝜇2+𝛿2 𝑋2+2𝛬𝑟2                                                                          

      3 𝜇2 + 𝛿2 𝑋3 − 12𝜆𝑋2 +  6 − 12𝑎 + 2𝛬𝑟2 𝑋 −
12 = 0                                                                      (32) 

The above equation governs the nature of the 

singularity. If this equation has at least one real and 

positive root, then the singularity will be naked. If the 

equation has no positive root, then the collapse ends 

into a black hole. 

In particular, for   𝜆 = 0.1, 𝜇 = 0.1, 𝛿 = 0.4, 𝑎 = 0,
𝛬 = 0.1, 𝑟 = 0.1  , one of the roots of Eq. (32) 

is 𝑋0 = 2.0954  , indicating that the gravitational 

collapse in this case ends into a naked singularity. 

We calculated the value of  𝑋0 for different values of  

𝜆, 𝜇, 𝛿, 𝑎, 𝛬  𝑎𝑛𝑑  𝑟 

For fixed 𝑎 = 0 , 𝛿 = 0.4,    𝛬 = 0.1, 𝑟 = 0.1  then 

Eq.(33) becomes 

    3 𝜇2 + 𝛿2 𝑋3 − 12𝜆𝑋2 +  6 + 2𝛬𝑟2 𝑋 − 12 = 0   

                                                      (33)                                                           

Table 1 Values of  𝑋0 for different values of  𝜆, 𝑎𝑛𝑑  𝜇 

. 

 

 
Figure 1: Graph of the values of  𝑋0 against the value 

of λ. 

From the graph we may observe that the value of  𝑋0 

have positive real roots. Also it is seen that the value of  

𝑋0 decreases as increase the value of μ. Also we notice 

that the lower value of 𝑋0 shifted towards the peak.  

For fixed value of μ and different value of λ, a we 
have different positive real root of  𝑋0. 

For fixed   𝜇 = 0.1, 𝛿 = 0.4,    𝛬 = 0.1, 𝑟 = 0.1 then 

the Eq. (32) becomes, 

    3 (0.1)2 + 𝛿2 𝑋3 − 12𝜆𝑋2 +  6 − 12𝑎 +
2𝛬𝑟2 𝑋 − 12 = 0                                                           (34)                                                                                                  
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Table 2: Values of  𝑋0 for different values of  𝜆 𝑎𝑛𝑑 𝑎 

. 

λ 

𝑋0  

a=0 0.25 0.5 0.75 0.85 

0.1 2.0954 3.0025 3.8994 4.6819 4.9652 

0.2 3.3002 4.549 5.4868 6.2491 6.5214 

0.3 5.7206 6.7043 7.479 8.1367 8.3768 

0.4 8.3388 9.0486 9.6633 10.2129 10.4186 

0.5 10.8819 11.4298 11.9297 12.3923 12.5686 

0.6 13.369 13.8148 14.2335 14.6294 14.7822 

0.7 15.8207 16.1969 16.5562 16.9008 17.0349 

0.8 18.2493 18.5748 18.8893 19.1937 19.3128 

0.9 20.662 20.9491 21.2285 21.5008 21.6078 

 

 

Figure 2: Graph of the values of  𝑋0 against the value 

of λ for μ=0.1. 

From the graph we may observe that the value of  𝑋0 

increases as increasing the value of λ. 

The lower value shifted towards peak of the graph and 

the value of   𝑋0 for a=0.75 and a=0.85 have the 
nearly same value. 

For  fixed  value of  λ and different value of μ, a we 
have different value of  X0.   

For fixed  𝜆 = 0.1, 𝛿 = 0.4,    𝛬 = 0.1, 𝑟 = 0.1 then 
Eq. (32) becomes, 

    3 𝜇2 + 𝛿2 𝑋3 − 12(0.1)𝑋2 +  6 − 12𝑎 +
2𝛬𝑟2 𝑋 − 12 = 0                                                           (35) 

 

 

 

 

 

Table 3: Values of  𝑋0 for different values of  𝜇, 𝑎 and 

= 0.1 . 

μ 
𝑋0  

a=0 0.25 0.5 0.75 0.85 

0.1 2.0954 3.0025 3.8994 4.6819 4.9652 

0.2 1.9995 2.7837 3.5691 4.2684 4.5239 

0.3 1.8772 2.5247 3.1807 3.7786 3.9996 

0.4 1.7525 2.2812 2.8205 3.3224 3.5102 

0.5 1.6366 2.0713 2.5161 2.9368 3.0959 

0.6 1.5329 1.8953 2.2663 2.6216 2.7571 

0.7 1.4416 1.7482 2.062 2.3653 2.4819 

0.8 1.3612 1.6246 1.8938 2.1556 2.2568 

0.9 1.2904 1.5195 1.7534 1.982 2.0707 

 

 

Figure 3: Graph of the values of  𝑋0 against the value 

of μ for λ =0.1. 

From the graph it is clear that the value of  𝑋0 

decreases for increase the value of μ. It is also note that 

the value of 𝑋0 for μ=0.1 have much more difference 

than the value of μ=0.9 and high value shifted towards 

lower value. 

IV   Strength of the naked singularity. 

It has seen the nakedness of the singularity in the 

previous section; in this section we study the strength 

of singularity. The Clark and Krolak Criterion the 

strength of singularities has been analyzed and shown 

that these naked singularities are gravitationally strong. 
If the naked singularity is not strong then it cannot be 

considered as a physically reliable singularity and 

hence such naked singularities may not be considered 

as counter examples to CCH. A naked singularity is 

said to be strong if at least along one radial null 

geodesic with affine parameter k, with k = 0 at the 

singularity [27], one should have   

                      𝛹 = lim𝑘→0 𝑘
2𝑅𝑎𝑏𝑘

𝑎𝑘𝑏 > 0             (36)                                                                                      

Where 𝑘𝑎  is tangent to the null geodesics and 𝑅𝑎𝑏  is 

the Ricci tensor 
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using Eq. (24) and (25) we write  

                 

𝛹 = lim𝑘→0 𝑘
2𝑅𝑎𝑏𝑘

𝑎𝑘𝑏 = lim𝑘→0 𝑘
2 2𝑚 

𝑟2 (𝑘𝑢)2      (37)                                                           

        = [4𝜆 − 𝑋(𝜇2 + 𝛿2) lim𝑘→0  
𝑘𝑃

𝑟2 
2

                   (38)                                                              

as singularity is approached, 𝑘 → 0, 𝑟 → 0 𝑎𝑛𝑑 𝑋 →
𝑋0 and using L-Hospital’s rule, we find that 

                 𝛹 =
4𝜆−(𝜇 2+𝛿2)𝑋0

1−2𝑎+
𝛬𝑟2

3
−2𝜆𝑋0+

1

2
(𝜇2+𝛿2)𝑋0

2
               (39)                                                                            

Thus the singularity is strong if 4𝜆 − (𝜇2 + 𝛿2)𝑋0 > 0 

For our particular case  (i.e. λ=0.1, μ=0.1, δ=0.4, a=0, 

Λ=0.1, r=0.1, 𝑋0 = 2.0954) 

We have  4𝜆 −  𝜇2 + 𝛿2 𝑋0 =  0.043782. Thus the 

naked singularity arising in the monopole-radiating 

dyon solution in the anti-de-sitter space-time is a 

strong curvature singularity.   

    

V    Concluding Remarks. 
 

      Cosmic censorship  conjecture has become a 

challenging and most significant open problem in a 

general relativity. Many possible counter examples to 

this conjecture have been proposed over the past four 

decades, although none of them have proved to be 

sufficiently generic. In this work, there appears a 

singularity that is not hidden by horizon this singularity 

is called a naked singularity.  

      In the present work we have studied monopole 

radiating dyon solution in anti-de-sitter space time. 

Here we examine the structure of space time 

singularities formed during the radial in fall of 

coherent stream of charged “photons” – a piece of the 

monopole radiating dyon metric.  

      It has been shown that the singularities formed in 

gravitational collapse of monopole radiating dyon 

solution in anti-de-sitter background are not hidden 

inside the event horizon. Thus one can argue that 

composite charged field (electric and magnetic 

charges) and gravitational constant does not affect to 

gravity and cannot prevent a naked singularity from 

forming completely, so that CCH actually violets. 

     Also, using the clark and krolak criteria [28] the 

strength of singularities has been analyzed and shown 

that the naked singularities in the composite solution in 

anti-de-sitter background are gravitationally strong. 

 

References 

[1] R. Penrose, Riv, Nuovo. Cimento. 1, 252 

(1969). 

[2] Wald, R.M. : arXiv :gr-qc/9710068 

[3] Ujwal Debnath : arXiv :gr-qc 1203.1454 V 2, 

9 Mar(2012). 

[4] D. M.Eardly and L.Smar, Phys. Rev. D 19, 

2239(1979). 

[5] S.M.M.Rasouli,A.H.Ziaie & J.Marto: 

arXiv:gr-qc 1309.6622, 15 Sep. 2013 

[6] Prabir Rudra, Ujjal Debnath : arXiv :gr-qc 

1307.5823 V 1, 12 July 2013. 

[7] P. S. Joshi and I. H. Dwivedi Phys. Rev. D 47, 

5537(1993). 

[8] K. D. Patil, Phys.Rev. D 67, 024017(2013). 

[9] K. D. Patil, Int. J. Mod. Phys. D 15(2), 251 

(2006). 

[10] W. A. Hiscok, L. G. Williams and D. M. 

Eardley, Phys. Rev.D 26, 751 (1982). 

[11] K. Rajagopal and K. Lake Phys. Rev.D 35, 

1531 (1987). 

[12] I. H. Dwivedi and P. S. Joshi, Class. 

Quantum. Grav. 6, 1599 (1989). 

[13] K. Lake and T. Zannias, Phys. Rev. D 43, 

1798 (1991). 

[14] J. P. S. Lemos, Phys. Rev. D 59, 044020 

(1999). 

[15] A. Papapetrou, in A Random Walk in 

Relativity and Gravitation, eds. N. Dad- 

       hich, J. K. Rao, J. V. Narlikar and C. V. 

      Vishveshwara (Wiley, New York, 1985)  pp 

      184-189.                      

[16] K. D. Patil and S. S. Zade, Int. J. Mod. Phys. 

D 15, 1359(2006). 

[17] K. D. Patil and U. S. Thool, Int. J. Mod. Phys. 

D 15(11), 1977 (2006). 

[18] A. Ori and T. Piran, Phys. Rev. Lett. 59, 2137 

(1987). 

[19] Sanjay Sarwe, R.V.Saraykar, P.S.Joshi: arXiv 

:gr-qc 1207.3200, 13 July 2012. 

[20] T. Harko and K. S. Cheng, Phys. Lett. A 266, 

249 (2000). 

[21] S. G. Ghosh and N. Dadhich, Gen. Relativ. 

Gravit. 35, 359 (2003). 

[22] A. Chamorro and K. S. Virbhadra, Pramana, 

J. Phys. Vol. 45, No. 2, 181(1995). 

[23] hggg 

[24] J.P.S.  Lemos, phys. Rev. D 59, 044020 

(1999). 

[25] K. Lake and T.  Zannias, Phys. Rev. D 43, 

1798 (1991). 

[26] S.H. Ghate, R.V. Saraykar, K.D. Patil, 

Pramana, J. Phys. Indian Academy of 

Science, Vol. 52, No.2, 253 (1999). 

[27] Sergio M.C.V. Goncolves, Phys. Rev. D 63 

064017 (2001). 

[28] C J S Clarke and A Krolak, J. Geom. Phys. 2, 

127 (1986)  

 

 

2374

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110780


