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Abstract- Brain-machine interfaces (BMIs) create closed-

loop control systems that interact with the brain by 

recording and modulating neural activity and aim to 

restore lost function, most commonly motor function in 

paralyzed patients. Moreover, by precisely manipulating 

the elements within the control loop, motor BMIs have 

emerged as new scientific tools for investigating the 

neural mechanisms underlying control and learning. 

Beyond motor BMIs, recent work highlights the 

opportunity to develop closed-loop mood BMIs for 

restoring lost emotional function in neuropsychiatric 

disorders and for probing the neural mechanisms of 

emotion regulation. Here we review significant advances 

toward functional restoration and scientific discovery in 

motor BMIs that have been guided by a closed-loop 

control view. The work done in this paper focusing on 

this unifying view of BMIs and reviewing recent work, 

we then provide a perspective on how BMIs could extend 

to the neuropsychiatric domain.  BMIs have a wide array 

of potential clinical applications, ranging from restoring 

communication to people unable to speak due to 

amyotrophic lateral sclerosis or a stroke, to restoring 

movement to people with paralysis from spinal cord 

injury or motor neuron disease, to restoring memory to 

people with cognitive impairment. Because BMIs are 

controlled directly by the activity of pre specified 

neurons or cortical areas, they also provide a powerful 

paradigm with which to investigate fundamental 

questions about brain physiology, including neuronal 

behavior, learning, and the role of oscillations. This 

article reviews the clinical and neuro scientific 

applications of BMIs, with a primary focus on motor 

BMIs. 
 

Keywords-Brain Machine Interface, Digital Signal 

Processing, Intelligent Controller, Mental Disorder, 
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INTRODUCTION 

Brain–machine interfaces (BMIs) aim to restore lost 

function in  patients with neurological and 

neuropsychiatric disorders by    creating a direct control  

 

pathway to the brain to read out neural activity, interact 

with an external device, and in some cases write in neural 

information by stimulating the brain in Fig.1. A motor 

BMI uses a mathematical algorithm termed a ‘decoder’ 

(Box 1) to estimate the user’s intended movement state 

from neural activity, uses the decoded movement to 

control an external actuator (prosthetic device), and 

provides [1] [2] sensory and reward feedback to the user 

as in Fig. 1a. Thus, the Given this closed-loop control 

nature, BMIs likely 

 

engage innate control and learning mechanisms 

employed by the brain in natural sensorimotor control. 

This closed loop control view has led to significant 

advances in two synergistic directions.  

Understanding of control and learning mechanisms has 

explicitly guided the design of BMI technologies to 

improve performance toward functional restoration. 

Second, motor BMIs have served as novel tools for 

scientific discovery in understanding the neural 

mechanisms of control and learning because they 

provide a simplified closed-loop control system that is 

experimenter defined and can be readily manipulated. 

The potential of BMIs for functional restoration and 

scientific discovery, however, could go well beyond the 

motor system. Indeed, in many neurological and 

neuropsychiatric disorders, the goal is to control i.e., 

regulate an internal brain state rather than the movement 

of an external actuator. In neuropsychiatric disorders, 

which are a leading cause of disability worldwide, with 

depressive disorders being the most disabling among 

them, the goal could be to restore lost emotional 

function by controlling a relevant mood state. Many  
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patients with major depression are not responsive to 

current treatments, making direct electrical brain 

stimulation a promising alternative therapy to explore.  

Open loop stimulation Box 2 applying a fixed pattern of 

stimulation regardless of symptom levels has shown 

promising response and remission rates in treatment 

resistant depression in seminal open-label studies. 

However, it has had variable efficacy in randomized 

controlled trials. Personalized, alternative, or multiple 

stimulation target sites may help with such outcomes. 

Additionally, given the variability in neuropsychiatric 

symptoms both between patients and within an 

individual patient over time, one way to improve 

efficacy could be a closed-loop BMI approach that 

changes the stimulation based on symptom variations 

decoded from neural activity. We can envision a ‘mood’ 

BMI that decodes a mood symptom state (instead of a 

movement state) as feedback to decide when and how 

electrical brain stimulation is delivered to control mood 

toward a therapeutic target within its multidimensional 

space Fig. 

 

1b. In contrast with open-loop stimulation, mood BMIs 

would again constitute a closed-loop control system, in 

which the plant is now the brain and control commands 

in the form of external electrical stimulation are dictated 

by feedback of neural activity and by desired therapy 

goals Fig. 1b. In addition to electrical stimulation, mood 

[3] [4] BMIs may also optionally provide users with 

feedback of the decoded mood to engage them actively 

in control, though likely at a different time-scale Fig. 1b. 

Further, mood BMIs may provide the opportunity to  

study  the  neural  mechanisms of emotion regulation, as 

they could again be experimenter defined, though ethical 

considerations are critical. 

While not tested for neuropsychiatric disorders, closed-loop 

stimulation has been applied to neurological disorders such 

as Parkinson’s disease (PD) and epilepsy with promising 

improvements in Box 2. In these cases, low- or one-

dimensional neural signal provide a biomarker, based on 

which stimulation is turned on and off, for example. The 

challenge for mood BMIs, however, is the involvement of a 

distributed brain network, the complex and dynamically 

changing nature of mood symptoms, and the difficulty of 

their measurement and inter-individual variability. Also, 

controlling mood-relevant neural dynamics could require 

principled closed-loop controllers that go beyond turning 

stimulation on and off. These aspects would likely 

necessitate a personalized mood decoding approach from 

network activity rather than a single low-dimensional 

biomarker approach to tailor the stimulation to the patient’s 

needs in Box 2. This decoding approach is in line with 

motor BMIs. 

 Compared with the rich body of work on motor BMIs, mood 

BMIs are just beginning to be realized and will entail distinct  

 

 

 

 

 

 

 

 

 

challenges Table1. Unlike movements, mood is difficult to measure 

and involves distributed, multisite corticolimbic networks [5] whose 

functional organization is not as well understood. Additionally, 

mood BMIs would need to characterize the effect of stimulation on 

distributed brain network activity and the Stimulation induced 

plasticity over months and years. However, there are also striking 

similarities that may guide mood BMIs based on the insights 

learned from motor BMIs. First, both these BMI types need to 

decode an internal brain state from neural recordings. Further, just 

as users can learn to control a neuro prosthetic [6] based on 

feedback of neurally decoded movement, they may learn to 

modulate emotional states based on neuro based  

 

feedback. This suggests that some of the same learning things based 

a mechanisms may be exploited, in combination with stimulation, 

for effective mood control. Indeed, similar computational 

mechanisms may underlie sensori motor learning and control and 

emotion regulation. These similarities, together with the extensive 

neuro imaging literature on mood and emotional processing and 

recent demonstrations of mood decoding, suggest that BMIs have 

the potential to extend as powerful tools for functional restoration 

and scientific discovery in the emotion domain. In this Perspective, 

by focusing on a unifying closed-loop control view Fig.1, we 

discuss the potential of invasive BMIs for functional restoration and 

scientific discovery in the motor and emotion domains. We first 

review the recent work on motor BMIs that is informed by this view 

and has advanced their design and our understanding of the neural 

mechanisms underlying BMI control and learning. Guided by 

insights from motor BMIs, the rich body of work in neuroimaging 

and psychology, and closed-loop control principles [7] [8], we then 

lay out a path toward developing mood BMIs, review the literature 

that suggests their feasibility, and describe recent progress toward 

their realization. 

 

BMIS FOR RESTORATION OF LOST MOTOR FUNCTION 

The closed-loop control view has advanced BMI decoders by 

changing how they are constructed and trained and by guiding 

the properties of the new sensorimotor BMI pathway Fig.2 

Further, users learn to control a BMI by changing neural 

representations a process termed neural adaptation similarly to 

how we learn new natural abilities. The closed-loop control view 

has also guided how BMIs engage neural adaptation separately 

and together with decoder design. While various scales of 

activity can be recorded in invasive motor BMIs in Box1, we 

focus on those that use spiking activity. 

 

DECODER DESIGNS INFORMED BY CLOSED-LOOP     

CONTROL PRINCIPLE 

 The first critical step in BMI design is to train the decoder 

Fig.2a Once a model structure for the decoder is selected in 

Box1, its parameters need to be estimated by regressing neural 

activity to movement intentions within a training session. One 

approach to training [9] [10] the decoder is to instruct users to 

move their arm or  imagine movements while recording activity. 

This approach is open-loop in that during training, users do not 

control the BMI or receive feedback. 
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Fig.1 a,b  BMIs create closed-loop control systems. BMIs aim to restore lost function by creating a direct control pathway to the brain 

to read out neural activity, interact with an external device (machine), and in some cases write in neural information by stimulating the 

brain. 
 

Fig. 1.(a)  Plant       Fig. 1(b) Controller

 

  

 

 

                

                

          

 

 

 

 

                                                                                                                                

   

 

A BMI decoder estimates a brain state from the recorded 

neural activity, thus creating a brain–behavior mapping. 

Neural activity at single or multiple spatiotemporal 

scales—spikes, loal field po tentials (LFP), and 

electrocorticogram (ECoG)—can be used in invasive 

BMIs Spikes measure the activity of single or multiple 

neurons, while field potentials such as LFP and ECoG 

measure the activity of larger-scale neuronal populations 

and could provide a more stable recording modality over 

time. Spiking activity has a fast millisecond time-scale 

while field potential features such as spectral powers may 

have slower time-scales in their variations. 

The decoder structure is typically dictated by the 

encoding model that relates neural activity to movement. 

For example, spike counts or LFP power features can be 

modeled as linear functions of kinematics. Binary spike 

events—i.e., the 0–1 time-series that represents the absence 

or presence of spikes in time, respectively c a n be modeled 

with point processes that describe instantaneous firing rates 

as log-linear functions of kinematics. 

Various decoders have been developed for spiking activity, 

which is the scale used in most invasive motor BMIs and 

enables high performance. Most of these decoders operate 

on spike counts: they count the number of spikes within 

time-bins of varying lengths as input. Early decoders 

consisted of Wiener filters and the related population vector 

and optimal linear estimators that decode the kinematics 

[11] as a linear function of spike counts. Later work used 

Kalman filters to incorporate a model of movement 

kinematics in decoding. In addition to these decoders that 

process spike-counts, point-process and optimal-

feedback-control modeling have recently been used to 

closed-loop point-process BMIs that instead directly 

decode the spikes. These point-process BMIs adapt and 

control the neuroprosthetic with every spike event, and 

thus at the millisecond time-scale of spikes, and model 

their binary nature. Point-process decoders also 

incorporate a model of movement kinematics. 

In addition to spikes, LFP recordings can be added in the 

decoder. One motor BMI counted the spikes in the same 

time- bins in which LFP power features were computed, thus 

allowing a single Kalman filter to decode movement from 

both signals at the same time-scale. To enable fast control 

and feedback rates and model the different time-scales and 

statistical profiles of spikes and field potentials, recent 

studies have developed multiscale decoders; these decoders 

extract information directly from binary spike events at their 

millisecond time-scale while also adding information from 

continuous field potentials at their slower time-scales. 

Finally, one approach to describing spatiotemporal 

neural activity patterns is to develop dynamic latent state-

space models. These models describe the dynamics (i.e., 

variations over time) of high-dimensional network activity 

(over space) in terms of the dynamics of a latent low-

dimensional neural state [12]. Dynamic latent state-space 

models have for example been used to develop motor 

BMIs using spikes, decoders of spike-field activity48 and 

mood decoders from ECoG. These latent state-space models 

have also been proposed for modeling the effect of 

stimulation on neural activity in computer simulations.
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Open-loop training builds on the assumption that neural rep 

representations of natural and BMI movements are similar. 

However, compared with controlling a biological arm, in BMIs 

users control an actuator with different dynamics, typically without 

tactile or pro-prospective feedback and only with visual feedback, 

and the activity of only a limited population of neurons directly 

drives movement. Given these differences, the closed-loop control 

view predicts that neural representations need not be the same in 

the two cases3. This motivated efforts at training (i.e., adapting) 

the decoder during closed-loop BMI operation, an approach often 

termed closed loop decoder adaptation. In this approach, as the user 

controls the  actuator toward instructed visual targets Fig.1a, 

decoder parameters are adapted using the generated neural activity 

and movement intentions typically velocity intentions [13] either 

intermittently or continuously in time Fig. 2a. This approach has 

significantly improved BMI performance. Recent studies have 

also shown that faster decoder adaptation time-scales can result in 

faster convergence to proficient control, for example by using a 

point-process adaptive decoder to enable parameter updates with 

every spike event (Box 1). 

One major question in decoder adaptation is how to estimate the 

movement intention during training, as the decoder is untrained 

and cannot estimate it. the closed loop control [14] view has also 

guided the design of intention for 

 

estimation methods Box 3. To estimate the direction of velocity 

intention, or to also provide assistance during training , some 

studies have posited that users intend to go straight toward a 

movement target. This approach has improved the performance of 

Kalman filter BMIs Box 1. More recent studies estimated intention 

by building explicit optimal feedback control models of BMIs that 

estimate both the direction and the speed of velocity intention Box 

3, leading to improvements in the perfor mance of point-process 

BMIs Box 1. 

The closed-loop control view also predicts that the properties of 

the sensorimotor pathway created by the BMI affect the user’s 

control Fig. 2b. Shorter BMI sensorimotor delays can improve 

control, as shown by decoding future movements or reducing the 

bin-width used in counting spikes within a Kalman filter. 

Also, faster BMI control rates and feedback rates (how often 

control commands are sent to the actuator [15] and how 

often feedback is received), combined with a point-process 

spike decoder, can enhance BMI control. To add field 

potentials to spikes while still providing fast control and 

feedback rates, multiscale decoders were recently developed 

that add information from continuous field potentials at their 

slower time-scale while simultaneously decoding the 

binary spike events at their millisecond time-scale Box 1. 

 

Engaging learning and neural adaptation in BMIs 

The closed- loop control view has also highlighted the 

potential to combine learning-induced neural adaptation with 

decoder adaptation to improve BMI performance Fig. 2a. 

Learning to control the BMI involves neural adaptation, 

which is driven by sensory and reward feedback and can 

improve performance. Early studies observed this 

improvement despite daily decoder retraining. Later studies 

had animals practice instead with a fixed decoder that  

 

 

 

 

 

mapped the activity of the same neurons to movement across 

multiple days. This led to consolidation of skilled BMI 

control and formation of a highly stable neural 

representation of movement that was resistant 

 

to interference [16] from learning other decoders and was  

rapidly recalled, similar to the properties in natural motor skill 

acquisition. However, it may be difficult to maintain a 

stable set of neurons across time, and fixed decoders could 

take a long time (days) to learn. A main question is 

whether we can incorporate decoder adaptation to rapidly 

enable high performance while also engaging neural 

adaptation, possibly at slower time-scales, to enable skill 

acquisition. A recent study found that even when most of 

the performance improvement over the initial decoder was 

achieved by decoder adaptation in the presence of a changing 

neural population, neural adaptation could still occur and 

enable improved and skilled. 

 
Box 2 | Closed-loop stimulation in epilepsy and Parkinson’s 

disease 

 

Open-loop electrical stimulation systems apply a constant pattern of 

stimulation (for example, pulse trains with fixed amplitude and frequency) 
continuously in time regardless of the disease symp toms. The stimulation 

parameters in these systems are changed infrequency at clinician visits. In 

contrast, closed-loop electrical stimulation systems would change the 
stimulation pattern based on changes in disease symptom levels, which may 

be inferred from the recorded neural activity. While closed-loop stimulation 

has largely not been tested for neuropsychiatric disorders, it has shown 
promise for neurological disorders such as epilepsy and PD. However, 

developing a closed-loop mood BMI will likely involve distinct challenges 

both in obtaining the feedback signal and in devising the control strategy by 
which stimulation is adjusted. For epilepsy, the Neuropace responsive 

neurostimulation system has been approved by the US Food and Drug 
Administration (FDA) for clinical treatment. This system has one or two 

leads, which could be cortical or depth strips with four electrode contacts 

each. Only when abnormal ECoG [17] [18] activity is detected, the system 
briefly turns on a fixed, predetermined pattern of stimulation. Since abnormal 

activity patterns can be explicitly observed at the onset of electrographic 

seizures, a biomarker can be constructed with clinician guidance to serve as 

the feedback signal for detection. This situation is different 

from mood, which likely has more complex and subtle 

representation in distributed brain network activity and 

further, is hard to measure even behaviorally. Also, on–off 

control with brief on-periods is likely well-suited in epilepsy 

because the seizure events are uncommon and intermittent 

and the disease has long asymptomatic periods7. For PD, the 

current clinical stimulation systems are essentially open-loop. 

However, in research studies, closed-loop deep brain 

stimulation has improved efficiency and efficacy. As the 

feedback signal, these closed-loop control systems typically 

use a one-dimensional biomarker of PD symptoms recorded 

from an electrode tip. Most commonly, the amplitude of 

subthalamic nucleus beta LFP activity (12–30 Hz) is used, 

which is linked to bradykinesia severity. The stimulation is on 

a fixed, predetermined level when the biomarker level crosses 

a threshold. Beyond this on–off control, other simple closed- 

loop strategies in which the stimulation amplitude is changed 

proportionally to the biomarker level have also been used. 
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In terms of the feedback signal, the case for mood BMIs is 

different from that for epilepsy and PD. Mood symptoms 

likely involve high-dimensional distributed neural 

representations and can additionally be heterogeneous across 

individuals. Thus a single universal one- or low-dimensional 

neural activity biomarker may not be optimal in this case. 

Also, mood symptoms can be highly dynamic and change 

rapidly even over minutes or within a day. Thus, in line with 

motor BMIs, a real-time personalized decoding approach 

could be needed to aggregate information across 

multidimensional recordings from relevant brain networks. 

This personalized decoding would account for heterogeneities 

across individuals and continuously track mood symptoms 

over time to tailor the stimulation to an individual patient’s 

clinical needs. 

In terms of the controllers [19] [20], closed-loop systems for 

epilepsy and PD have been based on simple on–off or 

proportional control. Moreover, the parameters of the 

controllers, such as the threshold used in on–off control, the 

gain for proportional control, or the stimulation frequency and 

amplitude levels, have been largely determined heuristically. 

To further optimize efficacy and efficiency, these parameters 

should be automatically adjusted based on an understanding 

of how stimulation changes the dynamics of neural activity 

that is causally related to disease symptoms. This 

understanding is especially important for mood, which could 

have complex symptom dynamics that change rapidly. Such 

understanding could be advanced by building data-driven 

input– output models that describe the effect of stimulation 

parameters (input) on neural activity (output) and then 

controllers that use these models for optimal real-time 

adjustment of stimulation parameters. The development and 

validation of such input– output models is a critical research 

direction, with implications thereafter.  

 

This study hypothesized that a gradual rather than an abrupt 

change in the decoder and the recorded neurons was the reason that 

skill formed in face of decoder adaptation and that this may be one 

way to engage both adaptive processes. 

Motor BMIs for studying the neural mechanisms of control and 

learning 

BMIs create a simplified sensorimotor [21] [22] loop by 

specifying which neurons directly control movement, 

designing the map from neural activity to movement, 

dictating the actuator dynamics through the decoder, and 

dissociating different sensory feedback modalities, such as 

vision and proprioception. Thus, BMIs can precisely 

manipulate each element within the loop to study the 

mechanisms of control and learning. 
 

Decoder manipulations reveal mechanisms of BMI 

learning BMIs allow us to study how the activity of output 

neurons those that directly drive movement in the decoder 

and their interactions with other sensorimotor regions are 

changed to learn a perturbed or a completely new decoder in 

Fig. 2b. Decoder manipulations have revealed two potential 

neural mechanisms for BMI learning. First, learning can 

directly change the activity at the level of individual output 

neurons based on feedback of decoded movement (i.e., 

neuro feedback) to achieve behavioral goals. Second, 

learning can involve exploring an existing repertoire of 

neural activity pat terns related to natural movements and 

then re-associating them with new movement intents. The 

major difference is that the former can generate novel 

neural representations while the latter cannot. 

Several studies are consistent with the first mechanism. 

Subjects can learn completely arbitrary mappings between the 

activity of output neurons and behavior. BMI learning can 

lead to different activity changes in output neurons compared 

with nearby neurons. Finally, BMI learning involves changes 

in corticostriatal interactions that are specific to the output 

cortical neurons. 

 

Several studies also support the second mechanism. When 

per turbing the directional tuning of motor cortical neurons 

within a decoder and creating an overall visuomotor [23] 

rotation, the majority of changes in neural representation were 

explained by a re-aiming strategy: an existing activity pattern 

now corresponded to moving toward a different rotated target 

location. Also, in the parietal reach region, changes in the 

activities of the output neuron and a nearby neuron during 

learning were correlated, as explained fully by re-aiming. 

Recent studies examined learning at the population level in 

M1 by using dimensionality reduction to find an intrinsic low-

dimensional manifold within which high-dimensional 

population activity (with each dimension corresponding to 

one neuron) evolves. Learning to control a perturbed decoder 

was easier when the required perturbed activity pattern 

resided within compared to outside the original intrinsic 

manifold, suggesting that learning is shaped by existing 

neural repertoires. Further, within this manifold, subjects 

learned by re-associating an existing activity pattern with a 

different movement intent. Changes leading to re-association 

may occur upstream of M1, for example by changing its 

inputs. While the two learning mechanisms may seem 

inconsistent, there is evidence that they can co-occur, though 

likely with different time-scales. 

Existing neural repertoire re-association has been observed 

when learning happens within 1–2 hours consistent with 

mechanisms underlying motor adaptation. In comparison, 

differential changes to the activity of individual output 

neurons could involve learning over longer time-scales of 

days, consistent with mechanisms underlying skill acquisition. 

Prior studies suggest that natural motor learning in adaptation 

and skill tasks is dominated by model-based and model-free 

computational mechanisms, respectively. In model-based 

mechanisms [24], improvement in motor performance is 

guided by an internal model of the environment; the internal 

model is learned based on the experience of error between the 

model-predicted and the actual sensory consequences of 
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PERSPECTIVE | FOCUS NATURE NEUROSCIENCE 

motor commands. In contrast, model-free mechanisms 

directly guide the selection of control commands by learning 

which commands lead to successful outcomes through trial 

and error, and thus are slower. Model-based mechanisms are 

computationally complex but flexible, unlike model-free 

mechanisms. It is important to investigate whether similar 

computational mechanisms also underlie BMI learning. For 

example, perhaps existing neural repertoire re-association is 

more consistent with model-based mechanisms, and thus 

faster and individual neuron learning is more in line with 

model-free mechanisms involved in skill tasks. 

 

FEEDBACK AND CONTROL PATHWAY                               

MANIPULATIONS 

 BMIs can help study the role of sensory feedback in control 

and learning by manipulating it Fig. 2b. A recent BMI study 

used a rate independent point-process decoder to 

independently manipulate the rates of control and feedback 

without changing the decoder Fig. 2b and Box 1.Increasing 

the control rate even when the feedback rate was unchanged 

significantly improved control, and increasing the feedback 

rate further facilitated control, suggesting a hybrid of internal-

model-based feed forward and feedback control strategies in 

BMIs, as has been suggested for natural motor control 

Another study found evidence of an internal model in BMI 

control within neural activity, which could compensate for 

sensory feedback delays. BMIs can also dissociate the role of 

visual and proprioceptive feedback. One study showed that 

when the arm is passively moved congruently with the BMI 

movement, performance is improved by this addition of 

proprioceptive to visual  

 

feedback. Prior stud ies have also developed bidirectional 

BMIs in which intracortical microstimulation of the 

somatosensory [25] cortex provides artificial tactile feedback 

to guide BMI control in Table 1. Finally, recent work 

demonstrates BMI control of the native limbs with muscular 

or spinal stimulation, which may also enable manipulating the 

control pathway. 

BMIS FOR RESTORATION OF LOST EMOTIONAL 

FUNCTION 

In its general form, we can envision a mood BMI for 

electrical stimulation to consist of two main components Fig. 

3a a neural decoder of a relevant mood state  Fig. 3b and a 

feedback controller Fig. 3c that takes the decoded mood as 

feedback to adjust the stimulation parameters. This vision 

bears similarities to motor BMIs that need to control a cursor 

toward a desired target position within physical space Fig. 1. 

Instead of decoding movement, mood BMIs would decode a 

mood state and control it toward a desired therapeutic target 

within the abstract multidimensional space of mood Fig.1 and 

Fig.3. However, developing mood BMIs involves distinct 

decoding challenges in Fig. 3b and Table 1 and requires 

solving a new modeling problem: how stimulation changes 

the activity of distributed multisite brain networks related to 

mood Fig. 3c; also see Table 1 and Fig 

 

MOOD DECODERS 

Mood representation involves multiple distributed brain 

sites whose functional organization is not as well 

understood. Moreover, unlike movements that can be 

measured continuously in time, mood cannot be 

behaviorally measured frequently, resulting in sparse 

measurements at discrete times for example, filling a 

questionnaire a few times per day). Together, these aspects 

create a challenging machine learning problem in training 

the decoder within high-dimensional neural recordings but 

with only sparse mood measurements.Given these 

challenges, noninvasive neuroimaging modalities [26] [27] 

with high spatial re 

 

important in guiding the sites for read-out and write-in in 

mood BMIs. These studies have shown regional changes 

induced by emotional stimuli in healthy participants 

identified altered resting-state activity that may be related 

to neural circuit dysfunction or treatment effects in mood 

disorders, and guided the open-loop stimulation sites. In 

terms of decoding, while neuro imaging can detect average 

differences between groups, a BMI would need to track 

mood symptom variations and stimulation responses in an 

individual, which can change rapidly. Thus mood decoding 

will benefit from electrophysiological modalities. 

Intracranial EEG—often in the form of 

electrocorticography provides an opportunity to access 

multiple mood-relevant brain sites at high temporal 

resolution and with potential for implantable devices. 

Despite machine learning challenges, a recent study 

achieved decoding of mood variations in individuals by 

developing a novel methodology. In this study, multisite 

intracranial EEG [28] was continuously recorded from 

people with epilepsy over multiple days, thus creating a 

high-dimensional continuous neural feature space. 

Simultaneously, sparse aggregate mood scores were 

obtained on average twice per day using a validated. The 

study designed a new region-selection method that 

identified a small subset of distributed mood-relevant 

regions that were sufficient for decoding. Within these 

smaller networks and unsupervised with respect to mood, 

the method further reduced dimension by training a 

dynamic model [29] Box 1 to describe network activity in 

terms of a low-dimensional latent state, which was then 

regressed to mood scores in Fig.3b. The decoder first 

estimated the low-dimensional state and then used this to 

successfully predict mood variations in each individual 

participant. 
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 A key observation in the mood decoding study was that 

personalization is needed because there were variabilities 

between participants in the selected networks and decoder 

parameters. Two additional recent studies are also 

consistent with this observation. First, one study aimed to 

find a common neural marker across individuals that 

correlated with mood within the same datasets [30]. This 

study found that the variance of amygdale hippocampus 

beta-frequency coherence was correlated with mood in 

about 62% of participants; the participants who displayed 

this correlation exhibited higher anxiety levels. Second, 

another study found that stimulating the orbitofrontal 

cortex produces mood improvements that are specific to 

people with moderate-to-severe depression symptoms (a 

trait-dependent response). These studies suggest that 

personalized decoders that aggregate information across 

space and time are needed for reliable mood decoding that 

goes beyond a single biomarker correlations and works in 

every individual despite the inter-individual variability’s in 

mood disorders Box 2. 

Another question is which brain sites are needed for mood 

decoding. In the decoding study, despite personalized  

 

decoder training, there were commonalities across 

individuals. The decoders consistently recruited the limbic 

regions and largely failed with- out them. Moreover, in 

about 60% of the participants, the method selected the 

orbitofrontal cortex for decoding despite the many 

available regions to choose from. Interestingly, an 

independent study showed that orbitofrontal open-loop 

stimulation can acutely improve mood. These studies 

confirm the importance of limbic regions for decoding 

consistent with neuro imaging studies and suggest an 

important role for orbitofrontal cortex [31] [32]. Future 

chronic studies will be essential in further investigating the 

decoding sites. 

Recent electrophysiological studies used a momentary 

mood measure to track acute mood-state changes that can 

happen rapidly in response to stimulation for symptom 

control. The BMI design provided here can be generalized 

to other mood measures to study the feasibility of their 

decoding and control. Future studies should investigate 

whether a mood BMI aimed at symptom control can 

change the baseline level of mood or whether BMIs should 

be trained on different or more sustained measures of 

mood. Finally, it is important to study whether the recent 

results obtained within epilepsy populations generalize to 

other populations. 
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Table 1. Differences between Motor and Mood BMI 

Challenge Motor BMI Mood BMI 

Neural Measurement Motor Cortical networks(including premotor, primary 

motor, and posterior parietal cortex) 

Distributed multisite corticolimbic networks, whose functional 

organization is not as well characterized 

Behavioral Measurements Continuous in time(movements) Infrequent and discrete in time(for example, self reports) 

Time Scale of Behavioral 

Dynamics 

Millisecond(Movements Dynamics) Minutes to days and longer(mood Dynamics) 

Behavioral Assessment Relatively easy and accurate Difficult and less accurate, with self-reports being common 

measurement instruments 

Modeling the effects of 

direct brain stimulation 

In general not needed, unless artificial sensory feedback 

is provided in bidirectional BMIs 

Needed, and should be modeled across distributed multisite 
corticolimbic networks 
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Fig. 2 a,b,c Motor BMIs for functional restoration and scientific discovery. 

 

  

To adapt the decoder parameters in real-time BMI control, the intended movement of the user should be estimated. 

Various intention estimation methods have been devised guided by the closed-loop control view. Since the user receives 

visual feedback of the decoded position at each time, one method posits that the optimal strategy is to intend to go straight 

toward the instructed target from this position and stop there. The velocity intention at each time is estimated by rotating 

[33] the cursor’s decoded velocity  vector toward the target while keeping its magnitude (i.e., speed) unchanged and by 

equating it to zero at the target. This method has improved the performance of Kalman filter BMI de- coders. Another 

method based on the assumption of straight reaches is to assist the user toward the target either by adding to the decoded 

velocity vector an assistive vector that directs to- ward the target or by subtracting from the decoded vector a vector 

perpendicular to the straight line to the target. 

An alternative approach to intention estimation is to build explicit optimal feedback control (OFC) [34] models of 

BMIs, inspired by the OFC models of the natural sensorimotor system. OFC estimates intention by positing that the brain 

(controller) selects the next control command based on visual feedback of the current movement state and an internal 

model of movement and by minimizing a cost function that quantifies the movement goals (for example, reaching a target 

position and stopping there). Given its model-based nature, OFC can incorporate different actuator dynamics and  

estimate  both the  direction of velocity intention and its speed, a capability that has improved the performance of point 

process BMI decoders. In addition to intention estimation, OFC models have also been used to enable goal-directed 

decoding by predicting the movement targets and combining them with neural activity durig movement execution. 

Box 3 | Closed-loop adaptation in motor BMIs and the optimal feedback control model 
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DEVELOPING FEEDBACK-CONTROLLER 

 

Unlike motor BMIs in which the controller is the brain 

mood BMIs need an external controller Figs. 1b and Fig. 3 

with Table 1. This controller needs to change the 

stimulation pattern to modulate neural activity that is 

casually related to mood [37] [38]. Thus building a 

controller requires learning an input–output model that 

describes how changes in stimulation parameters (input) 

modulate neural activity output Fig.3c, a problem termed 

system identification. 

One system identification approach to explore is to 

develop bio- physical models for neuropsychiatric disorders 

to gain a mechanistic understanding, just as these models have 

been built to explain disease- specific population-level effects 

in PD and epilepsy. Biophysical models, however, are often 

for disease-specific brain regions and require some 

knowledge of their functional organization (for example, 

cortex–basal ganglia networks in PD). Thus, generalizing 

them to and across neuropsychiatric disorders may be 

difficult, at least initially, given the involvement of different 

multi region brain networks whose functional organization 

is not well characterized and do not aim to predict the neural 

response observed in an individual, which is needed for 

personalized mood BMIs. This is because their large 

number of nonlinear parameters may make it difficult to fit 

to data for each individual patient and to design controllers. 

Given these challenges, an alternative system 

identification approach to explore is to train simplified 

input–output models using data obtained from each patient 

to facilitate BMI control. Input– output training data can 

be collected by stimulating the brain and recording the 

neural response. Within computer simulations, simplified 

linear transfer function and autoregressive models have 

been used to design controllers [5]. Recent computer 

simulation work has described the network response to 

stimulation in terms of a low- dimensional latent state with 

dynamic latent state-space models Box 1. A critical step in 

a data-driven approach is to collect informative input–

output datasets by designing stimulation waveforms that 

both sufficiently excite the network activity and are 

clinically safe. To do so, a theoretical study proposed a new 

waveform in the form of pulse trains whose amplitude and 

frequency were changed stochastically between two levels. 

Developing and validating data driven input–output models 

of brain network response to stimulation [36] needs to be 

achieved and is a critical future direction. Such models 

may also guide mechanistic biophysical modeling. Once 

personalized input–output models are built, future model- 

based feedback controllers can be developed. Computer 

simulations have explored proportional-integral 

controllers, adaptive minimum 

 

variance controllers, and model-predictive optimal 

feedback controllers. Also, insights from implementing 

model-based controllers [37 in other domains, for example 

in modulating brain activity with anesthetics, may guide 

their development in mood BMIs. 

 

Incorporating neural adaptation and learning  

The success of motor BMIs builds on the ability to learn to 

control them through neural adaptation of the system 

section.  

 

 

 

It is driven by sensory feedback of the decoded movement 

state. In what we have described so far for mood BMIs, 

explicit feedback of the decoded mood state is provided to 

the external stimulation controller rather than the user. 

Arguably, by also providing this feedback to users Fig. 1b 

similarly to providing feed- back of decoded movement 

they can become active participants in the mood BMI loop 

rather than a subconscious plant; they may learn to skillfully 

contribute to controlling their own mood state. This 

process would be a special instance of neuro feedback 

training and may provide an optional separate or 

simultaneous mode of therapy within mood BMIs. 

 

In neuro feedback training, feedback of neural activity in 

the form of visual or auditory cues is provided to participants 

so that they can self-regulate the activity. Without electrical 

stimulation, successful self-regulation of activity in 

emotion-related brain regions such as anterior insula, 

amygdala, or orbitofrontal cortex with neurofeed- back of 

functional MRIor (functional MRI guided) EEG has led to 

improved control [39] of negative emotions, improved 

mood in patients with depression, and reduced stress. 

However, there is inter-individual variability in outcomes, 

with some individuals failing to learn to self-regulate, 

which highlights the benefit for personalization and 

combination with other therapies such as stim- ulation. 

Instead of localized regional activity, asking participants to 

modulate an intuitive mood state that is ‘decoded’ from 

network activity has been suggested to benefit training. This 

is precisely how neurofeedback works in motor BMIs, 

which decode a global movement intention state as 

feedback to guide neural adaptation Figs. 2a and 2b. 

 

Mood BMIs may thus also provide neuro feedback 

training as an optional complementary mode of therapy 

[40] [41]. Electrical stimulation based on a decoded mood 

could provide a continuous mode of therapy aimed at 

symptom control. Neurofeedback training can then be 

provided intermittently to improve efficacy by driving neural 

adaptation and learning at longer time scales, though an 

important question is how to combine it with electrical 

stimulation. Some motor BMI findings in combining decoder 

and neural adaptations may guide the way. For example, 

perhaps adaptive controllers [42] are needed to track neural 

adaptation driven by neurofeedback and stimulation-induced 

plasticity and to guide stimulation [43]. Also, the time-scale 

and extent of controller adaptation may need to be carefully 

adjusted  to enable some acute symptom alleviation with 

electrical stimulation yet still engage neural adaptation with 

neurofeedback training to learn skilled mood control at 

slower time-scales. 
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Fig. 3 a,b,c Steps toward realizing mood BMIs for functional restoration and scientific discovery. a, Mood BMIs for electrical stimulation would require developing 

two key elements: a mood decoder and a stimulation feedback-controller 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despite their inherent limitations, developing animal models90 will provide a valuable test bed to prototype decoding and control technologies 

for mood BMIs by offering the ability to simultaneously record and manipulate using electrical and optogenetic techniques [44] [45]. Further, 

developing animal models that meet the criteria of validity will be important for studying the neural basis of emotions, especially to gain a 

mechanistic circuit-level understanding. Rodent models have shown promise in studying the limbic system, such as the neural circuits of anxiety, 

with findings that have paralleled those in humans. It is important for future work to develop animal models that reproduce the depression-like 

phenotype observed in humans. 

The ethical considerations for human mood BMIs are also extraordinary and should be closely guided by neuroethicists. Mood BMI studies 

in humans should be performed with strict selection criteria similar to open-loop stimulation [46] studies, or within epilepsy populations with 

implantations already in place. Any studies toward scientific discovery should be further guided by the task designs and perturbations used in 

previous neuroimaging and neurofeedback training studies. More broadly, establishing the criteria for the use and application of such BMIs 

requires much future work and education [47]. BMIs must respect and preserve people’s privacy, identity, agency and equality. 

Box 4 | Animal models and ethical considerations 
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MOOD BMIS FOR STUDYING THE NEURAL 

MECHANISMS OF EMOTION REGULATION 

By choosing the proper emotion-regulatory activities, one 

can start, change, and stop the trajectory of an emotion 

within its multidimensional space. Developing mood 

BMIs may benefit from understanding the brain 

mechanisms underpinning emotion regulation. The use of 

mood BMIs as scientific instruments that can record from 

dispersed corticolimbic networks, disrupt neuro feedback, 

and change the amount and location of electrical 

stimulation is another crucial future direction for 

advancing this understanding. The creation of animal 

models and ethical guidelines is also essential for this and 

mood BMIs to occur (Box 4).Our knowledge of emotion 

regulation and its brain underpinnings has considerably 

increased as a result of prior psychological and 

neuroimaging research, and many implicit and explicit 

control mechanisms have been proposed. By learning to 

reinterpret the meaning of a stimulus, people can lessen 

negative emotion. For instance, they might perceive a 

distant scream as signifying exhilaration rather than panic 

[48]. 

 Given the aforementioned parallels between 

computational pathways in motor learning it is possible 

that some observations in motor learning could yield 

testable ideas for upcoming mood BMI investigations of 

emotion regulation. For instance, it's possible that the 

brain mechanisms driving model-based reappraisal are 

comparable to the neuronal re-association seen in the 

previously stated motor BMI learning. A distinct 

movement intent is linked with an existing pattern of 

neural activity in the latter situation to modify the motor 

reaction, whereas in the former, a different meaning is 

connected with the same stimulus to change the emotional 

response [49]. Additionally, prefrontal areas have been 

linked to both suggesting that the cognitive control 

processes in reappraisal may be comparable to those in 

motor learning. Lastly, several areas connected to mood, 

such the orbitofrontal cortex associated with reward-

driven learning, which is also important for motor BMIs. 

As a result, BMIs have the potential to shed light on brain 

processes underlying learning and control in motivated 

behavior that go much beyond the motor and well into the 

emotional domains.

                           CONCLUSIONS 

BMIs produce closed-loop control systems that are 

instruments for scientific research and functional 

restoration. The enormous amount of research conducted 

over the past 20 years in animal models and early clinical 

studies has shown that motor BMIs have the potential to 

help paralyzed people regain function while also 

expanding our knowledge of the brain underpinnings of 

control and learning. We outlined a way toward 

expanding BMIs to the emerging field of neuropsychiatric 

illnesses using the lessons learned from motor BMIs, the 

extensive body of work in psychology and neuro imaging 

that explores emotional processing, closed-loop control 

principles, and recent advancements. 
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