
Multi-objective Optimization for Embedded Software at Model Level Based on

DSL and T4
Pham Van Huong, Nguyen Ngoc Binh and Bui Ngoc Hai

University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam

Abstract

Optimizing embedded software can be done in the

different phases of the software life such as design,

implementation and compilation. The optimization in

the early stages of software life is very significant. In

this paper, we propose a Pareto multi-objective

optimization method of embedded software in the

design phase based on DSL (Domain Specific

Language) and T4 (Text Template Transformation

Toolkit) code generation technology. From the class

diagram, we define the measures that support to

evaluate performance and used memory capacity.

Based on these measures, we analyze and define the

objective performance function, the memory objective

function and the global objective function for Pareto

optimization. We also developed the DSL and T4

framework to create class diagrams and get

parameters automatically from the class diagrams.

1. Introduction
Today, in the development trend of information

technology, Software Engineering has also developed

strongly, especially in embedded software and object-

oriented software. Development environment of

embedded software is limited in: the CPU’s processing

ability, memory size, battery life time, problems of

energy consumption, real-time problem [1, 2].

Therefore, optimization problems in software

development are of important significance. The

problems of embedded software optimization often

include the following levels: design level optimization,

source code level optimization, compiler level

optimization, environment level (hardware-software co-

design optimization, instruction set optimization) and

runtime level optimization [3, 4, 5]. Optimization in the

design phase is a new approach and although

representing many challenges, it brings more benefits

than other optimization methods at later phases.

Optimization at design phase is often based on

model-driven software engineering, software

performance engineering and there have been a few

studies about this issue, the most well-known out of

which is the research by Michalis Anastasopoulos,

Thomas Forster and Dirk Muthig about optimizing

Mobile application performance trade-off with battery

lifetime based on Model-driven engineering [1, 2]. In

this research, the author built a Domain Specific

Language based on the Eclipse open source framework

for constructing Mobile software architecture,

generating simulation code and running tests on

simulation code to evaluate performance and trade off

with battery lifetime. According to this approach, these

authors studied application optimization based on

model-driven engineering and code generation template

for the product lines [5]. Following software modeling

approach, 2009, Zhihui Yang proposed the research

about Domain Specific Modeling approach for

component-oriented software. In this research, Yang

synthesized aspects of Domain Specific Language

(DSL), Component-based Software model and

definition, DSL construction for component-based

software in Eclipse [3]. Then he based on DSL to

generate simulation code, evaluate and optimize based

on model transformation. However, these methods do

not analyze, evaluate directly the performance and

measures from the components and structure of the

model. On the other hand, evaluating the performance

and measures at design phase is very difficult. Also,

most measures in model level only evaluate

maintainability, reusability but not directly the

performance measure, efficiency of memory usage [8,

9, 10, 11]. Moreover, the measures of quality,

performance, memory often conflict, such as: memory

storage optimal may reduce the execution speed of the

program. Therefore, in this paper we propose a new

approach: Pareto optimal for embedded software from

class diagrams based on DSL and T4. The research in

this paper is conducted to address three problems:

 Software architecture specification and

parameters extraction from the models to

evaluate performance, memory usage and other

quality measures.

 The direct analysis and evaluation of

performance, memory usage from class

diagrams

1229

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90518

Vol. 2 Issue 9, September - 2013

 Pareto Optimal trade-off between performance

and efficiency of memory usage from class

diagrams

2. Measures based on a class diagram
2.1. Parameters

Classes are central components in the class diagram.

A class is the template defining a set of objects with the

same attributes and behaviors. A class diagram consists

of a set of packages, classes, interfaces, relationships

and constraints. To construct the performance

evaluation function on the class diagram, firstly we

derive parameters affecting to the software

performance directly from the class diagram. These

parameters are described in Table 1.

Table 1. Parameters used to evaluate the software

performance

Parameters số Symbol Description

Class

method
S

Is static method, that is

allocated memory when

loading program

Instance

method
O

Is non-static method allocated

memory when creating an

object

Class

variable
Xj

Xj is a static attribute j in a

class, it is allocated memory

when loading program.

Instance

variable
Yj

Yj is non-static attribute j in an

object, it is allocated memory

when creating an object.

Method

parameter
Pk Is parameter k of a method

Total of

classes
A

Number of classes in a class

diagram

Total of

class

methods

Bi
Number of static methods in

the class i

B
Number of static methods in a

class diagram

Total of

class

variables

Ci
Number of static attributes in

class i

C
Number of static attributes in

a class diagram

Total of

Instance

Di
Number of non-static methods

in class i

methods
D

Number of non-static methods

in a class diagram

Total of

Instance

variables

Ei
Number of non-static

attributes in class i

E
Number of non-static

attributes in a class diagram

Total of

Parameters
Fj

Number of parameters in

method j

2.2. Measures affecting to performance and

memory capacity
Before constructing the performance evaluation

function from the class diagram, in this section, we

focus on the analyzing components and the structure of

the class diagram to build the measures affecting to

software performance [9, 11]. These measures are

shown in Table 2.
Table 2. Measures affecting to performance

Measures Symbol Description

Size of class

variables
S1

The total of the allocated

memory size of static attributes

in the class diagram

Size of class

methods
S2

The total of the allocated

memory size of static methods

in the class diagram

Size of

executed class

methods

S3

The total of the allocated

memory size that will be used

when executing the static

methods in the class diagram

Size of instance

variables
S4

The total of the allocated

memory size of non-static

attributes in the class diagram

Size of instance

methods
S5

The total of the allocated

memory size of non-static

methods in the class diagram

Size of

executed

instance

methods

S6

The total of the allocated

memory size that will be used

when executing the non-static

methods in the class diagram

2.2.1. Size of class variables

This measure is calculated by a total of memory

amount allocated statically for all static attributes of all

1230

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90518

Vol. 2 Issue 9, September - 2013

classes in the diagram. The static elements are allocated

memory once when loading the program into memory.

With the notation in Table 1 and Table 2, we construct

the formula for calculating the memory size total of the

static attributes in the class diagram as the following

formula:

𝑆1 = 𝑆𝑖𝑧𝑒(𝑋𝑗)

𝐶𝑖

𝑗=1

𝐴

𝑖=1

 (1)

2.2.2. Size of class methods

The class methods are static methods that do not

belong a specific object. They are commonly called by

class name and allocated once when loading the

program. According to the parameters in Table 1 and

Table 2, this measure is defined as formula (2):

𝑆2 = 𝑆𝑖𝑧𝑒(𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

𝐵𝑖

𝑗=1

𝐴

𝑖=1

 (2)

2.2.3. Size of executed class methods

The Methods of executed class size is the size of

memory used when executing a static method. When

the static method is called, firstly the parameters are

allocated and when the method done, it needs to save

the returned results in memory. Therefore, according to

the parameters in Table 1 and Table 2, this measure is

defined as formula 3:

𝑆3 = 𝑆𝑖𝑧𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑦𝑝𝑒 𝑗

𝐵𝑖

𝑗=1

𝐴

𝑖=1

+ 𝑠𝑖𝑧𝑒(𝑃𝑘)

𝐹𝑗

𝑘=1

(3)

2.2.4. Size of instance variables

The Size of Instance Variables is the method of the

object and it is only allocated memory when the object

is created. Therefore, from the parameters in Table 1

and Table 2, this measure is defined as formula 4:

𝑆4 = 𝑆𝑖𝑧𝑒(𝑌𝑗)

𝐸𝑖

𝑗=1

𝐴

𝑖=1

 (4)

2.2.5. Size of instance methods

Instance methods are non-static method, allocated

memory when creating the object and only used after

creating the object. Therefore, according to the

parameters in Table 1 and Table 2, this measure is

defined as formula (5):

𝑆5 = 𝑆𝑖𝑧𝑒(𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

𝐷𝑖

𝑗=1

𝐴

𝑖=1

 (5)

2.2.6. Size of executed instance methods

The size of executed instance methods is the total of

memory size used when executing the instance

methods. It includes the allocated memory for

parameters and the memory containing the returned

result of the instance method. According to the

parameters in Table 1 and Table 2, this measure is

defined as formula 6:

𝑆6 = 𝑆𝑖𝑧𝑒 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑦𝑝𝑒 𝑗

𝐷𝑖

𝑗=1

𝐴

𝑖=1

+ 𝑠𝑖𝑧𝑒(𝑃𝑘)

𝐹𝑗

𝑘=1

(6)

3. Pareto optimization from a class diagram
3.1. Objective functions

Based on the metrics defined in section 2, we build

performance objective function, memory objective

function and global objective function for Pareto

Optimal to choose the best trade-off between

performance and memory usage. Each type of attribute

and method will be allocated memory and is called in

different ways that affect the execution of the program.

To construct the objective functions, we analyze the

execution of an OOP program and analyze the

dependence of performance on the attributes, methods

and parameters in the class diagram.

1231

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90518

Vol. 2 Issue 9, September - 2013

When the program is required to execute, firstly, the

source code of class will be loaded into memory, static

components including class variables, class method

also allocated memory in the load time. Therefore, the

static components only take one static allocation and

one memory access for use after the load is finished.

When using the instance variables and instance

methods of the object, the object must be created.

When creating objects, we need to perform two steps:

access memory to fetch and execute the object creation

statement; allocate memory dynamically for the

instance variables and instance methods of the object.

Therefore we need a dynamic allocation operation and

two memory access operations to be able to use the

components of the object. When we execute a class

method, we need a memory access operation to point to

the statements of method, and a memory allocation for

the parameters of the method, also, because to call the

static method we need through the class in memory, so

a static execution process require at least one memory

allocation operation and three memory access

operations. At design phase, with class diagram, we do

not care and can’t evaluate the statement set of method.

When we execute an instance method, first we must

create an object, an instance methods need called

through an object, so it need one dynamic allocation

operation and two memory access. Execution process

of an instance method is also like a class method, so it

needs at least an additional allocation and three

additional memory access operations. So, total

execution process of an instance method needs at least

three memory allocation operations and five memory

access operations.

From analyzing an execution process of an OOP

program, we give some conclusions and formulate the

objective function as follows.
Performance Objective Function:

 Using static components (class members) will

perform faster than using non-static components

due to static memory allocation and loaded into

memory as soon as the program loaded, so

performance would be proportional to (S1 + S2) /

(S4 + S5)

 In a class, when accessing data, the program

using class variables is faster than that using

parameters of the class methods, so

performance would be proportional to S1/S3

 With an object, when accessing data, the

program that uses instance variables are faster

than the program that uses parameters of the

instance methods, so performance would be

proportional to S4/S6.

Therefore, the performance objective function is

calculated by the following formula:

(7)

Memory Objective Function:

 Using the static components (class members)

will take more memory capacity than the using

non-static components due to the static

component is allocated memory static, and only

recovered when the program ends, so used

memory capacity would be proportional to (S4

+ S5) / (S1 + S2)

 In one class, with the same data object, if we

use class variables, it will take more memory

than using parameters transmission to class

methods, because memory allocated for class

variables only released when the program ends.

Therefore used memory capacity is proportional

to S3/S1

 With an object, with each element of data, if we

use instance variables, it will take more memory

than using parameters transmission to class

methods, because the memory of instance

variables is recovered only when the object is

destroyed and memory parameters is freed

when the method done. Therefore the amount of

memory used is proportional to S6/S4.

So, the memory objective function is calculated by the

following formula:

 (8)

Global Objective Function:

F = wp Fp + wm Fm (9)

Where: wp is weight of the performance objective, wm is

weight of the memory objective and wp + wm= 1.

3.2. Apply Pareto Optimization to class

diagram
Unlike other traditional optimization methods,

Pareto optimization address to the trade-off between the

optimal objectives. Each class design has a tuple of

values of the objective function, called an objective

vector. We apply the Pareto optimal by constructing the

global objective function shown in formula 9 from the

objective functions shown in formula 7 and formula 8:

Here we may consider the measures could have the

same role, then we can choose the weights for the

objective function are equal and wp = wm = 0.5.

1232

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90518

Vol. 2 Issue 9, September - 2013

From the set of class diagrams, our task is finding

the best diagram according to the criteria that the global

objective function is maximal.

4. Develop a DSL framework supporting

Pareto optimization from class diagrams
Domain Specific Language is a programming

language or specification language dedicated to a

particular problem domain, a particular problem

representation technique or a particular solution

technique. DSL is not a new idea. There are many DSL

in the specific application domain such as SQL, html or

VHDL - hardware description language. However,

today with the diverse development of technologies,

software engineering in a different application domain

also has its own characteristics so that UML can not

specify details for a specific domain. Therefore, using

DSL replacing UML in the specific application domain

is a new and promising trend in software engineering

[5, 6, 7].

In this section, we will develop a framework DSL to

support the Pareto optimization at model level and

allow designing class diagram, evaluating software

performance of a class diagram and selecting the best

trade-off between performance and used memory

capacity. The first, we define DSL and build meta-

model that allows creating class. The second, we create

the templates used to analyze and extract the

parameters from the class diagram based on T4 code

generation technology. Finally, we implement the

Pareto optimization algorithm to select the best trade-

off class diagram between performance and used

memory capacity.

4.1. Build DSL and meta-model
DSL Tools allow constructing meta-model using to

specify a DSL. Meta-model is the model used to define

and create the models. Process of DSL definition and

meta-model construction is shown by the following

steps:

 Define the logical components: Domain classes,

Components, Tasks, Flows, Comment classes,

Rules, Constrain and Relationship

 Create shape symbols corresponding to each

logical component above. These symbols will

be used to design in the graphic interface after

the DSL was compiled and deployed

 Define XML files used to store definition and

mapping between logical components and shape

symbols.
To build the DSL framework and meta-model

supporting Pareto from class diagram, we use the class

diagram example of Visual Studio.NET 2008 SDK

tools. We modify and integrate specification

information and templates used to generate code to this

example to create framework of DSL and meta-model.

4.2. Build T4 templates used to generate code
T4 is a powerful code generation technology, allows

constructing templates supporting automatic code

generation based on the XML file defining DSL (meta-

model file) and the XML file of the actual design

model [7, 8]. T4 is flexible and it allows generating

output in the different forms such as programming

language, formal language or even a destination model.

The idea of T4 is shown by the following steps: (1)

read the XML file of the actual design model and the

meta-model file; (2) transform the shape symbol to the

logical symbol; (3) analyses and generate code based

on T4 templates. In this section, we define the T4

templates and use them to extract the parameters from

class diagrams. Figure 1 show an example of a T4

template built.

Figure 1. A template for generating parameters from class

diagram

5. Experiment
In this experiment, we use DSL framework in the

section 4 to design and solve the Pareto optimization

from class diagram. Here, we used well the famous 8-

queen problem to deploy the experiment by following

steps: (1) design 5 different class diagram of the 8-

queen problem based on DSL framework as shown in

Figure 2, Figure 3 , Figure 4, Figure 5 and Figure 6; (2)

generate 5 parameter files based on T4 templates as

illustrated in Figure 7; (3) analyze parametric, calculate

the measures and execute the Pareto optimization

program to choose the best trade-of class diagram

between performance and used memory as shown in

Figure 8.

1233

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90518

Vol. 2 Issue 9, September - 2013

Figure 2: Class diagram 1

Figure 3: Class diagram 2

Figure 4: Class diagram 3

Figure 5: Class diagram 4

Figure 6: Class diagram 5

Result of executing the Pareto optimization program

is shown in the chart contained in the Figure 12. In this

chart, class diagram 3 is the selected diagram because it

is balanced between the performance objective function

and the memory objective function. In this class

diagram, value of the global objective function is

maximal.

Figure 7: Result of generating code from class diagram

Table 3. Actual performance of 5 programs

Times Progra

m 1

Progra

m 2

Progra

m 3

Progra

m 4

Progra

m 5

1 1469 1305 1103 1001 998

2 1483 1302 1005 1007 995

3 1585 1288 1009 1005 984

4 1481 1295 1011 995 992

5 1519 1320 1100 980 1002

6 1487 1312 1205 1002 996

7 1512 1299 1202 998 983

8 1568 1308 1102 995 1000

9 1490 1323 1015 1005 983

10 1470 1298 1025 1011 997

Average

time

(ms)

1506.4 1305 1077.7 999.8 993

1234

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90518

Vol. 2 Issue 9, September - 2013

After executing Pareto optimization from class

diagram, we implement 5 different programs that are

corresponding to 5 class diagrams to test the actual

performance. Statements and algorithms in these 5

programs are similar. The programs are only different

from structure and their components. This is to avoid

the influence of the implementation on the evaluation

of the model. Finally, we execute the programs,

statistics and compare actual performance with the

result of evaluation of performance by Pareto

optimization. For each program, we execute 10 times

and calculate the average executing time. Statistical

results are displayed in the Table 3.

6. Conclusion and future work
The content studied in this paper presented the

methodology of evaluating software performance

directly from class diagram based on analyzing

components and architecture of the class diagram. This

is a new method and it is different from SPE method

that must add more performance information to

diagram and transform to performance models from

UML models. And the paper also proposed a new

approach to optimize object-oriented embedded

software in the design phase based on multi-objective

Pareto optimization. The specific contribution of the

paper is as follows: firstly, we have analyze and

constructed measures and objective functions directly

from class diagram; secondly, we have developed the

framework that allows designing class diagram and

generating parameters automatically from class

diagram based on DSL and T4; thirdly, we have

implemented the program to solve the Pareto

optimization from class diagram. Last but not least, we

also have implemented experiment programs to verify

the actual performance and Pareto optimal results.

Based on this research, we will study multi-

objective optimization such as the reuse ability,

architecture complexity, maintenance ability;

optimization based on model transformation,

optimization based on generating simulation code.

7. References
[1] Chris Thompson, Jules White, Brian Dougherty and Douglas C.

 Schmidt Bowman. Optimizing Mobil Application

Performance with Model-Driven Engineering. P09 Proceedings

of the 7th IFIP WG 10.2, 2008, pp.1-8.

[2] Michalis Anastasopoulos, Thomas Forster, and Dirk Muthig.
Optimizing Model-driven Development by deriving Code

Generation Patterns from Product line architectures. STJA,

JIT. 6th Annual, Kaiserslautern, Germany, 2005, pp.425-437.

[3] Sanna Sivonen. Domain-specific modelling language and code
generator for developing repository-based Eclipse plug-ins.

VTT PUBLICATIONS 680, ESPOO 2008, pp.16-62.

[4] Armita Peymandoust, Tajana Simunic. Low Power Embedded

Software Optimization using Symbolic Algebra. Computer
Systems Laboratory, Stanford University, Stanford,

CA,Proceedings of the conference on Design, automation and

test in Europe, 2002, pp.1-6.

Figure 8: The chart of Pareto optimization from Class diagrams

1235

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90518

Vol. 2 Issue 9, September - 2013

[5] Michalis Anastasopoulos, Thomas Forster, and Dirk Muthig,
“Optimizing Model-driven Development by deriving Code

Generation Patterns from Product line architectures”,

Fraunhofer Institute for Experimental Software Engineering
(IESE) Sauerwiesen 6, D-67661 Kaiserslautern, Germany,

2007, pp.3-10.

[6] Sadagopan Srinivasan, Zhen Fang, Ravi Iyer, Steven Zhang,

Mike Espig, Don Newell, Daniel Cermak, Yi Wu, Igor
Kozintsev, Horst Haussecker. Performance Characterization

and Optimization of Mobile Augmented Reality on Handheld

Platforms. Intel Corporation 2008

[7] Yong-Yoon Cho, Jong-Bae Moon, and Young-Chul Kim. A
System for Performance Evaluation of Embedded Software.

Engineering and Technology 2005

[8] Pospiech F, Olsen S. Embedded software in the SoC world.

How HdS helps to face the HW and SW design challenge.

IEEE– 658, 21-24 Sept. 2003, pp:653

[9] Connie U. Smith, Catalina M. Lladó, Vittorio Cortellessa and

Lloyd G. Williams. From UML models to software

performance results: An SPE process based on XML
interchange formats. 2005, pp.1-13.

[10] Dorin B. Petriu, Murray Woodside. A Metamodel for

Generating Performance Models from UML Designs. Dept. of

Systems and Computer Engineering Carleton University,
Ottawa K1S 5B6, Canada, pp.1-11.

[11] Simonetta Balsamo Moreno Marzoll. Efficient Performance
Models in Component-Based Software Engineering. Torino

155, 30172 Mestre, Italy, pp.1-10.

1236

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90518

Vol. 2 Issue 9, September - 2013

