International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 2 Issue 9, September - 2013

Multi-objective Optimization for Embedded Software at Model Level Based on

DSL and T4
Pham Van Huong, Nguyen Ngoc Binh and Bui Ngoc Hai
University of Engineering and Technology, Vietham National University, Hanoi, Vietham

IJERTV21S90518

Abstract

Optimizing embedded software can be done in the
different phases of the software life such as design,
implementation and compilation. The optimization in
the early stages of software life is very significant. In
this paper, we propose a Pareto multi-objective
optimization method of embedded software in the
design phase based on DSL (Domain Specific
Language) and T4 (Text Template Transformation
Toolkit) code generation technology. From the class
diagram, we define the measures that support to
evaluate performance and used memory capacity.
Based on these measures, we analyze and define the
objective performance function, the memory objective
function and the global objective function for Pareto
optimization. We also developed the DSL and T4
framework to create class diagrams and get
parameters automatically from the class diagrams.

1. Introduction

Today, in the development trend of information
technology, Software Engineering has also developed
strongly, especially in embedded software and object-
oriented software. Development environment of
embedded software is limited in: the CPU’s processing
ability, memory size, battery life time, problems of
energy consumption, real-time problem [1, 2].
Therefore, optimization problems in software
development are of important significance. The
problems of embedded software optimization often
include the following levels: design level optimization,
source code level optimization, compiler level
optimization, environment level (hardware-software co-
design optimization, instruction set optimization) and
runtime level optimization [3, 4, 5]. Optimization in the
design phase is a new approach and although
representing many challenges, it brings more benefits
than other optimization methods at later phases.

Optimization at design phase is often based on
model-driven software engineering, software
performance engineering and there have been a few
studies about this issue, the most well-known out of

which is the research by Michalis Anastasopoulos,
Thomas Forster and Dirk Muthig about optimizing
Mobile application performance trade-off with battery
lifetime based on Model-driven engineering [1, 2]. In
this research, the author built a Domain Specific
Language based on the Eclipse open source framework
for constructing Mobile software architecture,
generating simulation code and running tests on
simulation code to evaluate performance and trade off
with battery lifetime. According to this approach, these
authors studied application optimization based on
model-driven engineering and code generation template
for the product lines [5]. Following software modeling
approach, 2009, zhihui Yang proposed the research
about Domain Specific Modeling approach for
component-oriented software. In this research, Yang
synthesized aspects of Domain Specific Language
(DSL), Component-based Software model and
definition, DSL construction for component-based
software in Eclipse [3]. Then he based on DSL to
generate simulation code, evaluate and optimize based
on model transformation. However, these methods do
not analyze, evaluate directly the performance and
measures from the components and structure of the
model. On the other hand, evaluating the performance
and measures at design phase is very difficult. Also,
most measures in model level only evaluate
maintainability, reusability but not directly the
performance measure, efficiency of memory usage [8,
9, 10, 11]. Moreover, the measures of quality,
performance, memory often conflict, such as: memory
storage optimal may reduce the execution speed of the
program. Therefore, in this paper we propose a new
approach: Pareto optimal for embedded software from
class diagrams based on DSL and T4. The research in
this paper is conducted to address three problems:

e Software architecture specification and
parameters extraction from the models to
evaluate performance, memory usage and other
quality measures.

e The direct analysis and evaluation of
performance, memory usage from class
diagrams

www.ijert.org

1229

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 9, September - 2013

IJERTV21S90518

e Pareto Optimal trade-off between performance methods D Number of non-static methods
and efficiency of memory usage from class in a class diagram
diagrams

2. Measures based on a class diagram E Number of non-static
2 1. Parameters Total of ' attributes in class i

Classes are central components in the class diagram. Instance _

A class is the template defining a set of objects with the variables E Number of non-static
same attributes and behaviors. A class diagram consists attributes in a class diagram
of a set of packages, classes, interfaces, relationships .
and constraints. To construct the performance Total of F Number of parameters in
evaluation function on the class diagram, firstly we Parameters method j

derive parameters affecting to the software

performance directly from the class diagram. These
parameters are described in Table 1.
Table 1. Parameters used to evaluate the software

2.2. Measures affecting to performance and

performance memory capacity
Parameters | Symbol Description Be_fore constructing the perfo_rmanpe evgluation
Is static method. that is function from the class diagram, in this section, we
Class s allocated memor’y when focus on the analyzing components and the structure of
method loading program the class diagram to build the measures affecting to
software performance [9, 11]. These measures are
Instance Is non-static method allocated ShOW_:_] IBITZb II?/IZI ffecting t f
o 0 memory when creating an able Z. Ivleasures arrecting to performance
metno object Measures Symbol Description
i _ _ _ Size of class The total of the allocated
Class X is a static attribute j in a variables S memory size of static attributes
variable X; class, it is allocated memory in the class diagram
when loading program.
. . _ A Size of class The tot:cll of the a_llocated
Instance YJ |.S non.-s.tatlc attrlbutej Inan methods SZ memc')ry size of Sta'tlc methods
variable Y; object, it is allocated memory in the class diagram
when creating an object.
. The total of the allocated
Size of - .
Method ted cl S memory size that will be used
Py Is parameter k of a method executed class 8 when executing the static
parameter methods A .
methods in the class diagram
Total of A Number of classes in a class = oftheall 5
; . . e total of the allocate
classes diagram Size of instance))
. S, memory size of non-static
variables . . -
Number of static methods in attributes in the class diagram
B; .
Total of : the class i = el 5
. . e total of the allocate
class Size of instance . .
methods Number of static methods in a methods Ss memory size of non-static
B class diagram methods in the class diagram
Number of static attributes in Size of The total of the allocated
Total of Ci class i executed S memory size that will be used
class instance ° when executing the non-static
variables c Number of static attributes in methods methods in the class diagram
a class diagram
Total of D, Number of non-static methods 2.2.1. Size of class variables
Instance ' in class i This measure is calculated by a total of memory
amount allocated statically for all static attributes of all

www.ijert.org

1230

IJERTV21S90518

classes in the diagram. The static elements are allocated
memory once when loading the program into memory.
With the notation in Table 1 and Table 2, we construct
the formula for calculating the memory size total of the
static attributes in the class diagram as the following
formula:

A G

S, = Z Size(X;) €Y
1

i=1j=

2.2.2. Size of class methods

The class methods are static methods that do not
belong a specific object. They are commonly called by
class name and allocated once when loading the
program. According to the parameters in Table 1 and
Table 2, this measure is defined as formula (2):

A B

S, = Z Z Size(Reference Variable) 2

i=1 =1

2.2.3. Size of executed class methods

The Methods of executed class size is the size of
memory used when executing a static method. When
the static method is called, firstly the parameters are
allocated and when the method done, it needs to save
the returned results in memory. Therefore, according to
the parameters in Table 1 and Table 2, this measure is
defined as formula 3:

A B;
S, = 22 Size(return type j)
=1/=1

Fi @3)

+ size(Py)

2.2.4. Size of instance variables

The Size of Instance Variables is the method of the
object and it is only allocated memory when the object
is created. Therefore, from the parameters in Table 1
and Table 2, this measure is defined as formula 4:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 2 Issue 9, September - 2013

Sy = ZA: i Size(Y;) 4)
i=1

i j=

2.2.5. Size of instance methods

Instance methods are non-static method, allocated
memory when creating the object and only used after
creating the object. Therefore, according to the
parameters in Table 1 and Table 2, this measure is
defined as formula (5):

A D;

Ss = z z Size(Reference Variable) (®)

i=1j=1

2.2.6. Size of executed instance methods

The size of executed instance methods is the total of
memory size used when executing the instance
methods. It includes the allocated memory for
parameters and the memory containing the returned
result of the instance method. According to the
parameters in Table 1 and Table 2, this measure is
defined as formula 6:

A D;
Se = ZZ Size(return type j)
i=1j=1
i (6)
+ size(Py,)
k=1

3. Pareto optimization from a class diagram
3.1. Objective functions

Based on the metrics defined in section 2, we build
performance objective function, memory objective
function and global objective function for Pareto
Optimal to choose the best trade-off between
performance and memory usage. Each type of attribute
and method will be allocated memory and is called in
different ways that affect the execution of the program.
To construct the objective functions, we analyze the
execution of an OOP program and analyze the
dependence of performance on the attributes, methods
and parameters in the class diagram.

www.ijert.org

1231

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 2 Issue 9, September - 2013

IJERTV21S90518

When the program is required to execute, firstly, the
source code of class will be loaded into memory, static
components including class variables, class method
also allocated memory in the load time. Therefore, the
static components only take one static allocation and
one memory access for use after the load is finished.
When using the instance variables and instance
methods of the object, the object must be created.
When creating objects, we need to perform two steps:
access memory to fetch and execute the object creation
statement; allocate memory dynamically for the
instance variables and instance methods of the object.
Therefore we need a dynamic allocation operation and
two memory access operations to be able to use the
components of the object. When we execute a class
method, we need a memory access operation to point to
the statements of method, and a memory allocation for
the parameters of the method, also, because to call the
static method we need through the class in memory, so
a static execution process require at least one memory
allocation operation and three memory access
operations. At design phase, with class diagram, we do
not care and can’t evaluate the statement set of method.
When we execute an instance method, first we must
create an object, an instance methods need called
through an object, so it need one dynamic allocation
operation and two memory access. Execution process
of an instance method is also like a class method, so it
needs at least an additional allocation and three
additional memory access operations. So, total
execution process of an instance method needs at least
three memory allocation operations and five memory

_SitS S Ss

=<)
4+S55 53 5

o

Memory Objective Function:

e Using the static components (class members)
will take more memory capacity than the using
non-static components due to the static
component is allocated memory static, and only
recovered when the program ends, so used
memory capacity would be proportional to (S,
+S85) [(S1+ S)

e In one class, with the same data object, if we
use class variables, it will take more memory
than using parameters transmission to class
methods, because memory allocated for class
variables only released when the program ends.
Therefore used memory capacity is proportional
to S4/S;

e With an object, with each element of data, if we
use instance variables, it will take more memory
than using parameters transmission to class
methods, because the memory of instance
variables is recovered only when the object is
destroyed and memory parameters is freed
when the method done. Therefore the amount of
memory used is proportional to Sg/S;.

So, the memory objective function is calculated by the
following formula:
_5:+S5 53 Se

access operations. m= $,+S, S5, S, ®)
From analyzing an execution process of an OOP

program, we give some conclusions and formulate the

objective function as follows.
Performance Objective Function: Global Objective Function:
e Using static components (class members) will F=w, X Fy+w, X Fy 9)

perform faster than using non-static components
due to static memory allocation and loaded into
memory as soon as the program loaded, so
performance would be proportional to (S; + S,) /
(Sa+ So)

e In a class, when accessing data, the program
using class variables is faster than that using
parameters of the class methods, so
performance would be proportional to S;/S;

e With an object, when accessing data, the
program that uses instance variables are faster
than the program that uses parameters of the
instance methods, so performance would be
proportional to S,/Se.

Therefore, the performance objective function is
calculated by the following formula:

Where: w, is weight of the performance objective, wy, is
weight of the memory objective and w, + wy,= 1.

3.2. Apply Pareto Optimization to class
diagram

Unlike other traditional optimization methods,
Pareto optimization address to the trade-off between the
optimal objectives. Each class design has a tuple of
values of the objective function, called an objective
vector. We apply the Pareto optimal by constructing the
global objective function shown in formula 9 from the
objective functions shown in formula 7 and formula 8:

Here we may consider the measures could have the
same role, then we can choose the weights for the
objective function are equal and w, = w, = 0.5.

www.ijert.org

1232

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 2 Issue 9, September - 2013

IJERTV21S90518

From the set of class diagrams, our task is finding
the best diagram according to the criteria that the global
objective function is maximal.

4. Develop a DSL framework supporting
Pareto optimization from class diagrams

Domain Specific Language is a programming
language or specification language dedicated to a
particular problem domain, a particular problem
representation technique or a particular solution
technique. DSL is not a new idea. There are many DSL
in the specific application domain such as SQL, html or
VHDL - hardware description language. However,
today with the diverse development of technologies,
software engineering in a different application domain
also has its own characteristics so that UML can not
specify details for a specific domain. Therefore, using
DSL replacing UML in the specific application domain
is a new and promising trend in software engineering
[5, 6, 7].

In this section, we will develop a framework DSL to
support the Pareto optimization at model level and
allow designing class diagram, evaluating software
performance of a class diagram and selecting the best
trade-off between performance and used memory
capacity. The first, we define DSL and build meta-
model that allows creating class. The second, we create
the templates used to analyze and extract the
parameters from the class diagram based on T4 code
generation technology. Finally, we implement. the
Pareto optimization algorithm to select the best trade-
off class diagram between performance and used
memory capacity.

4.1. Build DSL and meta-model
DSL Tools allow constructing meta-model using to
specify a DSL. Meta-model is the model used to define
and create the models. Process of DSL definition and
meta-model construction is shown by the following
steps:
o Define the logical components: Domain classes,
Components, Tasks, Flows, Comment classes,
Rules, Constrain and Relationship

e Create shape symbols corresponding to each
logical component above. These symbols will
be used to design in the graphic interface after
the DSL was compiled and deployed

e Define XML files used to store definition and

mapping between logical components and shape
symbols.

To build the DSL framework and meta-model
supporting Pareto from class diagram, we use the class
diagram example of Visual Studio.NET 2008 SDK
tools. We modify and integrate specification

information and templates used to generate code to this
example to create framework of DSL and meta-model.

4.2. Build T4 templates used to generate code

T4 is a powerful code generation technology, allows
constructing templates supporting automatic code
generation based on the XML file defining DSL (meta-
model file) and the XML file of the actual design
model [7, 8]. T4 is flexible and it allows generating
output in the different forms such as programming
language, formal language or even a destination model.
The idea of T4 is shown by the following steps: (1)
read the XML file of the actual design model and the
meta-model file; (2) transform the shape symbol to the
logical symbol; (3) analyses and generate code based
on T4 templates. In this section, we define the T4
templates and use them to extract the parameters from
class diagrams. Figure 1 show an example of a T4
template built.

<#@ template inherits="Microsoft.VisualStudio.TextTemplating.
<#@ output extension=".txt" #>
<#@ P03_Pareto_Class processor="P03_Pareto_ClassDirectiveProc
<#
// Cac bien luu tru, thong ke tham so tu bieu do
string[] arClass;
arClass = new string[this.ModelRoot.Types.Count];
/7/duyet cac class trong model:
foreach (ModelType type in this.ModelRoot.Types)
{ //Hien thi ten Class
#><#= "@Class:" #><#= type.Name #>
<# //Lay thong tin lop hien tai
ModelClass modelClass = type as ModelClass;
if (modelClass != null)
{
//get methods:
if (modelClass.Operations.Count >0)
{#>
<# foreach(ClassOperation op in modelClass.Operation
{
#> @@Method:<#=op.Name#>
<# }

Figure 1. A template for generating parameters from class
diagram

5. Experiment

In this experiment, we use DSL framework in the
section 4 to design and solve the Pareto optimization
from class diagram. Here, we used well the famous 8-
queen problem to deploy the experiment by following
steps: (1) design 5 different class diagram of the 8-
queen problem based on DSL framework as shown in
Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6; (2)
generate 5 parameter files based on T4 templates as
illustrated in Figure 7; (3) analyze parametric, calculate
the measures and execute the Pareto optimization
program to choose the best trade-of class diagram
between performance and used memory as shown in
Figure 8.

www.ijert.org

1233

S Apribates

Height: int
S Opentions
< Queenf: int,int:y
Cperations
~Settingl) p
+Setvaluetuc int b 2
= amivutes
Chessosrd (& =0
= asibutes
5 Operstions
+DeawBosedlobf: Gr.

Figure 2: Class diagram 1

= Attributes

Queen8Algrthm (&

Setting E3

static +Width: int
static +Height: int
static +WidthQuee..
static +HeightQuee..
static ~SpaceX; int
static +SpaceV: int
static +NumOfCells:...
Operations
“+Settingl)

+Setinglw: int, h in

Attributes
-NumOfQueen: int
~arRows: int]]
~arCols: intf]
Operations

~Setupl): void
+Print{): void
+SearchSolution(ro
+Run8QueenArg(): ...

DisplayQueen [#
Bl Attributes

~FileName: string
-arQueen; int(1[]
-arPossition: int]]

-X: int

Viint

“Width: int

-Height int

Operations

o

~DisplayASolution(f...
+DisplayAllSolution...
+DrawBoard(): void

+Queen(): vo

~Queen(x: in

frmMain 2]
B Attributes
5 Operations

static +Main(): void
+Start]): void

Figure 4: Class diagram 3

Setting e
© Agtributes
~Width: int
~Height: int
~WidthQueen: int
~HeightQueen: int
~Spacel int
~SpaceY: int
~NumO#Cells int
© Operations
~Settingl)
<Seting(w: int. h: in...
foMain @

= Attributes
= Operations

static +Main(): void
~Start): void

& Attributes
static +Width: int
static +Height: int
static =WidthQuee...
static ~HeightQuee...
static =SpaceX: int
static =SpaceV: int
static +NumOfCells...
E Operations
+Setting()
+Seting(w: int, ht in...

Setting £3

frmMain A

B Attributes
static -NumOfQueen: int
static -arows: int]]
static -arCols: int]
static -FileName: siring
static -arQueen: int(][]
static -arPossition: int[]
static +X: int
static +¥: int
~Height int
+Width: int

5 Operations
static +Setup(): void
static +Print(): veid

static ~SearchSolution(row: int...

static +Run8QueenArg(): void

static +DisplayAllSolution(frm:..
static +DisplayASolustion(frm:..
static +DrawBoard(obj: Graphi..

static =Main(): void
+Start(): void

Figure 6: Class diagram 5

Figure 3: Class diagram 2

Seting [
 Attributes
static +Width: int
static +Height: int
static +WidthQuee,
static +HeightQuee,.,
static +SpaceX: int
static +SpaceY: int
static +NumOfCells:
El Operations
+Setting()
+Seting(w: int. b in...

Queen8Algrthm (&

 Attributes
-NumOfQuesn: int
~arRows: intl]
-arCols: int]]

E Operations
+Setup(): void
+Print(): void
~+SearchSolution(ro...
~Run8QueenArg):

Figure 5: Class diagram 4

QueenAlgrthm (&
= Attributes
static -NumOfQueen: int
static -arRows: intl]
static -arCols: int]]
static -FileName: string
static -arQueen: int[][]
static -arPossition: int{]
static X int
static +V: int
static +Heights int
static +Width: int
= Operations

static +Setupl): void
static +Print(: void
static +SearchSolution(r...
static +Run8QueenArgl)
static ~DisplayAliSolution.,
static +DisplayASoluoti
static ~DranBoard(obj..

DisplayQueen
Bl Attributes
static -FileName: string
static -arQueen: int{][]
static -arPossition: intl]
static -X: int
static -Y: int
static -Width: int
static -Height: int
&l Operations
static +DisplayASolution(frm...
static +DisplayAllSolution(fr..
static +DrawBoard): void
~Queeny: void
~Queen(x: int, yzint, w: int, h.

N

frmMain S

© Atributes
= Operations

static +Main(): void
+Start(): void

Result of executing the Pareto optimization program
is shown in the chart contained in the Figure 12. In this
chart, class diagram 3 is the selected diagram because it
is balanced between the performance objective function
and the memory objective function. In this class

IJERTV21S90518

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Vol. 2 Issue 9, September - 2013

diagram, value of the global objective function is

maximal.

Figure 7: Result of generating code from class diagram

Table 3. Actual performance of 5 programs

Times

Progra
ml

Progra
m2

Progra
m3

Progra
m4

Progra

mb5

1469

1305

1103

1001

998

1483

1302

1005

1007

995

1585

1288

1009

1005

984

1481

1295

1011

995

992

1519

1320

1100

980

1002

1487

1312

1205

1002

996

1512

1299

1202

998

983

1568

1308

1102

995

1000

©| O N| o gf | W| N|

1490

1323

1015

1005

983

10

1470

1298

1025

1011

997

Average
time
(ms)

1506.4

1305

1077.7

999.8

993

www.ijert.org

1234

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 9, September - 2013

IJERTV21S90518

f =
| = Parete Optimization frem Class o E]
AnatysaCiasshlodal | Fareto Cptrgaben
| ‘o Chat of Obsecires funcions
. Gllobal abpectres Tunchon
i .l-‘ Performance abpschree

| I | ‘ I
¥ 1

Toncton
MRy abjective
Tunction

0.0} Class Claas
Dlagram 1 Diagram 2

Cllags Class Class
Diagraa 3 Dispram 4 Disgram 5

Figure 8: The chart of Pareto optimization from Class diagrams

After executing Pareto optimization from class
diagram, we implement 5 different programs that are
corresponding to 5 class diagrams to test the actual
performance. Statements and algorithms in these 5
programs are similar. The programs are only different
from structure and their components. This is to avoid
the influence of the implementation on the evaluation
of the model. Finally, we execute the programs,
statistics and compare actual performance with the
result of evaluation of performance by Pareto
optimization. For each program, we execute 10 times
and calculate the average executing time. Statistical
results are displayed in the Table 3.

6. Conclusion and future work

The content studied in this paper presented the
methodology of evaluating software performance
directly from class diagram based on analyzing
components and architecture of the class diagram. This
is a new method and it is different from SPE method
that must add more performance information to
diagram and transform to performance models from
UML models. And the paper also proposed a new
approach to optimize object-oriented embedded
software in the design phase based on multi-objective
Pareto optimization. The specific contribution of the
paper is as follows: firstly, we have analyze and
constructed measures and objective functions directly
from class diagram; secondly, we have developed the

framework that allows designing class diagram and
generating parameters automatically from class
diagram based on DSL and T4; thirdly, we have
implemented the program to solve the Pareto
optimization from class diagram. Last but not least, we
also have implemented experiment programs to verify
the actual performance and Pareto optimal results.
Based on this research, we will study multi-
objective optimization such as the reuse ability,
architecture ~ complexity, maintenance ability;
optimization based on model transformation,
optimization based on generating simulation code.

7. References

[1] Chris Thompson, Jules White, Brian Dougherty and Douglas C.
Schmidt ~ Bowman. Optimizing Mobil Application
Performance with Model-Driven Engineering. P09 Proceedings
of the 7th IFIP WG 10.2, 2008, pp.1-8.

[2] Michalis Anastasopoulos, Thomas Forster, and Dirk Muthig.
Optimizing Model-driven Development by deriving Code
Generation Patterns from Product line architectures. STJA,
JIT. 6th Annual, Kaiserslautern, Germany, 2005, pp.425-437.

[3] Sanna Sivonen. Domain-specific modelling language and code
generator for developing repository-based Eclipse plug-ins.
VTT PUBLICATIONS 680, ESPOO 2008, pp.16-62.

[4] Armita Peymandoust, Tajana Simunic. Low Power Embedded
Software Optimization using Symbolic Algebra. Computer
Systems Laboratory, Stanford University, Stanford,
CA,Proceedings of the conference on Design, automation and
test in Europe, 2002, pp.1-6.

www.ijert.org

1235

[5]

[6]

[71

[8]

[]

[10]

[11]

IJERTV21S90518

Michalis Anastasopoulos, Thomas Forster, and Dirk Muthig,
“Optimizing Model-driven Development by deriving Code
Generation Patterns from Product line architectures”,
Fraunhofer Institute for Experimental Software Engineering
(IESE) Sauerwiesen 6, D-67661 Kaiserslautern, Germany,
2007, pp.3-10.

Sadagopan Srinivasan, Zhen Fang, Ravi lyer, Steven Zhang,
Mike Espig, Don Newell, Daniel Cermak, Yi Wu, Igor
Kozintsev, Horst Haussecker. Performance Characterization
and Optimization of Mobile Augmented Reality on Handheld
Platforms. Intel Corporation 2008

Yong-Yoon Cho, Jong-Bae Moon, and Young-Chul Kim. A
System for Performance Evaluation of Embedded Software.
Engineering and Technology 2005

Pospiech F, Olsen S. Embedded software in the SoC world.
How HdS helps to face the HW and SW design challenge.
IEEE- 658, 21-24 Sept. 2003, pp:653

Connie U. Smith, Catalina M. Lladd, Vittorio Cortellessa and
Lloyd G. Williams. From UML models to software
performance results: An SPE process based on XML
interchange formats. 2005, pp.1-13.

Dorin B. Petriu, Murray Woodside. A Metamodel for
Generating Performance Models from UML Designs. Dept. of
Systems and Computer Engineering Carleton University,
Ottawa K1S 5B6, Canada, pp.1-11.

Simonetta Balsamo Moreno Marzoll. Efficient Performance
Models in Component-Based Software Engineering. Torino
155, 30172 Mestre, Italy, pp.1-10.

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 2 Issue 9, September - 2013

1236

