
Multi Protocol Cross Platform Communication

Middleware

Dhruv Sangvikar

Department of Computer Engineering

AISSMS's Insitute of Information Technology

Pune, Maharashtra, India

Vikas Tekale

Department of Computer Engineering

AISSMS's Insitute of Information Technology

Pune, Maharashtra, India

Abstract— With the introduction of multiple communication

platforms available, the internet messaging user community is

fragmented into users of different platforms and services. Each

service provider has it's own protocol and client implementation.

Thus a standard client for instant messaging is lacking. There is

a need to standardize communication platforms so that the

fragmentation can be reduced and ultimately reducing the data

and storage redundancy. XMPP is an open technology for real-

time communication[1]. At present the user has to rely on

completely different clients, platforms and technologies. This

leads to extra usage of computing resources like storage and

processing. In short, heterogeneous systems for the same task are

present. A common solution to this is a Message Oriented

Middleware (MOM). This architectural framework for

interoperability can be applied to ease the communication and

bridge the gap between the users and service providers. Thus a

cross platform and multi protocol middleware can be used.

Keywords—Multi Protocol, Communication, Middleware,

XMPP

I. INTRODUCTION

The internet offers fantastic opportunities to communicate
with others. Apart from the modern services like video chat,
audio chat and other interaction services, instant messaging has
been one of the most useful communication means. As a result
there has been a tremendous rise in the number of service
providers. Internet giants like Facebook, Google, Microsoft,
Yahoo!, etc. each have their own services, implemented in their
own proprietary technologies.[19] Because of these many
choices, most of the users making use of these services are
registered with every different service provider. So every time
they have to communicate or chat using instant messages, they
have to hop from one service provider to the other. This results
in many problems. A few of them may be stated as follows:

1. Every service provider has a different client, which have
to be obtained from the respective service providers' portals.

2. Users have to get acquainted with different interfaces and
mechanisms for the same task of communication.

3. Different clients also results in extra resource usage like
extra computing and storage.

4. User has to keep a tab of the different clients required to
use a particular service.

5. In large scale environments, when installation on
multiple devices is necessary, the whole process of setting up
becomes time consuming and redundant.

6. Functionality provided by one platform may be absent in
the other client. These results in user confusion.

7. Completely different interface on the smart phone and
tablet devices also leads to the same problems stated above.

8. On resource restricted machines, multiple clients cannot
be run (systems like thin clients, etc).

9. With more and more services, and each having separate
protocol and client, it is not feasible to use them separately.

Normally protocol building is done with one of the following
strategies:

1. Custom protocols

2. Protocol frameworks

3. Horizontal protocols

Now, with most of the service providers having used the
custom protocols, it has resulted in multiple protocols for the
same task of real-time instant messaging. Thus, due to multiple
independent and non-inter-operable protocols, it is necessary to
apply a abstraction layer above these services. This middleware
will effectively hide the mechanism of each service provider by
giving the same working mechanism and interface to work
with every service. This solution is basically based upon the
MOM architecture. [2]

Some clients exist which provide multi protocol
communication, by giving access to the different service
providers. But they exist on a single platform – either on
desktop computers or for phones. Thus a pure multi protocol
and cross platform client is absent which can provide the same
functionality everywhere.

The main goal of this work is to provide an abstraction
layer above the service layer so that the user is unaware of the
underlying platform and service provider without any loss in
core functionality, and abstract the underlying protocols and
mechanism, thereby implementing the MOM model in SOA
systems. Also resource consumption can be minimized by
using the same client for different service providers.

The rest of this paper is organized as; section 2 highlights
the related works along with their downsides, section 3
discusses our proposed model to overcome the downsides of

1001

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051077

Vol. 3 Issue 5, May - 2014

the existing work. Section 6 gives the conclusion followed by
references.

II. RELATED WORK

With the last decade putting many service providers on the
communication map, protocols have been developed at rapid
speed. Our review shows that some solutions do exist to
partially tackle the above stated problems.

 Pidgin is an open source software which provides clients
for the desktop platforms Windows and Linux. But it does not
provide cross platform solution. Also, due to it be being written
in C primarily, its direct porting to other platforms is not
possible directly. [3]

 Miranda IM is an open source multi protocol instant
messaging client designed only for Windows. Thus other
platforms and even operating systems are not supported at all.
Also, being written in C and C++, it poses portability
problems. [4]

 Empathy is the default chat application in many Linux
distributions. Written in C, supporting multiple protocols, it
poses portability issues. [5] Also, the messages are not
encrypted using even the basic UTF-8 encoding systems, and is
not recommended for enterprise and high security
environments. [6]

IBM SameTime is a proprietary solution from IBM, which
supports IBM-internally developed multiple protocols and acts
as a middleware for other real-time services. This does not
support other service providers and is restricted to enterprise
environments.[7]

naim is a console client which supports limited number of
protocols, with the notable omission of XMPP. Lack of
common protocols and graphical interface, makes it highly
restricted in its usage. Also, only the desktop platform is
supported. [8]

Kopete is a KDE based application with only the desktop
client. It supports multiple protocols, but being written in C++
and Qt, poses the problem of being non-cross platform. [9]

Kaidu is multi protocol but not cross platform. Also,
written in C++, it supports only the Gadu-Gadu protocol
compliant protocols.[10]

InstantBird is another application based upon Pidgins
libpurple library and Mozilla's XULRunner runtime
environment. It exists only for the desktop platform.[11]

Trillian is cross platform and multi protocol client which
has native applications for desktop and smart phone platforms.
But it is a proprietary software and has to be paid for. [12]

Imo.im is a web based service which allows to connect
multiple services through its interface. But a native client for
the desktop does not exist, with the smart phone client also
only in development. Also as of 2 March, 2013, it has
discontinued its services to develop a proprietary messaging
solution.[13]

Jitsi is a multi protocol client written in Java. It can be
ported to other Java supported platforms, but till date no such
client exists.[14]

Thus, a truly cross platform solution does not exist. Trillian
is the closest it gets, but still they have the some limitations in
the way they are implemented.

The given implementations are the most commonly and
easily available software solutions. Also, solutions which have
been discontinued from development have been discarded.

The significance of our development approach is to resolve
each of these above cited problems. The development for
interoperability will be based upon REST architecture. The
development will be targeted such that the solution will be
cross platform and target at least two or more protocols. The
GUI for different platforms will be as similar as possible in the
constraints of the different interfaces of the platform

III. PROPOSED SYSTEM

In the previous section, we have reviewed the existing
development work. In this section we will mainly see the
architectural framework and technologies which can be used to
develop a truly cross platform and multi protocol
communication application.

Instant messaging service providers are mostly cloud based
and provide services through the REST architecture. Research
without common implementation has been done about real-
time communication systems using REST.[15] The other
commonly used architecture for cloud based services is SOAP.
SOAP can be used to transfer XML based messages for events
from one-to-many nodes or one-to-one nodes. Implementation
details have been researched upon for a SOAP based instant
messaging system.[16]

Specifically for instant messaging, Extensible Messaging
and Presence Protocol (XMPP) was developed. An advantage
of XMPP is that in its very nature it tackles security issues that
are not straight forward to solve in the web world and the
SOAP and REST protocols of web services. Thus, we
narrowed in on the XMPP technology and decided to use the
core protocols as described by the Internet Engineering Task
Force (IETF).[17]

In short, a Service-oriented architecture will be required to
implement a middleware for the said purpose. Service-oriented
architecture (SOA) aims to interconnect distributed, loosely
coupled, and inter operable components of software owned or
provided by different domains. For example, many applications
and heterogeneous platforms require a process flow of
communication to solve interoperability problem in cross-
platform systems. Thus, insuring an inter operable
communication between cross-platform systems over Internet
is the main problem for Service Oriented Architecture. [18]

The said solution can be divided in following modules: the
core module - which will contains the core functionality as
described in the RFC 6120, the function call module- which
will make use of the core functions written to implement the
service and GUI module – which acts as the interface to the
user while abstracting the other two modules. The GUI-module
will be developed for the desktop and the mobile platform
independently, while the function call module will be slightly
altered as required.

1002

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051077

Vol. 3 Issue 5, May - 2014

A. Core Module

Here the basic implementation of the specification as given
the RFC 6120 of XMPP is provided. It will provide the basic
functionality for the XMPP client to connect with any standard
XMPP based service provider.

1. RFC 6120 Core Functionality

The purpose of XMPP is to enable the exchange of
relatively small pieces of structured data (called "XML
stanzas") over a network between any two (or more) entities.
XMPP is typically implemented using a distributed client-
server architecture, wherein a client needs to connect to a
server in order to gain access to the network and thus be
allowed to exchange XML stanzas with other entities (which
can be associated with other servers).

An XMPP based messaging system works as follows:

Step 1: Open stream

Client: Clients send an open stream packet to server to request
a new session.

<stream:stream to='example.com' xmlns='jabber:client'
xmlns:stream='http://etherx.jabber.org/streams'
version='1.0'>

where “example.com” is domain name of XMPP server
connected to.

Server:Server sends back a XML stream starts with
<stream:freatures>, includes requirements of either TLS or
SASL negotiation, or both.

<stream:features><starttlsxmlns='urn:ietf:params:xml:ns:
xmpp-tls'> <required/> </starttls> <mechanisms
xmlns='urn:ietf:params:xml:ns:xmpp-
sasl'><mechanism>DIGEST-MD5</mechanism>
<mechanism>PLAIN</mechanism><mechanism>EXTER
NAL</mechanism></mechanisms> </stream:features>

Step 2: Encryption and Authorization.

2.1 If server needs TLS negotiation. Client: Clients send a
STARTTLS request to server.

<starttls xmlns='urn:ietf:params:xml:ns:xmpp-
tls'/>Server:Server sends back a message shows the TLS is
allowed:<proceed xmlns='urn:ietf:params:xml:ns:xmpp-
tls'/>or failed:<failure
xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
</stream:stream>

In case of failure, the server closed the TCP connect. Client:If
TLS is processed, then clients request a new session:

<stream:stream xmlns='jabber:client'
xmlns:stream='http://etherx.jabber.org/streams'
to='example.com' version='1.0'>

Server:Server responses an XML stream indicating the needs
of SASL negotiation.

<stream:stream xmlns='jabber:client'
xmlns:stream='http://etherx.jabber.org/streams'
from='example.com' id='c2s_234' version='1.0'>
<stream:features> <mechanisms
xmlns='urn:ietf:params:xml:ns:xmpp-
sasl'><mechanism>DIGEST-MD5</mechanism>

<mechanism>PLAIN</mechanism>
<mechanism>EXTERNAL</mechanism> </mechanisms>
</stream:features>

2.2 SASL negotiation

Client needs to choose anauthenticationmethod available from
server to carry out SASL negotiation. In case above,
“DIGEST-MD5“, “PLAIN” and “EXTERNAL” are options.

The “PLAIN” authorization method is the simplest among
them. It works as following.

Client:Client send a stream with selected authorization method
with base64 encoded user name and password. The user name
and password are allocated in format of
“\0UserName\0Password”. Then, the client sends the following
stream to server.

<auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
mechanism='PLAIN'>AG1iZWQAbWlycm9y</auth>

Server:If the server accept the authorization, it sends back a
stream with “success” tag.

<success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

or

Server: If the password does not match the user name, or there
is an error on encoding, the server will sends a failure stream.

<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

Round 3 Resource binding (Optional)

Client:Client asks server to bind a resource:

<iq type='set' id='bind_1'><bind
xmlns='urn:ietf:params:xml:ns:xmpp-bind'/></iq>

or

Client:Client binds a resource:

<iq type='set' id='bind_2'>

<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>

<resource>someresource</resource>

</bind>

</iq>

Server:Server sends back another <iq> stanza, if the “type” tag
is “result”, that means the binding is successful, otherwise, it is
failed.

<iq type='result' id='bind_2'>

<bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>

<jid>somenode@example.com/someresource</jid>

</bind>

</iq>

Step 4: Request a new session

Immediately after SASL negotiation and/or optional resource
binding, clients must establish a session to start instant
messaging.

Client:Client request session with server:

1003

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051077

Vol. 3 Issue 5, May - 2014

<iq to='example.com' type='set'id='sess_1'><session
xmlns='urn:ietf:params:xml:ns:xmpp-session'/></iq>

Server:Server sends back a iq stanza showing whether session
has been created successful or not.

The successful message will be like:

<iq from='example.com' type='result'id='sess_1'/>

If the server failed to create a session, it will reply a message
like below or other type of error messages.

<iq from='example.com' type='error' id='sess_1'><session
xmlns='urn:ietf:params:xml:ns:xmpp-session'/><error
type='auth'><forbiddenxmlns='urn:ietf:params:xml:ns:xm
pp-stanzas'/></error></iq>

Step 5: Client and server exchange XMPP stanzas

If all steps above are successful, then client can send XMPP
stanzas to server and receive XML streams. Client can send
<iq> stanzas to request roster or other information from server,
and use<presence>stanzas to change its presence status.
Instance message and other payload can be send
via<message>stanzas.

Step 6: Close stream

Finally, if clients want to finish the talk and close the XMPP
session, it needs to send a close stream to server.

<presence type='unavailable'/></stream:stream>

Then, server will change client's presence to “Offline” and
close TCP connections with clients.

B. Functional Module

The application will be able to provide the following basic
functionality:

 Connect and authenticate to the service providers,

 Send and receive messages,

 Login to multiple service providers at a single time,

 See a unified roster from multiple service providers.

C. Graphical User Interface Module

The user will interact with the application using the graphical
interface provided using this module. This module will be
developed on per platform basis keeping in mind the platform
constraints and interfacing mechanisms.

D. Technologies Targeted

Our developement will focus on the following platforms:

◦ Desktop: Linux and Windows

◦ Mobile: Android

Thus multiple platforms can be catered and provided for by
giving an application on these platforms. Thus the primary
problem of multi platform solution solved.

The following service providers use their proprietary
protocols in their provided chat services. But they are either

compliant with XMPP or provide an XMPP interface to use
their services. Thus, using the services through the XMPP core
functions is possible for these services. Thus the targeted
service providers are:

◦ Facebook, Inc.

◦ Google Inc.

Thus multiple proprietary protocols are targeted and unified
under a single application. Also, XMPP interfacing is used to
deal with these providers

1) Development Language: Java

Java is a “write once, run anywhere” development

language. It allows for the source to be compiled once and the
byte code generated can be used anywhere on any platform
with a Java Virtual Machine (JVM).

This helps in giving a solution which can be easily ported
from one platform to the other with much dependancies. Also,
the GUI will be designed independently for the targeted
platform. This will allow for the abstraction of the core
functions from the end user, and provide a unified mechanism
and functionality for multiple service providers

Thus, the required Cross platform multi protocol can be
implemented using the above technologies.

IV. CONCLUSION AND FUTURE SCOPE

The current implementation caters only to the core
functionality of instant messaging. Also, the focus has been on
providing a cross platform solution. The extension is to check
whether the same solution can be easily ported to the Android
platform without writing the whole code from the scratch. For
scaling this further, future enhancements and changes can be
added as and when needed.

With better connectivity and access to the internet, video
and audio conferencing has become quite feasible. With better
speeds insant messaging is no longer the de facto of
communication. Instead, for easier and more direct approach,
multimedia has been used more and more commonly these
days. This can be implemented in the future.

Moreover, more service providers can be brought under the
same umbrella by implementing their protocols to solve the
above said shortcomings.[20] Protocols not directly providing
any XMPP interfacing over their proprietary protocols can be
targeted. Thus, this can also be targeted as a further
development course for the same implementation.

REFERENCES

[1] http://xmpp.org/about-xmpp/

[2] Agent-based MOM Interoperability framework for integration and
communication of different SOA applications Najhan M.Ibrahim, Mohd
Fadzil Hassan, Zain Balfagih Department of Computer and Information
Sciences

[3] https://developer.pidgin.im/wiki/WikiStart

[4] https://code.google.com/p/miranda/

[5] https://wiki.gnome.org/action/show/Apps/Empathy

[6] https://wiki.gnome.org/action/show/Apps/Empathy#Project_Resources

[7] http://www-03.ibm.com/software/products/en/ibmsame

1004

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051077

Vol. 3 Issue 5, May - 2014

[8] http://naim.n.ml.org/, https://code.google.com/p/naim/

[9] http://kde.org/applications/internet/kopete/

[10] https://gitorious.org/kadu, http://www.kadu.im/w/English:GetInvolved

[11] https://jitsi.org/Main/About

[12] http://en.wikipedia.org/wiki/Instantbird

[13] https://imo.im/about

[14] https://jitsi.org/Documentation/UserDocumentation

[15] Research on web instant messaging using REST web services, Yishan
Song; Beijing Univ. of Posts and Telecommunication, Beijing, China,
Ke Xu, Ke Liu, Published in Web Society (SWS), 2010 IEEE 2nd
Synopsium

[16] A Cross Platform Web Service Implementation Using SOAP By Nan-
Chao Huang Submitted in partial fulfillment of the requirements For The
Degree of Master of Science in Computer and Information Science

[17] RFC 6120, By P. Saint-Andre, IETF,, Category: Standards Track, ISSN:
2070-1721, March 2011

[18] Agent-based MOM Interoperability framework for integration and
communication of different SOA applications Najhan M.Ibrahim, Mohd
Fadzil Hassan, Zain Balfagih Department of Computer and Information
Sciences

[19] A Study of Internet Instant Messaging and Chat Protocols Raymond B.
Jennings III, Erich M. Nahum, David P. Olshefski, Debanjan S

[20] Research Article : Research on Effectiveness Modeling of the Online
Chat Group Hua-Fei Zhang, 1 Li-Gang Dong, 1 Jia-wei Sun, 2 and
Ying Li 1 1 2 School of Information & Electronic Engineering, Zhejiang
Gongshang University, Hangzhou, 310018, China Information
Management Center,Training Department, Information Engineering
University, Zhengzhou, 450002, China

1005

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051077

Vol. 3 Issue 5, May - 2014

