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Abstract  

 

Due to the increase in the amount of relational data 

that is being collected and the limitations of 

propositional problem definition in relational domains, 

multi-relational data mining has arisen to be able to 

extract patterns from relational data. Multi –relational 

data mining has become popular due to the limitations 

of propositional problem definition in structured 

domains and the tendency of storing data in relational 

databases. Several relational knowledge discovery 

systems have been developed employing various search 

strategies, heuristics, language pattern limitations and 

hypothesis evaluation criteria, in order to cope with 

intractably large search space and to be able to 

generate high-quality patterns. Inductive logic 

programming (ILP) studies learning from examples, 

within the framework provided by clausal logic. ILP 

has become a popular subject in the field of data 

mining due to its ability to discover patterns in 

relational domains. Several ILP based concept 

discovery systems are developed which employs 

various search strategies, heuristics and language 

patterns. LINUS, GOLEM, CIGOL, MIS, FOIL, 

PROGOL, ALEPH and WARMR are well-known ILP-

based systems. 

 

Index Terms— Classification; Multi -relational  

data mining; Inductive Logic Programming  

 

 
1. INTRODUCTION 

Due to the impract icality of single-table data 

representation, relational databases are needed to store 

complex data for real life applications. This has led to 

the development of mult i-relat ional learn ing systems 

that are directly applied relational data. Relational 

upgrades of data mining and concept learning systems 

generally employ first-order predicate logic as 

representation language for background knowledge and 

data structures. The learning systems, which induce 

logical patterns valid for given background knowledge, 

have been investigated under a research area, called 

Inductive Logic Programming (ILP). Stephen 

Muggleton introduced the name Inductive Logic 

Programming (ILP) that is the intersection of machine 

learning and logic programming (Muggleton, 1999).  

ILP techniques are widely used for classification and 

concept discovery in the data min ing algorithms. In 

classification, general rules are created according to 

data and then they are used for grouping the 

unclassified data. In concept discovery, interesting 

rules, if exist, are given to the users of the systems.  

Several ILP based systems are developed which  

employs various search strategies, heuristics and 

language pattern limitations. LINUS, GOLEM, 

CIGOL, MIS, FOIL, PROGOL, ALEPH and WARMR 

[1, 4] are well-known ILP techniques. 

 

2. INDUCTIVE LOGIC PROGRAMMING 
A.  Overview  

ILP has ability to use structured, complex and 

multi-relational data. ILP system represents examples, 

background knowledge, hypotheses and target concepts 

in horn clauses logic. ILP techniques are widely used 

for classification and concept discovery in the data 

mining algorithms. The core of ILP is the use of logic 

for representation and the search for syntactically legal 

hypotheses constructed from predicates provided by the 

background knowledge. In ILP systems, the training 

examples, background knowledge and induced 

hypothesis are all expressed in a logic program form.  

Two measures are used to test the quality of the 

induced theory. After learning, the theory with 

background knowledge should cover all positive 

examples (completeness) and should not cover any 

negative examples (consistency). Completeness and 

consistency together form correctness [3, 5, 13].  

In ILP, a system often starts with an initial pre-

processing phase and ends with a post-processing 

phase. In pre-processing phase, error (noise) in the 

given examples can be detected and eliminated. In post-
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processing phase, redundant clauses in the induced 

theory are removed in order to improve its efficiency. 

There are two approaches for the search direction: top-

down and bottom-up. 

ILP is the study of learning methods for data and 

rules that are represented in first-order predicate logic. 

Predicate logic allows for quantified variables and 

relations and can represent concepts that are not 

expressible using examples described as feature 

vectors. A relational database can be easily translated 

into first-order logic and be used as a source of data for 

ILP [4]. As an example, consider the following rules, 

written in Pro log syntax (where the conclusion appears 

first), that define the uncle relation: 

 

     uncle (X,Y) :- brother (X, Z), parent (Z, Y). 

     uncle (X,Y) :-  husband (X, Z), sister (Z, W), 

     parent (W, Y). 

 

The goal of inductive logic programming (ILP) is 

to infer rules of this sort given a database of 

background facts and logical defin itions  of other 

relations [2, 13]. For example, an ILP system can learn  

the above rules for uncle (the target predicate) given a 

set of positive and negative examples of uncle 

relationships and a set of facts for the relations parent, 

brother, sister, and husband (the background 

predicates) for the members of a given extended 

family, such as: 

 

uncle (tom, frank), uncle (bob, john),  

uncle (tom, cindy), uncle(bob, tom) 

parent (bob, frank), parent (cindy, frank),  

parent (alice, john), parent (tom, john),  

brother (tom, cindy), sister (cindy, tom), 

husband (tom, alice), husband (bob, cindy). 

 

Alternatively, rules that logically define the brother 

and sister relations could be supplied and these 

relationships inferred from a more complete set of facts 

about only the basic predicates: parent, spouse, and 

gender. If-then rules in first-order logic are fo rmally  

referred to as Horn clauses. A more formal definit ion 

of the ILP problem follows: 

 

 

 Given: 

 Background knowledge, B, a set of Horn 

clauses. 

 Positive examples, P, a set of Horn 

clauses (typically ground literals).  

 Negative examples, N, a set of Horn 

clauses (typically ground literals).  

 

 Find: A hypothesis, H, a set of Horn clauses such 

that: 

 p  P: H  B  p (completeness) 

 n  N: H  B  n (consistency) 

 

A variety of algorithms for the ILP problem have 

been developed [3, 10, 13] and applied to a variety of 

important data mining problems [2, 10, 12]. 

Nevertheless, relational data min ing remains an under-

appreciated topic in the larger KDD community.  

 

B. Search Strategies 

 
Two basic steps in the search for correct theory are 

specialization and generalization. If a theory covers 

negative examples, it means that it is too strong, it 

needs to be weakened. In other words, a more specific 

theory should be found. This process is called 

specialization. If a theory does not imply all positive 

examples, it means that it is too weak, it needs to be 

strengthened. In other words, a more general theory 

should be found. This process is called generalization. 

Specialization and generalization steps are repeated to 

adjust the induced theory in the overall learn ing 

process. 

There are two approaches for the search directions: 

top-down and bottom-up. Top-down approach starts 

with an overly general theory and tries to specialize it  

until it  no longer covers negative examples. 

Specialization (refinement) operators [4, 5, 11] employ 

two basic operations on a clause: apply a substitution to 

the clause and add a literal to the body of the clause. 

Refinement graph is the most popular data structured 

used in specialization. Bottom-up approach starts with 

an overly specific theory and tries to generalize it until 

it cannot further be generalized without covering 

negative examples. Generalizat ion operators perform 

two basic syntactic operations on a clause: apply an 

inverse substitution to the clause and remove a literal 

from the body of the clause. Relative least general 

generalization (rlgg) and inverse resolution are basic 

generalization techniques. Generalization techniques 

search the hypothesis space in a bottom-up manner. 

rlgg used in GOLEM and inverse resolution used in 

CIGOL. 

 

C. Algorithm: Generic ILP based concept learner 

 

Require: TR: Target Relat ion, B: Background 

Knowledge 

 

Ensure: H: hypothesis describing the target relation  

 Start with some init ial theory H 

 repeat  
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  if H is too strong then 

   Specialize H 

  endif 

  if H is too weak then 

   Generalize H 

  endif 

 until H is consistent and complete 

return H   

 

A generic algorithm for an ILP-based concept 

learner is presented in Algorithm. Target instances are 

defined as positive, belonging to the target concept, and 

negative, not belonging to the target concept. 

Hypothesis is called strong if it does not cover all the 

positive examples and weak if it covers some negative 

examples. The induced hypothesis is called complete if 

it covers all the positive examples, and consistent if it 

covers none of the negative examples.  

 

3. WELL-KNOWN ILP-BASED SYSTEM 

A. Bottom-up System 

1. GOLEM 

Golem is an inductive logic programming 

algorithm developed by Stephen Muggleton and Feng. 

It uses the technique relative least general 

generalization proposed by Gordon Plotkin. Therefore, 

only positive examples are used and the search is 

bottom-up. Negative examples can be used to reduce 

the size of the hypothesis by deleting useless literals 

from the body clause.  

In order to generate a single clause, GOLEM first 

randomly p icks several pairs of positive examples, 

computes their rlggs and chooses the one with greatest 

coverage. If the final clause does not cover all 

positives, the covering approach will be applied. The 

covered positives are removed from the input and the 

algorithm will be applied to the remain ing positives 

(Lavracˇ & Dzˇeroski, 1994; Muggleton & Feng, 

1990). 

 

2. CIGOL 

CIGOL (logic backwards) is interactive bottom-up 

relational ILP system based on inverse resolution. 

CIGOL employs three generalization operators which 

are relational upgrades of absorption, intra-construction 

and truncation operators. The basic idea is to invert the 

resolution rule of deductive inference using the 

generalization operator based on inverse substitution. 

CIGOL uses the absorption operator. However, CIGOL 

also needs oracle knowledge to direct the induction 

process. 

 

B. Top-Down System 

1. LINUS 

LINUS is one of the most popular attribute-value 

learning environments in the ILP history. LINUS is a 

framework that reduces the relational learning problem 

into a propositional one, employs an attribute-value 

learning method and transforms the solution hypothesis 

into relational form. It is a non-interactive ILP system, 

integrating several ILP attribute-value learn ing 

algorithm in a single environment. It can be viewed as a 

toolkit, in which one or more of the algorithm can be 

selected in order to find the best solution for the input. 

The main algorithm behind LINUS[6][7] consists of 

three steps. In the first step, the learning problem is 

transformed from relation to attribute-value form. In  

the second step, the transformed learning problem is 

solved by an attribute-value learning method. In the 

final step, the induced hypothesis is transformed back 

into relational form. 

 

2. MIS 

Model Inference System (MIS) is an interactive 

top-down relational ILP system, which uses refinement 

graph in the search process (Shapiro, 1983). In its 

algorithm, at the beginning the hypothesis is empty (H 

= ).Then it reads the examples (either positive or 

negative) one by one. If the example is negative and 

covered by some clauses in the Hypothesis set, then 

incorrect clauses are removed from the solution set. If 

the example is positive and it is not covered by any 

clause in the solution set, with breadth-first search, a 

clause c, which covers the example [6], is developed 

and added to solution set. The process will continue 

until the solution set (H) becomes complete and 

consistent (Lavracˇ & Dzˇeroski, 1994).  

 

3. FOIL 

First-Order Inductive Learner (FOIL) is a non-

interactive top-down relational ILP system, which uses 

refinement graph in the search process as in MIS. It 

uses the covering approach for the solution having 

more than one clause. FOIL is a sequential covering 

algorithm that builds rules one at a time. After build ing 

a rule, all positive target tuples satisfying that rule are 

removed and FOIL will focus on tuples that have not 

covered by any rule. When building each rule, 

predicates are added one by one. At each step, every 

possible predicate is evaluated, and the best one is 

appended to the current rule. FOIL chooses the clause 

according to weighted informat ion gain criteria.  

4. PROGOL 

PROGOL is a top-down relat ional ILP system, 

which is based on inverse entailment (Muggleton, 

1995; Muggleton & Tamaddoni-Nezhad, 2008).. It  
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performs a search through the refinement graph. 

Besides a definite p rogram B as background knowledge 

and a set of ground facts E as examples, PROGOL 

requires a set of mode declarat ions for reducing the 

hypothesis space. 

 

5. ALEPH 

A Learning Engine fo r Proposing Hypotheses 

(ALEPH) (Srinivasan, 1999) is a top-down relational 

ILP system based on inverse entailment similar to 

PROGOL. The basic algorithm is the same as 

PROGOL algorithm whereas in the advanced use of 

ALEPH, it is possible to apply different search 

strategies, evaluation functions and refinement 

operators. It is also possible to define more settings in 

ALEPH such as min imum confidence and support. In 

the advanced use of ALEPH, contrary to PROGOL, it  

is possible to select more than one example as a sample 

at the beginning of the algorithm. The best clause 

obtained from reducing corresponding bottom clause is 

then added to the theory. The basic PROGOL 

algorithm is a „„batch‟‟ learner in the sense that all 

examples and background are expected to be in place 

before learn ing commences. An incremental mode 

allows ALEPH to acquire new examples and 

background informat ion by interacting with the user. 

The basic PROGOL algorithm does a fairly standard 

general to specific search and constructs a theory one 

clause at a time. ALEPH allows the basic procedure for 

theory construction to be altered in a number of ways 

by using randomized search methods. 

Minpos and minacc are the two parameters representing 

minimum support and confidence criteria in ALEPH. 

The default value for minpos is 1 and it sets a lower 

bound on the number of positive examples to be 

covered by an acceptable clause. If the best clause 

covers positive examples below this number, then it is 

not added to the current theory. The default value for 

minacc is 0.0 (domain of minacc is the set of floating-

point numbers between 0 and 1) and it sets a lower 

bound on the min imum accuracy of an acceptable 

clause. 

 

6. WARMR. 

Design of algorithms fo r frequent pattern discovery 

has become a popular topic in data min ing. Almost all 

algorithms have the same of level-wise search known 

as APRIORI algorithm (Agrawal, Mannila, Srikant, 

Toivonen, & Verkamo, 1996). The level-wise 

algorithm is based on a breadth-first search in the 

lattice spanned by a specialization relat ion between 

patterns (Dehaspe & Raedt, 1997; Dehaspe & 

Toivonen, 2001). The APRIORI method looks at a 

level of the lattice at a time. It starts from the most 

general pattern. It iterates between candidate generation 

and candidate evaluation phases. In candidate 

generation, the lattice is used for pruning non-frequent 

patterns from the next level. In candidate evaluation, 

frequencies of candidates are computed with respect to 

database. Pruning is based on the monotonicity 

property with respect to frequency: if a pattern is not 

frequent then none of its specializat ions are frequent. 

WARMR (Dehaspe & Raedt, 1997; Dehaspe & 

Toivonen, 2001) is a non-interactive descriptive ILP 

system that employs APRIORI rule as search 

heuristics. Therefore, it is not a predictive system, i.e. it  

does not define the target relation. Instead, it can find 

the frequent queries including the target relation. Then, 

it is possible to extract association rules having target 

relation in the head according to confidence criteria. 

The target relation is defined as the key relation in 

WARMR.  In WARMR algorithm, at the beginning 

there are three sets: candidate queries (Q), frequent 

queries (F) and infrequent queries (I). Q is initialized as 

having the key predicate. F and I are initialized as 

empty set. In the first level, the specializat ions of the 

item in Q are generated according to language bias 

(warmode is similar to mode declaration in PROGOL). 

They are put into current Q set. After this, frequency 

values of the items in Q are evaluated and infrequent 

items are put into I and frequent items are put into F. In 

the next level, Qset is generated according to previous 

contents of Q, F and I set. The language bias 

(warmode) defines the types and modes of the 

parameters of the predicates. The user can define the 

warmode in the settings file  in the input data. 

 

4. LANGUAGE BIAS 
ILP algorithms usually use one of the following 

relational languages: 

 general clauses language, 

 Horn clauses language. 

Construction of the hypothesis in the language 

frameworks is not always possible, because of the 

following reasons: 

 hypotheses space is huge and/or complex,  

 the language used is not expressive enough. 

To solve this problem two types of bias are used – a 

mechanis m employed by a leaner to constrain the 

search for hypotheses: 

 language bias – determines the search space 

itself, 

TABLE I:  
Language bias in ILP-based systems 
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System Language bias 

 mode declarations 

(input/output) types of the 

predicates' arguments 

function 

free 

clauses 

ground 

clauses 

ground 

literals 

non- 

recursive 

clauses 

Horn 

clauses 

LINUS    LE LH LH 

GOLEM    LE, LB   LH 

CIGOL    LE LH LH 

MIS LE,  LH  LE LB   LH 

FOIL LE,  LH LE  LB   LH 

PROGOL LE,  LH LE  LB   LH 

WARMAR LE,  LH LE  LB   LH, LB, LE 

 

TABLE II:  

Comparison of ILP-based systems 

 

System Search Direct ion Basic Techniques Use of mode Use of negative Allow 

recursive 

LINUS Top-down Attribute-Value 

Learn ing 

No No No 

GOLEM Bottom-up  Rlgg Yes Yes No 

CIGOL Bottom-up  Inverse Resolution No No No 

MIS Top-down Refinement Graph Yes Yes Yes 

FOIL Top-down Refinement Graph Yes Yes Yes 

PROGOL Top-down Inverse 

Entailment  

Yes Yes Yes 

WARMAR Top-down APRIORI Yes Yes Yes 

 

 search bias – determines how the hypothesis 

space is searched. 

There are two categories of language bias: 

 the syntactic restrictions of the selected logic 

formalis m, 

 the vocabulary of predicate, function, 

variables and constant symbols: function free 

clauses, ground clauses (e.g. without 

variables), non-recursive clauses, mode 

declarations (input/output) of the predicates‟ 

arguments. 

To represent examples, hypotheses and BK in the 

learning task examples‟ language (LE), hypotheses 

language (LH), and BK language (LB) have been used. 

Each of language restriction above mentioned 

could be applied to each of these languages 

independently, or to all of them together (Table 1).   

 

All ILP systems use some language bias. Mode 

declarations and learning of non-recursive clauses are 

necessary for narrowing search in the hypotheses space, 

but other language restrictions are imposed from the 

theory. For example, such a hypothesis does not exist 

in general case when both set of examples and BK set 

consist of Horn clauses. 

 

5. COMPARISON OF ILP-BASED 

SYSTEMS 
In this section, we compare the aforementioned 

ILP systems in terms of basic techniques they employ, 

availability of basic features in concept discovery and 

their concept discovery performance in different 

domains. In comparison, we included the features of 

search direction, use of mode declaration, use of 

negative data and handling recursive rules. 

Search direction of the systems is either top-down 

or bottom-up. In top-down systems, the search starts 

with a general clause and at each turn, it makes the 

clause more specific until it covers no negative 

examples. On the other hand, in bottom-up systems, the 

search starts with a specialized clause, and at each turn, 

it generalizes the clause so that it covers more positive 

examples, until no more improvement is possible. 

 

6. ACCURACY AND TIME 

CHARACTERISTICS 
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The following characteristics are measured in the 

classical chess and endgame domain “White King and 

Rook versus Black King”. The results of the 

experiment are presented in the following table III: the 

classification accuracy is given by the percentage of 

correctly classified testing instance and by the standard 

deviation (sd), averaged over 5 experiments .   
 

TABLE III:  

Experimental comparison of ILP-based systems 

 

System 

100 t rain ing 

examples 

1000 train ing 

examples 

Accuracy Time Accuracy Time 

CIGOL 77.2% 21.5 h N/A N/A 

FOIL 90.8% 31.6 s 99.4% 4.0 

min  

LINUS 98.1% 55.0 s 99.7% 9.6 

min  

PROGOL 95.3% 53.9 s 99.6% 8.3 

min  

 

Although LINUS is better than other algorithms in 

small and large training sets, it has one major 

disadvantage - does not provide features for handling 

BK. From the rest algorithms PROGOL has better 

accuracy, but it is slower. 

 

7. CONCLUSION 
This work aims to present a review of ILP-based 

concept discovery systems through illustrations of the 

working mechanis ms of these systems. The well-

known systems, LINUS, GOLEM, CIGOL, MIS, 

FOIL, PROGOL, ALEPH and WARMR, are the 

systems that are covered in this comparative study. The 

comparison is based on basic characteristics of the 

systems. Although search strategies of FOIL and its 

family algorithms make them very efficient, they have 

a considerable disadvantage these algorithms in the 

search process sometimes can prune searched 

hypotheses. 

If the target concept is not clear enough, using 

WARMR is a wise choice in order to see various 

frequent clauses hidden in the data. If the user is 

familiar with mode declarations, search and evaluation 

mechanis ms, PROGOL and ALEPH are suitable 

choices. User may try d ifferent mode declarations, 

search and evaluation mechanisms to find the settings 

and rule structures that best identify the target concept. 

Many inverse resolution algorithms increase the 

concept description language by constructing predictor 

descriptors (i.e., predicates), but are either limited to 

deduction or require an oracle to maintain reasonable 

efficiency. 
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