

 Multi-Relational Classification Using Inductive Logic Programming
Vimalkumar B. Vaghela

1
, Dr. Kalpesh H. Vandra

2
, Dr. Nilesh K. Modi

3

1
Ph.D. Scholar, Department of Computer Science & Engineering, Karpagam University, Coimbatore,

Tamilnadu, India
2
Director Academic, C. U. Shah College of Engineering & Technology, Surendranagar, Gujarat India

3Professor & Head, Department of Computer Science, S V Institute of Computer Studies, Gujarat, India

Abstract

Due to the increase in the amount of relational data

that is being collected and the limitations of

propositional problem definition in relational domains,

multi-relational data mining has arisen to be able to

extract patterns from relational data. Multi –relational

data mining has become popular due to the limitations

of propositional problem definition in structured

domains and the tendency of storing data in relational

databases. Several relational knowledge discovery

systems have been developed employing various search

strategies, heuristics, language pattern limitations and

hypothesis evaluation criteria, in order to cope with

intractably large search space and to be able to

generate high-quality patterns. Inductive logic

programming (ILP) studies learning from examples,

within the framework provided by clausal logic. ILP

has become a popular subject in the field of data

mining due to its ability to discover patterns in

relational domains. Several ILP based concept

discovery systems are developed which employs

various search strategies, heuristics and language

patterns. LINUS, GOLEM, CIGOL, MIS, FOIL,

PROGOL, ALEPH and WARMR are well-known ILP-

based systems.

Index Terms— Classification; Multi -relational

data mining; Inductive Logic Programming

1. INTRODUCTION

Due to the impract icality of single-table data

representation, relational databases are needed to store

complex data for real life applications. This has led to

the development of mult i-relat ional learn ing systems

that are directly applied relational data. Relational

upgrades of data mining and concept learning systems

generally employ first-order predicate logic as

representation language for background knowledge and

data structures. The learning systems, which induce

logical patterns valid for given background knowledge,

have been investigated under a research area, called

Inductive Logic Programming (ILP). Stephen

Muggleton introduced the name Inductive Logic

Programming (ILP) that is the intersection of machine

learning and logic programming (Muggleton, 1999).

ILP techniques are widely used for classification and

concept discovery in the data min ing algorithms. In

classification, general rules are created according to

data and then they are used for grouping the

unclassified data. In concept discovery, interesting

rules, if exist, are given to the users of the systems.

Several ILP based systems are developed which

employs various search strategies, heuristics and

language pattern limitations. LINUS, GOLEM,

CIGOL, MIS, FOIL, PROGOL, ALEPH and WARMR

[1, 4] are well-known ILP techniques.

2. INDUCTIVE LOGIC PROGRAMMING
A. Overview

ILP has ability to use structured, complex and

multi-relational data. ILP system represents examples,

background knowledge, hypotheses and target concepts

in horn clauses logic. ILP techniques are widely used

for classification and concept discovery in the data

mining algorithms. The core of ILP is the use of logic

for representation and the search for syntactically legal

hypotheses constructed from predicates provided by the

background knowledge. In ILP systems, the training

examples, background knowledge and induced

hypothesis are all expressed in a logic program form.

Two measures are used to test the quality of the

induced theory. After learning, the theory with

background knowledge should cover all positive

examples (completeness) and should not cover any

negative examples (consistency). Completeness and

consistency together form correctness [3, 5, 13].

In ILP, a system often starts with an initial pre-

processing phase and ends with a post-processing

phase. In pre-processing phase, error (noise) in the

given examples can be detected and eliminated. In post-

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

1www.ijert.org

processing phase, redundant clauses in the induced

theory are removed in order to improve its efficiency.

There are two approaches for the search direction: top-

down and bottom-up.

ILP is the study of learning methods for data and

rules that are represented in first-order predicate logic.

Predicate logic allows for quantified variables and

relations and can represent concepts that are not

expressible using examples described as feature

vectors. A relational database can be easily translated

into first-order logic and be used as a source of data for

ILP [4]. As an example, consider the following rules,

written in Pro log syntax (where the conclusion appears

first), that define the uncle relation:

 uncle (X,Y) :- brother (X, Z), parent (Z, Y).

 uncle (X,Y) :- husband (X, Z), sister (Z, W),

 parent (W, Y).

The goal of inductive logic programming (ILP) is

to infer rules of this sort given a database of

background facts and logical defin itions of other

relations [2, 13]. For example, an ILP system can learn

the above rules for uncle (the target predicate) given a

set of positive and negative examples of uncle

relationships and a set of facts for the relations parent,

brother, sister, and husband (the background

predicates) for the members of a given extended

family, such as:

uncle (tom, frank), uncle (bob, john),

uncle (tom, cindy), uncle(bob, tom)

parent (bob, frank), parent (cindy, frank),

parent (alice, john), parent (tom, john),

brother (tom, cindy), sister (cindy, tom),

husband (tom, alice), husband (bob, cindy).

Alternatively, rules that logically define the brother

and sister relations could be supplied and these

relationships inferred from a more complete set of facts

about only the basic predicates: parent, spouse, and

gender. If-then rules in first-order logic are fo rmally

referred to as Horn clauses. A more formal definit ion

of the ILP problem follows:

 Given:

 Background knowledge, B, a set of Horn

clauses.

 Positive examples, P, a set of Horn

clauses (typically ground literals).

 Negative examples, N, a set of Horn

clauses (typically ground literals).

 Find: A hypothesis, H, a set of Horn clauses such

that:

 p P: H B p (completeness)

 n N: H B n (consistency)

A variety of algorithms for the ILP problem have

been developed [3, 10, 13] and applied to a variety of

important data mining problems [2, 10, 12].

Nevertheless, relational data min ing remains an under-

appreciated topic in the larger KDD community.

B. Search Strategies

Two basic steps in the search for correct theory are

specialization and generalization. If a theory covers

negative examples, it means that it is too strong, it

needs to be weakened. In other words, a more specific

theory should be found. This process is called

specialization. If a theory does not imply all positive

examples, it means that it is too weak, it needs to be

strengthened. In other words, a more general theory

should be found. This process is called generalization.

Specialization and generalization steps are repeated to

adjust the induced theory in the overall learn ing

process.

There are two approaches for the search directions:

top-down and bottom-up. Top-down approach starts

with an overly general theory and tries to specialize it

until it no longer covers negative examples.

Specialization (refinement) operators [4, 5, 11] employ

two basic operations on a clause: apply a substitution to

the clause and add a literal to the body of the clause.

Refinement graph is the most popular data structured

used in specialization. Bottom-up approach starts with

an overly specific theory and tries to generalize it until

it cannot further be generalized without covering

negative examples. Generalizat ion operators perform

two basic syntactic operations on a clause: apply an

inverse substitution to the clause and remove a literal

from the body of the clause. Relative least general

generalization (rlgg) and inverse resolution are basic

generalization techniques. Generalization techniques

search the hypothesis space in a bottom-up manner.

rlgg used in GOLEM and inverse resolution used in

CIGOL.

C. Algorithm: Generic ILP based concept learner

Require: TR: Target Relat ion, B: Background

Knowledge

Ensure: H: hypothesis describing the target relation

 Start with some init ial theory H

 repeat

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

2www.ijert.org

 if H is too strong then

 Specialize H

 endif

 if H is too weak then

 Generalize H

 endif

 until H is consistent and complete

return H

A generic algorithm for an ILP-based concept

learner is presented in Algorithm. Target instances are

defined as positive, belonging to the target concept, and

negative, not belonging to the target concept.

Hypothesis is called strong if it does not cover all the

positive examples and weak if it covers some negative

examples. The induced hypothesis is called complete if

it covers all the positive examples, and consistent if it

covers none of the negative examples.

3. WELL-KNOWN ILP-BASED SYSTEM

A. Bottom-up System

1. GOLEM

Golem is an inductive logic programming

algorithm developed by Stephen Muggleton and Feng.

It uses the technique relative least general

generalization proposed by Gordon Plotkin. Therefore,

only positive examples are used and the search is

bottom-up. Negative examples can be used to reduce

the size of the hypothesis by deleting useless literals

from the body clause.

In order to generate a single clause, GOLEM first

randomly p icks several pairs of positive examples,

computes their rlggs and chooses the one with greatest

coverage. If the final clause does not cover all

positives, the covering approach will be applied. The

covered positives are removed from the input and the

algorithm will be applied to the remain ing positives

(Lavracˇ & Dzˇeroski, 1994; Muggleton & Feng,

1990).

2. CIGOL

CIGOL (logic backwards) is interactive bottom-up

relational ILP system based on inverse resolution.

CIGOL employs three generalization operators which

are relational upgrades of absorption, intra-construction

and truncation operators. The basic idea is to invert the

resolution rule of deductive inference using the

generalization operator based on inverse substitution.

CIGOL uses the absorption operator. However, CIGOL

also needs oracle knowledge to direct the induction

process.

B. Top-Down System

1. LINUS

LINUS is one of the most popular attribute-value

learning environments in the ILP history. LINUS is a

framework that reduces the relational learning problem

into a propositional one, employs an attribute-value

learning method and transforms the solution hypothesis

into relational form. It is a non-interactive ILP system,

integrating several ILP attribute-value learn ing

algorithm in a single environment. It can be viewed as a

toolkit, in which one or more of the algorithm can be

selected in order to find the best solution for the input.

The main algorithm behind LINUS[6][7] consists of

three steps. In the first step, the learning problem is

transformed from relation to attribute-value form. In

the second step, the transformed learning problem is

solved by an attribute-value learning method. In the

final step, the induced hypothesis is transformed back

into relational form.

2. MIS

Model Inference System (MIS) is an interactive

top-down relational ILP system, which uses refinement

graph in the search process (Shapiro, 1983). In its

algorithm, at the beginning the hypothesis is empty (H

=).Then it reads the examples (either positive or

negative) one by one. If the example is negative and

covered by some clauses in the Hypothesis set, then

incorrect clauses are removed from the solution set. If

the example is positive and it is not covered by any

clause in the solution set, with breadth-first search, a

clause c, which covers the example [6], is developed

and added to solution set. The process will continue

until the solution set (H) becomes complete and

consistent (Lavracˇ & Dzˇeroski, 1994).

3. FOIL

First-Order Inductive Learner (FOIL) is a non-

interactive top-down relational ILP system, which uses

refinement graph in the search process as in MIS. It

uses the covering approach for the solution having

more than one clause. FOIL is a sequential covering

algorithm that builds rules one at a time. After build ing

a rule, all positive target tuples satisfying that rule are

removed and FOIL will focus on tuples that have not

covered by any rule. When building each rule,

predicates are added one by one. At each step, every

possible predicate is evaluated, and the best one is

appended to the current rule. FOIL chooses the clause

according to weighted informat ion gain criteria.

4. PROGOL

PROGOL is a top-down relat ional ILP system,

which is based on inverse entailment (Muggleton,

1995; Muggleton & Tamaddoni-Nezhad, 2008).. It

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

3www.ijert.org

performs a search through the refinement graph.

Besides a definite p rogram B as background knowledge

and a set of ground facts E as examples, PROGOL

requires a set of mode declarat ions for reducing the

hypothesis space.

5. ALEPH

A Learning Engine fo r Proposing Hypotheses

(ALEPH) (Srinivasan, 1999) is a top-down relational

ILP system based on inverse entailment similar to

PROGOL. The basic algorithm is the same as

PROGOL algorithm whereas in the advanced use of

ALEPH, it is possible to apply different search

strategies, evaluation functions and refinement

operators. It is also possible to define more settings in

ALEPH such as min imum confidence and support. In

the advanced use of ALEPH, contrary to PROGOL, it

is possible to select more than one example as a sample

at the beginning of the algorithm. The best clause

obtained from reducing corresponding bottom clause is

then added to the theory. The basic PROGOL

algorithm is a „„batch‟‟ learner in the sense that all

examples and background are expected to be in place

before learn ing commences. An incremental mode

allows ALEPH to acquire new examples and

background informat ion by interacting with the user.

The basic PROGOL algorithm does a fairly standard

general to specific search and constructs a theory one

clause at a time. ALEPH allows the basic procedure for

theory construction to be altered in a number of ways

by using randomized search methods.

Minpos and minacc are the two parameters representing

minimum support and confidence criteria in ALEPH.

The default value for minpos is 1 and it sets a lower

bound on the number of positive examples to be

covered by an acceptable clause. If the best clause

covers positive examples below this number, then it is

not added to the current theory. The default value for

minacc is 0.0 (domain of minacc is the set of floating-

point numbers between 0 and 1) and it sets a lower

bound on the min imum accuracy of an acceptable

clause.

6. WARMR.

Design of algorithms fo r frequent pattern discovery

has become a popular topic in data min ing. Almost all

algorithms have the same of level-wise search known

as APRIORI algorithm (Agrawal, Mannila, Srikant,

Toivonen, & Verkamo, 1996). The level-wise

algorithm is based on a breadth-first search in the

lattice spanned by a specialization relat ion between

patterns (Dehaspe & Raedt, 1997; Dehaspe &

Toivonen, 2001). The APRIORI method looks at a

level of the lattice at a time. It starts from the most

general pattern. It iterates between candidate generation

and candidate evaluation phases. In candidate

generation, the lattice is used for pruning non-frequent

patterns from the next level. In candidate evaluation,

frequencies of candidates are computed with respect to

database. Pruning is based on the monotonicity

property with respect to frequency: if a pattern is not

frequent then none of its specializat ions are frequent.

WARMR (Dehaspe & Raedt, 1997; Dehaspe &

Toivonen, 2001) is a non-interactive descriptive ILP

system that employs APRIORI rule as search

heuristics. Therefore, it is not a predictive system, i.e. it

does not define the target relation. Instead, it can find

the frequent queries including the target relation. Then,

it is possible to extract association rules having target

relation in the head according to confidence criteria.

The target relation is defined as the key relation in

WARMR. In WARMR algorithm, at the beginning

there are three sets: candidate queries (Q), frequent

queries (F) and infrequent queries (I). Q is initialized as

having the key predicate. F and I are initialized as

empty set. In the first level, the specializat ions of the

item in Q are generated according to language bias

(warmode is similar to mode declaration in PROGOL).

They are put into current Q set. After this, frequency

values of the items in Q are evaluated and infrequent

items are put into I and frequent items are put into F. In

the next level, Qset is generated according to previous

contents of Q, F and I set. The language bias

(warmode) defines the types and modes of the

parameters of the predicates. The user can define the

warmode in the settings file in the input data.

4. LANGUAGE BIAS
ILP algorithms usually use one of the following

relational languages:

 general clauses language,

 Horn clauses language.

Construction of the hypothesis in the language

frameworks is not always possible, because of the

following reasons:

 hypotheses space is huge and/or complex,

 the language used is not expressive enough.

To solve this problem two types of bias are used – a

mechanis m employed by a leaner to constrain the

search for hypotheses:

 language bias – determines the search space

itself,

TABLE I:
Language bias in ILP-based systems

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

4www.ijert.org

System Language bias

 mode declarations

(input/output) types of the

predicates' arguments

function

free

clauses

ground

clauses

ground

literals

non-

recursive

clauses

Horn

clauses

LINUS LE LH LH

GOLEM LE, LB LH

CIGOL LE LH LH

MIS LE, LH LE LB LH

FOIL LE, LH LE LB LH

PROGOL LE, LH LE LB LH

WARMAR LE, LH LE LB LH, LB, LE

TABLE II:

Comparison of ILP-based systems

System Search Direct ion Basic Techniques Use of mode Use of negative Allow

recursive

LINUS Top-down Attribute-Value

Learn ing

No No No

GOLEM Bottom-up Rlgg Yes Yes No

CIGOL Bottom-up Inverse Resolution No No No

MIS Top-down Refinement Graph Yes Yes Yes

FOIL Top-down Refinement Graph Yes Yes Yes

PROGOL Top-down Inverse

Entailment

Yes Yes Yes

WARMAR Top-down APRIORI Yes Yes Yes

 search bias – determines how the hypothesis

space is searched.

There are two categories of language bias:

 the syntactic restrictions of the selected logic

formalis m,

 the vocabulary of predicate, function,

variables and constant symbols: function free

clauses, ground clauses (e.g. without

variables), non-recursive clauses, mode

declarations (input/output) of the predicates‟

arguments.

To represent examples, hypotheses and BK in the

learning task examples‟ language (LE), hypotheses

language (LH), and BK language (LB) have been used.

Each of language restriction above mentioned

could be applied to each of these languages

independently, or to all of them together (Table 1).

All ILP systems use some language bias. Mode

declarations and learning of non-recursive clauses are

necessary for narrowing search in the hypotheses space,

but other language restrictions are imposed from the

theory. For example, such a hypothesis does not exist

in general case when both set of examples and BK set

consist of Horn clauses.

5. COMPARISON OF ILP-BASED

SYSTEMS
In this section, we compare the aforementioned

ILP systems in terms of basic techniques they employ,

availability of basic features in concept discovery and

their concept discovery performance in different

domains. In comparison, we included the features of

search direction, use of mode declaration, use of

negative data and handling recursive rules.

Search direction of the systems is either top-down

or bottom-up. In top-down systems, the search starts

with a general clause and at each turn, it makes the

clause more specific until it covers no negative

examples. On the other hand, in bottom-up systems, the

search starts with a specialized clause, and at each turn,

it generalizes the clause so that it covers more positive

examples, until no more improvement is possible.

6. ACCURACY AND TIME

CHARACTERISTICS

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

5www.ijert.org

The following characteristics are measured in the

classical chess and endgame domain “White King and

Rook versus Black King”. The results of the

experiment are presented in the following table III: the

classification accuracy is given by the percentage of

correctly classified testing instance and by the standard

deviation (sd), averaged over 5 experiments .

TABLE III:

Experimental comparison of ILP-based systems

System

100 t rain ing

examples

1000 train ing

examples

Accuracy Time Accuracy Time

CIGOL 77.2% 21.5 h N/A N/A

FOIL 90.8% 31.6 s 99.4% 4.0

min

LINUS 98.1% 55.0 s 99.7% 9.6

min

PROGOL 95.3% 53.9 s 99.6% 8.3

min

Although LINUS is better than other algorithms in

small and large training sets, it has one major

disadvantage - does not provide features for handling

BK. From the rest algorithms PROGOL has better

accuracy, but it is slower.

7. CONCLUSION
This work aims to present a review of ILP-based

concept discovery systems through illustrations of the

working mechanis ms of these systems. The well-

known systems, LINUS, GOLEM, CIGOL, MIS,

FOIL, PROGOL, ALEPH and WARMR, are the

systems that are covered in this comparative study. The

comparison is based on basic characteristics of the

systems. Although search strategies of FOIL and its

family algorithms make them very efficient, they have

a considerable disadvantage these algorithms in the

search process sometimes can prune searched

hypotheses.

If the target concept is not clear enough, using

WARMR is a wise choice in order to see various

frequent clauses hidden in the data. If the user is

familiar with mode declarations, search and evaluation

mechanis ms, PROGOL and ALEPH are suitable

choices. User may try d ifferent mode declarations,

search and evaluation mechanisms to find the settings

and rule structures that best identify the target concept.

Many inverse resolution algorithms increase the

concept description language by constructing predictor

descriptors (i.e., predicates), but are either limited to

deduction or require an oracle to maintain reasonable

efficiency.

ACKNOWLEDGMENT
We are thankful to the great GOD for making us

able to do something.

This research is the part of Ph.D. programme in

Computer Science & Engineering, Karpagam

University, India.

REFERENCES

[1] Arno J. Knobbe, Arno Siebes, Hendrik Blockeel, Daniël
van der Wallen, “Multi-Relational Data Mining, using

UML for ILP”, PKDD '00 Proceedings of the 4th

European Conference on Principles of Data Mining and

Knowledge Discovery Springer-Verlag London, UK

©2000
[2] Yusuf Kavurucu, Pinar Senkul, Ismail Hakki Toroslu,”

AGGREGATION IN CONFIDENCE-BASED

CONCEPT DISCOVERY FOR MULTI-RELATIONAL

DATA MINING”, IADIS European Conference Data

Mining 2008.
[3] Raymond J. Mooney, Prem Melville, Lappoon Rupert

Tang, “Relational Data Mining with Inductive Logic

Programming for Link Discovery“,National Science

Foundation Workshop on Next Generation Data Mining,

Nov. 2002, Baltimore, MD.
[4] Yusuf Kavurucu, Pinar Senkul, Ismail Hakki Toroslu,

“Confidence-based Concept Discovery in Multi-

Relational Data Mining”, International MultiConference

of Engineers and Computer Scientists 2008 Vol I

IMECS 2008, 19-21 March, 2008, Hong Kong.
[5] Lappoon R. Tang, Raymond J. Mooney, and Prem

Melville, “Scaling Up ILP to Large Examples: Results

on Link Discovery for Counter-Terrorism”, KDD-2003

Workshop on Multi-Relational Data Mining (MRDM -

2003), pp.107-121, Washington DC, August, 2003.
[6] Seda Daglar Toprak,Pinar Senkul, “A New ILP-based

Concept Discovery Method for Business Intelligence”,

2007, IEEE.

[7] Alexessander Alves, Rui Camacho and Eugenio

Oliveira, “Discovery of Functional Relationships in
Multi-relational Data using Inductive Logic

Programming”, Fourth IEEE International Conference

on Data Mining (ICDM‟04).

[8] Dzeroski, S., Lavtac, N. 2001. eds, Relational data

mining, Berlin: Springer.
[9] Han, J., Kamber, M. 2007. Data Mining: Concepts and

Techniques”, 2nd Edition, Morgan Kaufmann.

[10] Wrobel S, “Inductive Logic Programming for

Knowledge Discovery in Databases: Relational Data

Mining”, Berlin: Springer, pp.74-101, 2001.
[11] I. Bratko. Prolog Programming for Arti_cial Intelli-

gence, 3rd edition. Addison-Wesley, Harlow, England,

2001.

[12] W. Buntine. Generalized subsumption and its

applications to induction and redundancy. Artificial
Intelligence, 36(2): 149-176, 1988.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

6www.ijert.org

[13] L. De Raedt, editor. Advances in Inductive Logic

Programming. IOS Press, Amsterdam, 1996.

AUTHOR‟S PROFILE

Prof. Vimalkumar B Vaghela, is

currently doing his Ph.D. in Computer

Science & Engineering at Karpagam

University, India. This author is Young

Scientist awarded from Who‟s Whos

Science & Engineering 2010-2011 &

also his biography is included in

American Biographical Institute in

2011. His publication is also available in ieeeexplorer and

also in spocus online database. He is currently working as a

Assistant Professor in Computer Engineering Department at

L. D. College of Engineering, Ahmedabad, Gujarat, India. He

received the B.E. degree in Computer Engineering from C. U.

Shah College of Engineering and Technology, in 2002 &

M.E. degree in Computer Engineering from Dharmsinh Desai

Univrsity, in 2009. His research areas are Relational Data

Mining, Ensemble Classifier, Pattern Mining. Author has

published / presented more than 5 international papers and 5

national papers.

Dr. Kalpesh H Vandra received the B.E.

degree in Electronics & Communication

form North Gujarat University, Patan, in
1995, the M.E degree in Microprocessor

System Applications from M.S. University,

Vadodara, in 1999 and PhD from

Saurashtra University, Rajkot, in 2009. He

is working as Director Academic and Head
Of Computer Engineering & Information Technology at C. U

Shah College of Engineering & Technology, wadhwan city,

Gujarat, INDIA, Author having more than 15 years of UG &

6 years of PG (MCA and M.E) Teaching Experience. Author

had written more than 10 Books related to Computer & IT
related area. He has published / presented 10 International

and 7 national Research Papers & Guided more than 10 PG

Students and more than 155 UG Students Dissertation work.

Dr. K H.Wandra is a Chairman of Board of Studies Computer

Engineering At Saurashtra University, Rajkot, Core
Committee member For Syllabus of UG & PG at Gujarat

Technology University, Ahmedabad. Section Managing

Committee Member of ISTE Gujarat Section, Life member of

ISTE, member of IEEE and CSI, Interested for working in the

area of Wireless communication, Networks, Advanced
Microprocessors, Data Mining.

Dr. Nilesh K Modi received the MCA

degree from A.M.P. Institute of
Computer Studies, Kherva, Gujarat, India

and PhD from Bhavnagar University in 2006. He is working

as a professor & head of MCA department in Sarva

Vidyalaya‟s Institute of Computer Studied, S V Campus,

Kadi, Gujarat, India. He is Associate Life Member in

Computer Society of India (CSI) Mumbai, Senior Associate
Member in International Association of Computer Science

and Information Technology (IACSIT) Singapore, Senior

Member in International Association of Engineers (IAEng)

Hong Kong, Senior Member in Computer Security Institute

New York, Member in Data Security Council of India (DSCI)
a NASSCOM initiative New Delhi. Author has published /

presented more than 18 international papers and more than 25

national papers. His areas of research interest are Data

mining, Computer network, information security.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

7www.ijert.org

