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Abstract  
 

In this paper an effective method for optimal power 

flow (OPF) of combined economic and emission 

dispatch by employing multiobjective particle swarm 

optimization for a standard IEEE 30 bus test system is 

presented. The harmful ecological effects caused due to 

emission of particulate and gaseous pollutants from 

fossil fuel power plants, can be reduced by proper load 

allocation among the various generating units. 

Multiobjective Particle Swarm Optimization is 

employed for optimization of Fuel cost, Emission and 

also for minimization total cost which includes 

economic dispatch and emission component. For 

improved performance of the power system Static Var 

Compensator (SVC) is adapted in the IEEE 30 bus 

system and results for optimization of Combined 

Economic and Emission Dispatch (CEED) with and 

without SVC installation are obtained and compared.  

The limits to carry out PSO has been set on generator 

real and reactive power outputs, reactive power 

injection due to capacitor banks, bus voltages and 

transformer tapings. 

 

 

1. Introduction  
The economic dispatch difficulty has taken an 

appropriate twist as the public began to worry about 

environmental situations. The absolute minimum cost 

is not any more the only condition to be satisfied in the 

electric power generation and dispatching difficulties. 

The production of electricity from the fossil fuel 

discharges various pollutants like Sulfur Oxides (SO2), 

and Oxides of Nitrogen (NOx) into the atmosphere. 

These gaseous pollutants results in harmful effects on 

human beings and also on plants and animals.  

On the other hand, considering only the operation of 

minimum environmental impact is not practical 

because of the high production cost of the system. 

Conversely, to operate the generating system with the 

lesser production cost will result in higher emission. As 

a result, economic dispatch, emission dispatch or 

combined economic and emission dispatch is in some 

way selected separately or combined together [1]. To 

determine the suitable solution to this difficulty, an 

excellent power management approach is set. Various 

optimization methods like lambda iteration, linear 

programming, non-linear programming, quadratic 

programming, interior point technique or even 

intelligent search techniques (e.g. Genetic Algorithm 

(GA), Evolutionary Programming (EP), Particle Swarm 

Optimization (PSO), etc.) are used to overcome several 

economic dispatch difficulties and also the unit 

commitment difficulties [2].  

The usage of genetic algorithm for economic 

dispatch difficulties needs a large number of 

generations if the power generating system has the 

more number of units. Combined economic and 

emission dispatch has been emerged in the field of 

power generation dispatch that concurrently reduce 

both fuel cost and total emissions. While the emission 

is reduced the fuel cost may be inappropriately 

increased or while the fuel cost is reduced the emission 

may be increased. This difficulty is overcome by 

creating the objective function and utilizing some 

optimization methods like PSO and GA. 

Particle swarm optimization (PSO) is a population 

based stochastic optimization technique developed by 

Dr. Eberhart and Dr. Kennedy in 1995, inspired by 

social behavior of bird flocking or fish schooling. 

PSO shares many similarities with evolutionary 

computation techniques such as Genetic Algorithm 

(GA). The system is initialized with a population of 

random solutions and searches for optima by updating 

generations. However, unlike GA, PSO has no 

evolution operators such as crossover and mutation. In 

PSO, the potential solutions, called particles, fly 

through the problem space by following the current 

optimum particles.  

In past several years, PSO has been successfully 

applied in many research and application areas. It is 
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demonstrated that PSO gets better results in a faster, 

cheaper way compared with other methods. Another 

reason that PSO is attractive is that there are few 

parameters to adjust. One version, with slight 

variations, works well in a wide variety of applications. 

Particle swarm optimization has been used for 

approaches that can be used across a wide range of 

applications, as well as for specific applications 

focused on a specific requirement. 

      Particle Swarm optimization (PSO) is a 

computational method that optimizes a problem 

by iteratively trying to improve a candidate 

solution with regard to a given measure of quality. PSO 

optimizes a problem by having a population of 

candidate solutions, here dubbed particles, and moving 

these particles around in the search-space according to 

simple mathematical formulae over the 

particle's position and velocity. Each particle's 

movement is influenced by its local best known 

position and is also guided toward the best known 

positions in the search-space, which are updated as 

better positions are found by other particles. This is 

expected to move the swarm toward the best solutions. 

PSO is a metaheuristic as it makes few or no 

assumptions about the problem being optimized and 

can search very large spaces of candidate solutions. 

However, metaheuristics such as PSO do not guarantee 

an optimal solution is ever found. More specifically, 

PSO does not use the gradient of the problem being 

optimized, which means PSO does not require that the 

optimization problem be differentiable as is required by 

classic optimization methods such as gradient 

descent and Quasi-Newton methods. PSO can therefore 

also be used on optimization problems that are partially 

irregular, noisy, change over time, etc. To obtain 

economic load dispatch of a power system, PSO is 

included in Optimal Power Flow (OPF) technique. 

An Optimal Power Flow (OPF) function schedules 

the power system controls to optimize an objective 

function while satisfying a set of nonlinear equality and 

inequality constraints [3]. The equality constraints are 

the conventional power flow equations; the inequality 

constraints are the limits on the control and operating 

variables of the system. Mathematically, the OPF can 

be formulated as a constrained nonlinear optimization 

problem.  

Optimal scheduling of the operations of electric 

power systems is a major activity, which turns out to be 

a large-scale problem when the constraints of the 

electric network are taken into account. 

The OPF problem was defined in the early 1960s as 

an extension of conventional economic dispatch to 

determine the optimal settings for control variables in a 

power network respecting various constraints. OPF is a 

static constrained nonlinear optimization problem, 

whose development has closely followed advances in 

numerical optimization techniques and computer 

technology. It has since been generalized to include 

many other problems. Optimization of the electric 

system with losses represented by the power flow 

equations was introduced in the 1960s. Since then, 

significant effort has been spent on achieving faster and 

robust solution methods that are suited for online 

implementation, operating practice, and security 

requirements. 

OPF seeks to optimize a certain objective, subject to 

the network power flow constraints and system and 

equipment operating limits. Today, any problem that 

involves the determination of the instantaneous optimal 

steady state of an electric power system is referred to as 

an Optimal Power Flow problem. The optimal steady 

state is attained by adjusting the available controls to 

minimize an objective function subject to specified 

operating and security requirements [4,5]. Different 

classes of OPF problems, designed for special-purpose 

applications, are created by selecting different functions 

to be minimized, different sets of controls, and different 

sets of constraints. All these classes of the OPF 

problem are subsets of the general problem. 

Historically, different solution approaches have been 

developed to solve these different classes of OPF. 

There are many possible objectives for an OPF. Some 

commonly implemented objectives are: 

-fuel or active power cost optimization, 

-active power loss minimization, 

-minimum control-shift, 

-minimum voltage deviations from unity, and 

-minimum number of controls rescheduled.  

 

2. Problem Formulation 
The standard OPF problem can be formulated as a 

constrained optimization problem mathematically as 

follows: 

         minimize          𝑓(𝑥) 

         subjected to     𝑔 𝑥 = 0              (1) 

                              (𝑥) ≤ 0 

      where 𝑓(𝑥) is the objective function, 𝑔 𝑥  

represents the equality constraints, (𝑥) represents the 

inequality constraints and 𝑥 is the vector of the control 

variables such as generator real power 𝑃𝑔, generator 

voltages 𝑉𝑔, transformer tap setting T, and reactive 

generations of VAR sources 𝑄𝑐. Therefore, 𝑥 can be 

expressed as 

𝑥𝑇 = [𝑃𝑔1 ,𝑃𝑔2, …    𝑃𝑔𝑛𝑔 ,  𝑉𝑔1 ,𝑉𝑔2 ,…     𝑉𝑔𝑛𝑔 ,

𝑇1 ,𝑇2 ,… .      𝑇𝑛𝑡 , 𝑄𝑐1 ,𝑄𝑐2 ,…       𝑄𝑐𝑛𝑐 ]      (2) 
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where 𝑛𝑔 is the number of generator buses, 𝑛𝑡 is 

the number of transformer branches and 𝑛𝑐 is the 

number of shunt compensators. 

The essence of the optimal power flow problem 

resides in reducing the objective function and 

simultaneously satisfying the load flow equations   

(equality constraints) without violating the inequality 

constraints. 

 

3. Objective Function 
3.1 Economic objective function 

     The most commonly used objective in the OPF 

problem formulation is the minimization of the total 

operation cost of the fuel consumed for producing 

electric power within a schedule time interval (one 

hour). The individual costs of each generating unit is 

assumed to be function, only, of real power generation 

and are represented by quadratic curves of second 

order. The objective function for the entire power 

system can then be expressed as the sum of the 

quadratic cost model at each generator. 

𝐹𝑒𝑐 𝑥 =   (𝑎𝑖 + 𝑏𝑖𝑃𝑔𝑖 + 𝑐𝑖𝑃𝑔𝑖
2)

𝑛𝑔
𝑖=1        $/        (3) 

where 𝑎𝑖 , 𝑏𝑖  and 𝑐𝑖  are the cost coefficients of 

generator at bus 𝑖 . 

3.2 Emission objective function 

The emission control cost results from the 

requirement for power utilities to reduce their pollutant 

levels below the annual emission allowances assigned 

for the affected fossil units. The total emission can be 

reduced by minimizing the three major pollutants: 

oxides of nitrogen (NOx), oxides of sulphur (SOx) and 

carbon dioxide (CO2). The objective function that 

minimizes the total emissions can be expressed in a 

linear equation as the sum of all the three pollutants 

resulting from generator real power 𝑃𝑔𝑖 . 

In this study, Nitrogen-Oxide (NOx) emission is 

taken as the index from the viewpoint of environment 

conservation. The amount of NOx emission is given as 

a function of generator output (in Ton/hr), that is, the 

sum of quadratic and exponential functions. 

𝐹𝐸 =   (𝑎𝑖 + 𝑏𝑖𝑃𝑔𝑖 + 𝑐𝑖𝑃𝑔𝑖
2 + 𝑑𝑖exp(𝑒𝑖𝑃𝑔𝑖))

𝑛𝑔
𝑖=1                     

                                                               Ton/hr           (4) 

where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ,𝑑𝑖and 𝑒𝑖   are the coefficients of 

generator emission characteristic. 

 The pollution control cost (in $/h) can be obtained 

by assigning a cost factor to the pollution level 

expressed as  

𝐹𝑝𝑐 = 𝑤𝐹𝐸  $/h                                       (5) 

where w is the emission control cost factor in $/Ton. 

3.3 Total objective function 
      The economic dispatch and emission dispatch 

are considerably different. The economic dispatch 

reduces the total fuel cost (operating cost) of the system 

at an increased rate of NOx. On the other hand 

emission dispatch reduces the total emission from the 

system by an increase in the system operating cost. 

Therefore it is necessary to find out an operating point, 

that strikes a balance between cost and emission. This 

is achieved by combined economic and emission 

dispatch (CEED). 

    The CEED problem can be formulated as, 

minimize  𝑓(𝐹𝑒𝑐 ,𝐹𝐸)                                (6) 

subject to demand constraint and generating 

capacity limits. 

The above mentioned multi-objective optimization 

problem can be converted to a single objective 

optimization problem by introducing the emission 

control cost factor w, as follows, 

minimize     𝐹 = 𝐹𝑒𝑐 + 𝑤𝐹𝐸                      (7) 

 

4. Types of constraints 
4.1 Equality Constraints 
    The equality constraints are the power flow equations 

describing bus injected active and reactive powers of the 

𝑖 𝑡 bus[6]. 

     The active and reactive power injections at 𝑖th bus 

are defined in the following equation: 

𝑃𝑖 = 𝑃𝑔𝑖 − 𝑃𝑑𝑖 =  𝑉𝑖𝑉𝑗 (𝑔𝑖𝑗𝐶𝑜𝑠𝜃𝑖𝑗 +𝑛𝑏
𝑗=1

                       𝑏𝑖𝑗 𝑆𝑖𝑛𝜃𝑖𝑗 )                          (8) 

𝑄𝑖 = 𝑄𝑔𝑖 − 𝑄𝑑𝑖 =  𝑉𝑖𝑉𝑗 (𝑔𝑖𝑗𝐶𝑜𝑠𝜃𝑖𝑗 −
𝑛𝑏
𝑗=1

               𝑏𝑖𝑗 𝑆𝑖𝑛𝜃𝑖𝑗 )                               (9) 

where 𝑄𝑔𝑖   is the reactive power generation at bus 𝑖; 
𝑃𝑑𝑖 , 𝑄𝑑𝑖  are the real and reactive power demands at 

bus 𝑖; 𝑉𝑖 ,𝑉𝑗 , the voltage magnitude at bus i, j, 

respectively; 𝜃𝑖𝑗  is the admittance angle, 𝑏𝑖𝑗  and 𝑔𝑖𝑗  

are the real and imaginary parts of the admittance and 

𝑛𝑏 is the total number of buses. 

4.2 Inequality Constraints 
    The inequality constraints of the OPF reflect the 

limits on physical devices in the power system as well 

as the limits created to ensure system security.  

The inequality constraints on the problem variables 

considered include: 

 Upper and lower bounds on the active 

generations at generator buses  

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥 ,   𝑖 = 1 𝑡𝑜 𝑛𝑔. 

 Upper and lower bounds on the reactive 

generations at generator buses  

𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥 ,   𝑖 = 1 𝑡𝑜 𝑛𝑔 

 reactive power injections due to capacitor 

banks  

 
csiQQQ CiCiCi ,,1,maxmin 

   
 Upper and lower bounds on the voltage 

magnitudes at all the buses.  
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𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥 ,   𝑖 = 1 𝑡𝑜 𝑛𝑏. 

 Upper and lower bounds on the tap changes of 

linear tap changing transformers 

𝑇𝑖
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥 ,   𝑖 = 1 𝑡𝑜 𝑛𝑏. 

 Voltage stability index:  

 𝐿𝑗 ≤ 𝐿𝑗
𝑚𝑎𝑥 ,       j=1,….,NL 

 SVC susceptance constraint:  

𝐵𝑆𝑉𝐶
𝑚𝑖𝑛 ≤ 𝐵𝑆𝑉𝐶 ≤ 𝐵𝑆𝑉𝐶

𝑚𝑎𝑥  

 transmission lines loading  

nliSS ii ,,1,max 
 

 

5. Particle Swarm Optimization in Optimal 

Power Flow 

5.1 Search Mechanism of PSO: 
    Each particle moves from the current position to the 

next one according to the present fitness function 

values. Generally, the fitness function is same the 

objective functions. The local best of other particles in 

the population should be changed if the present fitness 

function value is better than the previous. Repeat the 

new searching points until the maximum number of 

generations reached. 100 generations are set in this 

paper as the stopping criteria. 

     Each particle keeps track of its coordinates in the 

problem space, which are associated with the best 

solution, fitness, it has achieved so far. The fitness 

value is also stored. This value is called pbest. Another 

best value that is tracked by the particle swarm 

optimizer is the best value, obtained so far by any 

particle in the neighbors of the particle. This location is 

called local best (lbest). When a particle takes all the 

population as its topological neighbors, the best value 

is a global best and is called gbest. 

    The inertia weight parameter is considered important 

for the convergence of the algorithm. It controls the 

impact of previous history of velocities on the current 

velocities of particles and hence regulates the local and 

global exploration capabilities of the particles. A large 

inertia weight facilitates exploration, i.e., searching 

newer areas while a small value tends to facilitate 

exploitation, i.e., a finer searching of current search 

area. The value of the inertia weight parameter is 

normally kept between 0.4 and 0.9. Thus, the choice of 

inertia weight should be carefully made. 

     Each position and velocity in the N dimensional 

space such as position 𝑋𝑖 = (𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 ,… . . 𝑥𝑖𝑛 )and 

velocity 𝑉𝑖 = (𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3 ,… . . 𝑣𝑖𝑛 )Each particle is then 

flown over the search space in order its flying velocity 

and direction according to its own flying experience as 

well as that of its neighbors. Positions of the particles 

(tentative solutions) are evaluated at the end of every 

iteration relative to an objective or fitness value. 

Particles are assumed to retain memory of the best 

positions they have achieved in course of flying and 

share this information among the rest. 

     The collective best positions of all the particles 

taken together is termed as the global best position 

given as 𝑔𝑏𝑒𝑠𝑡 = (𝑔𝑏1 ,𝑔𝑏2,𝑔𝑏3 ,… . .𝑔𝑏𝑛)and the best 

position achieved by the individual particle is termed as 

the local best or position best and for the 𝑖𝑡particle 

given as 𝑝𝑏𝑒𝑠𝑡 = (𝑝𝑖1 ,𝑝𝑖2 , 𝑝𝑖3 ,… . . 𝑝𝑖𝑛 ) .Particles use 

both of these information to update their positions and 

velocities as given in the following equations: 

𝑣𝑖
(𝑡+1)

= 𝑤𝑖 . 𝑣𝑖
(𝑡)

+ 𝑐1 . 𝑟1 .  𝑥𝑔𝑏𝑒𝑠𝑡
(𝑡)

− 𝑥𝑖
(𝑡)
 +

                 𝑐2. 𝑟2 . (𝑥𝑖𝑝𝑏𝑒𝑠𝑡
(𝑡)

− 𝑥𝑖
(𝑡)

)               (10) 

 𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝑣𝑖
(𝑡+1)

                            (11) 

where: 

t :    pointer of iterations (generations). 

𝑤𝑖 :   inertia weight factor. 

c1, c2 :  acceleration constant. 

r1, r2 : uniform random value in the range (0,1). 

𝑣𝑖
(𝑡)

 : velocity of particle i at iteration t. 

𝑥𝑖
(𝑡)

 : current position of particle i at iteration t 

𝑥𝑖𝑝𝑏𝑒𝑠𝑡
(𝑡)

 : previous best position of particle i at iteration 

t. 

𝑥𝑔𝑏𝑒𝑠𝑡
(𝑡)

 : best position among all individuals in the 

population at iteration t. 

𝑣𝑖
(𝑡+1)

 : new velocity of particle i. 

𝑥𝑖
(𝑡+1)

 : new position of particle i.. 

PSO applied to optimal power flow 

       The objective is to minimize the objective function 

of the OPF defined by (7), taking into account the 

equality constraints and the inequality constraints. 

          The cost function implemented in PSO is defined 

as: 

𝐹 𝑥 =    𝑎𝑖 + 𝑏𝑖𝑃𝑔𝑖
+ 𝑐𝑖𝑃𝑔𝑖

2 
𝑛𝑔
𝑖=1  + 𝑤.    𝑎𝑖 +

𝑛𝑔
𝑖=1

𝑏𝑖𝑃𝑔𝑖 + 𝑐𝑖𝑃𝑔𝑖
2 + 𝑑𝑖 exp 𝑒𝑖𝑃𝑔𝑖            $/h      (12) 

  To minimize F is equivalent to getting a maximum 

fitness value in the searching process. The particle that 

has lower cost function should be assigned a larger 

fitness value. 

      The objective of OPF can be changed to 

maximization of fitness correspondingly as follows: 

maximize    𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 1/𝐹                            (13) 

        In this method only the inequality constraints on 

active powers are handled in the cost function. The 

other inequality constraints are scheduled in the load 

flow process. Because the essence of this idea is that 

the inequality constraints are partitioned in two types of 

constraints, active constraints that effect directly the 

objective function are checked using the PSO-OPF 

procedure and the reactive constraints are updating 

using an efficient Newton-Raphson Load flow (NR) 

procedure. 
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      Our objective is to search (𝑃𝑔𝑖 ) set in their 

admissible limits to achieve the optimization problem 

of OPF. At initialization phase, (𝑃𝑔𝑖 ) is selected 

randomly between 𝑃𝑔𝑖
𝑚𝑖𝑛 and 𝑃𝑔𝑖

𝑚𝑎𝑥 . 

      After the search goal is achieved, or an allowable 

generation is attained by the PSO algorithm. It is 

required to performing a load flow solution in order to 

make fine adjustments on the optimum values obtained 

from the PSO-OPF procedure. This will provide 

updated voltages, angles and points out generators 

having exceeded reactive limits. To determine reactive 

powers of all generators and to determine active power 

that should be supplied by slack generator taking into 

account the different reactive constraints, it requires a 

fast and robust load flow program with best 

convergence properties[7,8]. The developed load flow 

process is based on the NR algorithm. 

5.2 Optimal setting of PSO parameters in OPF 

case 
         The role of the inertia weight 𝑤𝑖 , in equation(10), 

is considered critical for the PSO’s convergence 

behavior. The inertia weight is employed to control the 

impact of the previous history of velocities on the 

current velocity. In this way, the parameter 𝑤𝑖  regulates 

the trade-off between the global (wide-ranging) and 

local (nearby) exploration abilities of the swarm. A 

large inertia weight facilitates global exploration 

(searching new areas); while a small one tends to 

facilitate local exploration, i.e. fine-tuning the current 

search area. A suitable value for the inertia weight 𝑤𝑖  

usually provides balance between global and local 

exploration abilities and consequently results in a 

reduction of the number of iterations required to locate 

optimum solution. Initially inertia weight was constant. 

However, experimental results indicated that it is better 

to initially set the inertia to a large value in order to 

promote global exploration of search space, and 

gradually decreased it to get more refined solutions. 

The parameters c1 and c2 in equation (10) are not critical 

for PSO’s convergence. However, proper fine-tuning 

may result in faster convergence and alleviation of 

local minima. The random numbers (𝑟1 , 𝑟2) are used to 

maintain the diversity of the population, and they are 

uniformly distributed in the range (0, 1). 

PSO algorithm application to OPF 

5.3 PSO Algorithm 
    The PSO algorithm applied to OPF can be described 

in the following steps: 

Step 1: Input parameters of system, and specify the 

lower and upper boundaries of each control variable. 

Step 2: The particles are randomly generated between 

the maximum and minimum operating limits of the 

generators. 

Step 3: Calculate the value of each particle using 

objective function. 

Step 4: Evaluate the fitness value of objective function 

of each particle using (13). 𝑥𝑖𝑏𝑒𝑠𝑡 is set as the 𝑖 th 

particle’s initial position;  𝑥𝑔𝑏𝑒𝑠𝑡  is set as the best one 

of 𝑥𝑖𝑏𝑒𝑠𝑡 . The current evolution is t =1. 

Step 5: Initialize learning factors 𝑐1 , 𝑐2, inertia weight 

𝑤𝑖  and the initial velocity 𝑣1. 

Step 6: Modify the velocity 𝑣 of each particle 

according to (10). 

Step 7: Modify the position of each particle according 

to (11). If a particle violates its position limits in any 

dimension, set its position at proper limits. Calculate 

each particle’s new fitness; if it is better than the 

previous 𝑥𝑔𝑏𝑒𝑠𝑡 , the current value is set to be 𝑥𝑔𝑏𝑒𝑠𝑡 . 

Step 8: To each particles of the population, employ the 

Newton-Raphson method to calculate power flow and 

the transmission loss. 

Step 9: Update the time counter 𝑡 = 𝑡 + 1. 

Step 10: If one of the stopping criteria is satisfied then 

go to step 11. Otherwise go to step 6. 

Step 11: The particle that generates the latest 𝑝𝑔𝑏𝑒𝑠𝑡  is 

the global optimum. 

 

6. Power Flow Including Facts Controllers 
     FACTS controllers narrow the gap between the non-

controlled and the controlled power system mode of 

operation, by providing additional degrees of freedom 

to control power flows and voltages at key locations of 

the network. Key objectives of the technology are: to 

increase transmission capacity allowing secure loading 

of the transmission lines up to their thermal capacities; 

to enable better utilization of available generation; and 

to contain outages from spreading to wider areas. 

     In order to determine the effectiveness of this new 

generation of power systems controllers on a network-

wide basis, it has become necessary to upgrade most of 

the analysis tools on which power engineers rely to 

plan and to operate their systems. For the purpose of 

steady-state network assessment, power flow solutions 

are probably the most popular kind of computer-based 

calculations carried out by planning and operation 

engineers. The reliable solution of power flows in real-

life transmission and distribution networks is not a 

trivial matter and, over the years, owing to its very 

practical nature, many calculation methods have been 

put forward to solve this problem. Among them, 

Newton–Raphson type methods, with their strong 

convergence characteristics, have proved the most 

successful and have been embraced by industry. 

6.1 Static Var Compensator (SVC) 
     Conventional and advanced power flow models of 

SVCs are presented in this section. The advanced 
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models depart from the conventional generator-type 

representation of the SVC and are based instead on the 

variable shunt susceptance concept. In the latter case, 

the SVC state variables are combined with the nodal 

voltage magnitudes and angles of the network in a 

single frame of reference for unified, iterative solutions 

using the Newton–Raphson method [9].  

6.2 Shunt Variable Susceptance Model 
    In practice the SVC can be seen as an adjustable 

reactance with either firing-angle limits or reactance 

limits. The equivalent circuit shown in Figure 1 is used 

to derive the SVC nonlinear power equations and the 

linearized equations required by Newton’s method. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Variable Shunt Susceptance 

 

     With reference to Figure 1, the current drawn by the 

SVC is 

𝐼𝑆𝑉𝐶 = 𝑗𝐵𝑆𝑉𝐶𝑉𝑘              (17) 

 

and the reactive power drawn by the SVC, which is 

also the reactive power injected at bus k, is 

 𝑄𝑆𝑉𝐶 = 𝑄𝑘 = −𝑉𝑘
2𝐵𝑆𝑉𝐶            (18) 

    The linearized equation is given by Equation (19), 

where the equivalent susceptance BSVC is taken to be 

the state variable: 

 

 
∆𝑃𝑘
∆𝑄𝑘

 
(𝑖)

=  
0 0
0 𝑄𝑘

 
(𝑖)

 
∆𝜃𝑘

∆𝐵𝑆𝑉𝐶 𝐵𝑆𝑉𝐶 
 

(𝑖)

         (19) 

 

    At the end of iteration (i), the variable shunt 

susceptance 𝐵𝑆𝑉𝐶 is updated according to 

𝐵𝑆𝑉𝐶
(𝑖)

= 𝐵𝑆𝑉𝐶
(𝑖−1)

+  
∆𝐵𝑆𝑉𝐶

𝐵𝑆𝑉𝐶
 

(𝑖)

𝐵𝑆𝑉𝐶
(𝑖−1)

              (20) 

 

     The changing susceptance represents the total SVC 

susceptance necessary to maintain the nodal voltage 

magnitude at the specified value. 

      In the present work the SVC is located at 26
th

 bus 

as the voltage deviation at that bus is maximum. 

 

 

7. IEEE 30 bus system Data 
 

Table 1: Power generation limits and cost 

coefficients of IEEE 30-bus system 

Bus Pgmin Pgmax 
a1 

($/hr) 

b1 

($/hr) 

c1 

($/hr) 

01 

02 

03 

04 

05 

06 

0.5 

0.2 

0.15 

0.1 

0.1 

0.12 

2.0 

0.8 

0.5 

0.35 

0.3 

0.4 

37.5 

175 

625 

83 

250 

250 

200 

175 

100 

325 

300 

300 

0 

0 

0 

0 

0 

0 

 

 
Table 2: Pollution coefficients for IEEE 30-bus 

system 

 

Bus 

a 

ton/hr 

*10
-2

 

b 

ton/hr 

*10
-2

 

c 

ton/hr 

*10
-2

 

d 

ton/hr 

*10
-4

 

e 

1 

2 

3 

4 

5 

6 

4.091
 

2.543 

4.258 

5.326 

4.258 

6.131 

-5.554 

-6.047 

-5.094 

-3.550 

-5.094 

-5.555 

6.490 

5.638 

4.586 

3.380 

4.586 

5.151 

2.00 

5.00 

0.01 

20.00 

0.01 

10.00 

2.857 

3.333 

8.000 

2.000 

8.000 

6.667 

 

 
Table 3: Parameters and their values taken 

Parameter Value taken 

Emission control cost factor, 𝑤 

total load demand 

no. of generations 

no. of particles 

population size 

Cognitive constant, c1 

Social constant, c2 

No. of SVCs 

550.66 $/ton 

2.834 p.u 

100 

6 

50 

2 

2 

1 

kV

 I 

B 
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8. Results & Graphs 

 

 
Figure 2: Voltage profile of IEEE 30 bus system 

with and without SVC for CEED optimization 

 

 
Figure 3: Voltage stability index of IEEE 30 bus 

system with and without SVC for CEED 

optimization 

 

 
Figure 4:  MVA loading of IEEE 30 bus system 

with and without SVC for CEED optimization 

      

     On installation of SVC, from fig 2, 3 and 4 it 

can be observed that on installing Shunt Var 

Compensator (SVC) at 26
th

 bus the voltage profile 

improved to 1p.u and also voltage levels at all other 

buses improved; the stability index approached 

further closer to zero and finally, the MVA loading 

on transmission lines is observed to decrease at 

almost all the buses on installation of SVC. 

 

Table 4: Comparison of results obtained for 

economic, emission and CEED optimization 

Parameter 
Optimization of 

Fuel 

Cost 
Emission CEED 

Total cost 

($/hr) 
999.9080 979.1398 965.7238 

Fuel cost 

($/hr) 
800.1297 845.1430 816.7049 

Emission 

(ton/hr) 
0.3629 0.2433 0.2706 

 
Table 5: Comparison of Results Obtained for 

CEED optimization without and with SVC 

Parameter 
Without 

SVC 
With SVC 

Total cost ($/hr) 965.7238 965.3164 

Fuel cost($/hr) 816.7049 818.1669 

Emission(ton/hr) 0.2706 0.2672 

 
Table 6: Comparison of performance 

parameters obtained in CEED optimization 

without and with SVC 

Parameter 
Without 

FACTS 
With SVC 

PG1 

PG2 

PG3 

PG4 

PG5 

PG6 

1.3206 

0.5781 

0.2487 

0.3000 

0.2434 

0.2030 

1.2978 

0.5873 

0.2515 

0.3000 

0.2535 

0.2015 

VG1 

VG2 

VG3 

VG4 

VG5 

VG6 

1.0500 

1.0446 

1.0321 

1.0995 

1.0166 

1.0644 

1.0500 

1.0443 

1.0296 

1.1000 

1.0166 

1.0986 

Tap - 1 

Tap - 2 

Tap - 3 

Tap - 4 

0.9687 

1.0550 

1.0673 

0.9739 

0.9523 

1.0141 

1.0637 

0.9928 

QC10 

QC12 

QC15 

QC17 

QC20 

QC21 

QC22 

QC23 

QC29 

0.0692 

0.0850 

0.0000 

0.0219 

0.0052 

0.0000 

0.0000 

0.0000 

0.0249 

0.0576 

0.0776 

0.0076 

0.0145 

0.0022 

0.0000 

0.0007 

0.0019 

0.0053 

Ljmax 0.1155 0.107 

0.9

0.95

1

1.05

1.1

1.15

1 4 7 10 13 16 19 22 25 28

WITHOUT SVC WITH SVC

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

7 9 11 13 15 17 19 21 23 25 27 29

WITHOUT SVC WITH SVC

0

20

40

60

80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40

WITHOUT SVC WITH SVC
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Real power 

loss(pu) 
0.0598 0.0574 

 

9. Conclusion & Future scope 
    In this paper the fuel cost and emission are 

combined into a single function and the load 

dispatch for minimum of the total objective 

function are obtained. SVC is installed in the IEEE 

30 bus system and the stabilized voltages and 

reduction MVA loading of the transmission lines 

has been observed. PSO technique is employed as 

it possesses advantages of modelling flexibility, 

sure and fast convergence, less computational time 

over other heuristic methods. Further this work can 

be extended over to other FACTS devices. 
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