
Mutual Testing on Combined Software

Components

M.Chandrasekhar Varma
 Asst. Prof.,

Department of Computer Science & Engineering,

DNR College of Engineering & Technology,

Bhimavaram.

Abstract:- All the systems are based on the software built

components, most of the large systems contain same built in

components but individual component systems contain different

components and different working model based on system

developed, maintained and tested and the test cases will vary

from system to system. In practice, testers of different systems

rarely collaborate as a result, redundancy of testing common

components by obtaining information of each and every

component and properly design test cases for avoiding

redundancy. In this paper I have developed Mutual influence of

component-based systems with shared components. 1. Related

testing of common based systems. 2. Infrastructure and related

tools to make easy communication and data sharing between

testers. 3. Testing process to implement different collaborative

testing. By this i can achieve better efficiency in testing and

discover inter-component compatibility faults within a minimal

time window after they are introduced.

Keywords: Collaboration, Regression Testing, Data sharing,

Efficiency.

1. INTRODUCTION

Now a day’s companies are rely on third-party software
components, Combine them together to implement their
system. Each component in a component-based system may
have multiple versions, thus there can be a large number of
version configurations for a single software system.
Independent component based systems may have new
versions continuously released, and new end-user. If
developers use Agile Testing or which is prevalent in the
software development community, the version (or build)
release cycle can be very short, and the number of
configurations can increase rapidly effort by collaboration.
Collaborative testing can not only boost test efficiency
comparing to testing in isolation, but also provide
opportunities to improve the quality of individual
components. Our supposition is based on characteristics of
component-based systems. The characteristic is that
components in component-based software systems have
dependency relationships between them, i.e., some
components use or depend on other components. Opportunity
1: There should be relation among the provider and tester to
test the individual and shared components and the
information shared between them to intimate about changes
in software or there results so testers can keep more
concentrate on good testing easily.2: Distribute test effort and
share results for common components to improve test quality.
More specifically, when two or more component-based
systems use at least one common component, developers of

the systems can collaborate in the testing of the common
component. i) Improve the quality of compatibility testing of
component-based systems; and ii) boost the efficiency of
testing software system configurations. The goal of this
research is to develop automated collaborative testing
theories and tools for individual developers of shared
software components, so that their testing practice can be
more efficient and with Third, develop different collaborative
testing processes upon the infrastructure, so that testers can
rely on information shared by others to coordinate their own
testing and improve the efficiency and effectiveness of their
local tests. As the initial step, i conjecture that overlap and
synergy exist in testing functionally related components.
Developed two collaborative testing processes that coordinate
the local testing procedures of component developers. The
first process is called ad-hoc collaborative testing, which
requires minimal modification to the current practice of
isolated component developers conducting their testing. In
this process, automated tools of isolated developers will
query Conch before building any configuration, or running
any functional test. If there are any prebuilt configurations or
results shared for the same testing task, the developers can
just reuse them and avoid redundant effort. Otherwise, they
can continue with their original procedure, and share their
prebuilt artifacts and/or test.

Fig 1:System with common Componenets

2. RELATED WORK

2.1 Distributed Software Development There has been

much research of techniques on designing regression test
cases and regression tests selection. Component-based

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

1

software systems, components are usually developed and
maintained by different groups, each of which develops
regression tests for their own component only. As a result,
even though individual components may be well tested, the
system consisting them may suffer compatibility faults across
components. Many research target to address this problem by
creating better cross-component regression tests. The research
in this dissertation differs from the previous efforts, because
we are relying on the regression tests created for individual
components to improve the overall compatibility of
component-based systems. This research is based on
observations like; creating cross-component regression tests
may not be feasible in some scenarios. Nilsson et al.
developed a visualization technique for visualizing end-to-
end testing activities involved in the continuous integration
processes within projects or companies, so that such activities
can be better arranged to support more efficient integration
testing. However, Users install agents that automatically
check out software from a repository, build the software,
execute functional tests, and submit the results to the server.

2.2 Continuous Integration and Testing
Elbaum et al. designed algorithms to pre-select and prioritize
test cases from test suites to make continuous integration
processes more cost-efficient. Nilsson et al. developed a
visualization technique for visualizing end-to-end testing
activities involved in the continuous integration processes
within projects or companies, so that such activities can be
better arranged to support more efficient integration testing
An important part of our work is the tools and infrastructure i
provided to support coordinated collaborative testing, as part
of the continuous integration. There are some distributed
continuous quality assurance (QA) environments. However,
the underlying QA process is hard-wired in Dart and Cruise
Control and therefore other QA processes or implementations
of the build and test process is not easily supported.
2.3 Software Product Lines Testing A software product line
(SPL) is a family of programs that are differentiated by their
increments in functionality. Since each product is derived
from the core assets based on the features to be exhibited by
this product, compatibility testing must be applied to these
products in order to validate the correctness of features
implemented. To some extent, this process is similar to
testing component based systems. Researchers have proposed
many approaches to test SPLs. Souto et al used a profile of
passing and failing test runs to quickly identify failures that
are indicative of real compatibility problems in test or code
rather than specious failures due to illegal feature
combinations. Lamancha et al. worked on model driven
testing, which were used for one-off development, to an SPL
setting. However, testing SPLs is fundamentally different
from testing software components developed in isolation.
SPLs are commonly derived from a single system for the
purpose of reusability and productivity, thus they are
commonly designed and maintained within a single group or
organization, and a uniform model for the whole system is
usually well-defined. Tests of products in an SPL can usually
be derived from tests of core assets. The software components
addressed in this dissertation, on the other side, are
developed, maintained and tested in isolation, and there is no
well established compatibility tests generating methods for
component-based systems.

3. COLLABORATION TESTING

I describe my initial study of searching for overlaps in
the testing processes of functionally related components. In
this model i used to study how components get exercised by
their user components in a component assembly. Induced

Coverage: Suppose component a directly or indirectly uses
component b, and a has a test suite Ta. In a system where a is
successfully built on b, when running a’s test suite, Ta, the
fraction of b’s coverage elements (lines, branches, functions,
parameter values, faults, etc.) that get covered is called b’s
induced 25 coverage from a, represented as C a

b To
demonstrate the concept of induced coverage, i take the sub-
CDG that contains components A, B, C and E as an example,
and focus on line coverage. Suppose each component has a
test suite, correspondingly named TA, TB, TC, and TE, and that
there are 10 lines in E’s source code. When running the four
test suites, different lines of E get covered. Suppose lines 1, 2,
4, 5 get covered by TA, lines 3, 4, 5, 6, 8 get covered by TB,
lines 5, 6, 9, 10 get covered by TC, and lines 3, 4, 5, 7, 10 get
covered by TE. The induced line coverage from these
components to component E. Each column represents a line
in E’s source code, and each row shows the corresponding
coverage. A filled block means the line is covered, and a
blank one means that it is not. Union of Induced Coverage:
When both components a and b use c, the union of their
induced coverage for c (C a c ∪ C b c) is defined as the
fraction of c’s elements that is covered by either a or b.

Fig 2: Induced Coverage Example

3.1 Line/Branch Coverage This analysis of functional testing
examined how line and branch coverage changed depending
on which component’s tests were being run. Other coverage
metrics, such as method coverage, dataflow coverage, etc.,
could also be used to measure the effectiveness of user
components’ test suites on testing the provider components.
3.2 Fault Detection i seeded faults in one provider
component, and observed whether such faults were detected
when running the test suites of both the component that
contained the seeded faults and the component(s) that directly
or indirectly used it. 1. operator faults: a change of an
operator in the source code, including both arithmetic
operators (’+’, ’-’, ’*’ and ’/’) and comparison operators (’>’,
’=’, ’<=’ and ’==’).
2. constant faults: a change of a constant value defined in
macros in the source code. Non-zero constants are changed to
zero, and vice versa.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

2

4. INFRASTRUCTURE AND RELATED TOOLS

The core component is a web-service based data sharing
repository called Conch, which allows testing tools for
different component developers and testers to share their
testing artifacts and results. To support scalable caching and
sharing of testing artifacts in the format of virtual machine
images, i built an ad-hoc collaborative testing process upon
this infrastructure, and evaluated its effectiveness as well as
performance over a set of example components.

4.1 Environment Model In order to leverage independent
testing efforts of component-based software systems, it is
necessary to control the test environment in which a
component is built and tested so that test results will be
comparable across different testers. Thus, i provide a notional
definition of a test environment as follows: Definition 1: An
environment where a component built and tested in includes
all pre-built component instances in a system, the tools to be
used to build the new component, all source code needed by
the build, and all other controllable factors known to
determine the result of the component’s build process and the
correct functioning of the component. Controlling the
environment in this way maximizes the likelihood that two
testers building and testing the same component can share
and combine their test results. That is, any differences in
results should be attributable only to differences in how the
components were tested, not in where or by whom they were
tested. To gain this control, i attempt to standardize the test
environment used by each tester. i have identified several
factors that may affect the build and functional testing of
components, and therefore must be captured by the test
environment. These factors include: • Hardware parameters
(processor type, memory system, etc.) • Operating system
(architecture, kernel version, system core libraries, etc.) •
Build environment (compiler, compiler options, extra
instrumentation inserted, etc.) • Provider components
(versions, their build settings and installation options, etc.) Of
course, this approach is not bullet-proof. i cannot, for
example, account for unknowable or random factors, such as
transient hardware faults in one tester’s computing device,
which surely affect how a component behaves. A Virtual
Machine (VM) with an installed operating system and pre-
built core components is an intuitive way to encapsulate an
environment, and sharing of prebuilt environments then
becomes sharing of VM images. The description contains
information about the hardware parameters of the VM,
operating system information, pre-built components and their
build options, and other information that may affect the test
results. When accessing the repository, test tools search for
VM images instantiating specific environments based on the
description files. In this environment there are six
components, including the operating system and a compiler.

Fig 3: Environment Model

5. TESTING PROCESS

 First outline notification-based test coordination, and then
describe the detailed decision algorithm to distribute testing
tasks to different developer groups, based on the availability,
credibility and the performance of developer groups.

5.1 Strategy for Coordinated Collaboration
When a component is shared by multiple developer groups
and a new version of the component is released, sets of
regression configurations defined for its user components
have to be tested by the groups. Because the component is
shared, there must be overlaps in the regression configuration
sets, and the overlaps – a set of partial configurations must be
tested first. Conch selects one of the developer groups to test
those partial configurations without causing test redundancy,
based on the following factors: Availability: a binary value
that indicates whether a developer group can immediately
start testing a set of new regression configurations •
Performance: how fast a developer group can complete
testing on their testing resources • Reliability: how likely a
developer group can complete assigned testing tasks The
performance factor of a developer group G is defined as the
ratio of the execution time required to run a sample test suite
using the testing resources of the group and the resources at
the Conch repository, as shown in Equation

PF(G) = TG / TConch
 next define the test failure rate of a developer group G to
quantitatively measure the reliability of the group. It is
defined as the ratio of the number of failed test suite
executions and the total number of test suite executions by the
group.

T F R(G) = F CG /T CG

In Equation , T CG is the total number of test suite execution
requests that have been assigned to the group G, and F CG is
the number of test suite execution requests that failed to
complete successfully. Reasons for failure to run a test suite
may include abnormal termination of the test suite execution
and failure to report test results back to Conch (e.g., because
the test developer resource crashes, or loses its network
connection), but does not refer to the success or failure of
individual test case executions. Based on the performance
factor and the failure rate of a developer group G, i define the
Expected Performance Factor (EPF) of the group as:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

3

EP F(G) = P F(G)/ (1 − T F R(G))

The EPF value will be small when both the performance
factor value and the failure rate are small, and Conch prefers
to distribute testing workload to a group with the smallest
EPF value. When a provider component is updated, i first
determine the user components for which functionality might
be affected by the updated provider component. Then i
compute the regression configurations for the user
components and also compute the overlaps between the
configurations. The overlaps are a set of partial regression
configurations on which the updated component has to be
built and run without any faults. A developer group selected
by applying Algorithm, will then be requested to build and
test the updated component over the partial configuration set.

Algorithm:CoordinateTester(C,CDG,A,PFs,FRs)
--
Data:
 C: updated provider component
CDG: componenet dependency graph
A: availability of groups
PFs: performance factor values of groups
FRs: failure rate value of groups
Groups available direct user comp. Developer
groups;
Sort groups by EPF:
While groups!= Ø do

group groups.getNext();
result assigntask(group.C);
update FR of the group;
if result== Sucess then
update result in conch;
conch notifies subscribers of C’s
result;
 break;
end

end

Algorithm first identifies the developer groups of direct user
components of the updated component C and eliminates the
groups that cannot start regression testing immediately.1 The
candidate groups are sorted by the EPF values and then the
group with the smallest EPF value will be requested to test C
over the given regression configuration at result. If the group
completes (or fails to complete) the test, the FR value of the
group will be updated accordingly.

5.2 Regression Testing based on Cross-Component
Coverage i have presented a strategy to coordinate multiple
developer groups, while avoiding redundant test effort.
However, in the end i still running full test suites of all user
components that might be affected by the updated provider
component – i.e., if there are user-provider relationships
between the components in a CDG. i showed that developers
can save test effort up to 70% by selectively running
regression test cases based on the mapping between the
individual test cases of user components and the code
coverage of provider components. In this part of the
dissertation, coverage-based regression testing is conducted at
two different granularity levels. If Conch maintains the code

coverage mappings between each user component test case
and each provider component, only a subset of the test cases
that cover the updated regions of the provider component
must be run. If Conch maintains the mappings between the
test suite of a user component and each provider component
and if a provider component update is relevant to one or more
test cases of the user component, i rerun the whole test suite
at a provider component update.

6. CONCLUSION

By avoiding redundant work, collaborating across testing
processes, and using information obtained through testing
multiple related software components, testers of shared
components can not only save test effort, but also improve the
test effectiveness of each component as well as each
component-based software system. The goal of my thesis
research is to explore the types and amount of overlaps that
may exist in the testing processes of shared software
components, and to develop tools and techniques that rely on
that information to improve testing efficiency as well as
quality of components.

7. FUTURE WORK

My dissertation research is an initial study to search

for benefits of collaborative testing. Several possible
extensions and improvements can be made based on the
current work. Improve Scheduling Algorithm is the
coordinated collaborative testing process; Conch can schedule
a common testing task to one of the affected component
developers to avoid redundant testing. Improve Tests of
Individual Components shows that testing of user
components can test extra parts of provider components that
are not covered by the test suites of the provider components
themselves. Need to improve the Security and Consistency.

BIBLIOGRAPHY

[1] Collaborative Testing Across Shared Software Components by Teng

Long
[2] Floris Erich, Chintan Amrit, and Maya Daneva. A mapping study on

cooperation between information system development and
operations. In Andreas Jedlitschka, Pasi Kuvaja, Marco Kuhrmann,
Tomi Mnnist, Jrgen Mnch, and Mikko Raatikainen, editors, Springer
International Publishing, 2014.

[3] Robert Cecil Martin. Agile Software Development: Principles,
Patterns, and Practices. Prentice Hall PTR, Upper Saddle River, NJ,
2003.

[4] Ilchul Yoon, Alan Sussman, Atif Memon, and Adam Porter.
Towards incremental component compatibility testing., 2011.

Web Sites
[1] http://essay.utwente.nl/63988/
[2] http://drum.lib.umd.edu/handle/1903/18149

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

4

