

Native SQL Access to Hadoop Data

K Surya Ram Prasad1

Assistant Professor

DNR College of Engineering &Technology

P Srikanth2

Assistant Professor

Shri Vishnu Engineering College for Women.

Abstract:- The NoSQL movement that has been happening

over the past few years has taught two important lessons: a)

Alternatives to relational databases can be a great help in

solving a variety of problems and b) SQL isn’t going

anywhere. In fact, the NoSQL movement is now being

rebranded as New-SQL, as in, “Here’s a new technology

where you can use SQL!” Even though we’ve seen a

tremendous amount of innovation in the information

management field — technologies are now available that can

store graphs, documents, and key/value pairs at a massive

scale — the IT market is still demanding SQL support for all

of it. Hadoop is no exception, and a number of companies are

investing heavily to drive open source projects and

proprietary solutions for SQL access to Hadoop data.

Keywords: NoSQL, Hive,Map Reduce, Big SQL, HDFS,

DrillBit.

INTRODUCTION:

The IT industry has had 40 years of experience with SQL,

since it was first developed by IBM in the early 1970s.

With the increase in the adoption of relational databases in

the 1980s, SQL has since become a standard skill for most

IT professionals. You can easily see why SQL has been so

successful: It’s relatively easy to learn, and SQL queries

are quite readable. This ease can be traced back to a core

design point in SQL — the fact that it’s a declarative

language, as opposed to an imperativelanguage. For a

language to be declarative means that your queries deal

only with the nature of the data being requested. In other

words, all you indicate in SQL is what information you

want back from the system, not how to get it. In contrast,

with an imperative language (C, for example, or Java, or

Python) your code consists of instructions where you

define the actions you need the system to execute. When

talking about how Hadoop can complement the data

warehouse, it’s clear that organizations will store structured

data in Hadoop. And as a result, they’ll run some of their

existing application logic against Hadoop. No one wants to

pay for applications to be rewritten, so a SQL interface is

highly desirable. With the development of SQL interfaces

to Hadoop data, an interesting trend is that commercial

business analytics and data management tools are almost

all jumping on the Hadoop bandwagon, including business

intelligence reporting; statistical packages; Extract,

Transform, and Load frameworks (ETL); and a variety of

other tools. In most cases, the interface to the Hadoop data

is Hive.

SQL ACCESS:

 SQL accessrelying on a few basic assumptions:

 Language Standards:The most important

standard, of course, entails the language itself. Many

“SQL-like” solutions exist, though they usually don’t

measure up in certain fundamental ways that would prevent

even typical SQL statements from working. The American

National Standards Institute (ANSI) established SQL as an

official technical standard, and the IT industry accepts the

ANSI SQL-92 standard as representing the benchmark for

basic SQL compliance.

 Drivers:Another key component in a SQL access

solution is the driver — the interface for applications to

connect and exchange data with the data store. Without a

driver, there’s no SQL interface for any client applications

or tools to connect to for the submission of SQL queries.

As such, any SQL on Hadoop solution has to have JDBC

and ODBC drivers at the very least, because they’re the

most commonly used database interface technologies.

 Real-Time Access:Until Hadoop 2, MapReduce-

based execution was the only available option for analytics

against data stored in Hadoop. For relatively simple queries

involving a full scan of data in a table, Hadoop was quite

fast as compared to a traditional relational database. Keep

in mind that this is a batch analysis use case, where fast can

mean hours, depending on how much data is involved. But

when it came to more complex queries, involving subsets

of data, Hadoop did not do well. MapReduce is a batch

processing framework, so achieving high performance for

real-time queries before Hadoop 2 was architecturally

impossible.

 Mutable Data:A common question in many

discussions around SQL support on Hadoop is “Can we use

INSERT, UPDATE, and DELETE statements, as we would

be able to do in a typical relational database?” For now, the

answer is no, which reflects the nature of HDFS — it’s

focused on large, immutable files. At the time of this

writing, technologies such as Hive offer read-only access to

these files. Regardless, work is ongoing in the Hive Apache

project to enable INSERT, UPDATE, and DELETE

statements.

IBM BIG SQL:

IBM has a long history of working with SQL and database

technology, as the introduction to this chapter makes clear.

In keeping with this history, IBM’s solution for SQL on

Hadoop leverages components from its relational database

technologies that are ported to run on Hadoop.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

1

Figure: 1-1 IBM Big SQL Architecture

Big SQL supports JDBC and ODBC client access from

both Linux and Windows platforms. That client access

means that you can take advantage of your SQL skills, any

SQL-based business intelligence applications, and query or

reporting tools to query InfoSphere BigInsights data.

Big SQL is not a replacement for relational database

management systems (RDBMS) technology. It is designed

to compliment and leverage the Hadoop-based

infrastructure of InfoSphere BigInsights. Some features

common to database management systems are not present

in Big SQL. Some Big SQL features are not common to

most relational database management systems. Big SQL

supports querying data, but INSERT, UPDATE

and DELETE statements are not supported.

However, Big SQL tables can contain columns of complex

data types, such as flat rows. Big SQL also supports several

underlying storage mechanisms stored on either Hadoop

Distributed File System (HDFS) or IBM General Parallel

File System (GPFS™ FPO), including the following:

 Delimited files (such as comma-separated values)

 Hive tables in sequence file format and RCFile format

 HBase tables

Data administrators can use Big SQL to create tables over

existing data using the CREATE EXTERNAL TABLE

command. They can create new tables using the CREATE

TABLE command and load data to it using the LOAD

command. They can also create a table and load data from

a query using the CREATE TABLE <name> AS <query>

statement. Application developers can use the Standard

SQL syntax of Big SQL, along with the SQL extensions

that are specific to InfoSphere BigInsights to take

advantage of the Hadoop-based technologies. The Big

SQL language provides you with familiar SQL syntax to

write queries to accomplish joins, unions, grouping,

windowing functions, common table expressions.

APACHE HIVE:

Apache Hive is indisputably the most widespread data

query interface in the Hadoop community. Originally, the

design goals for Hive were not for full SQL compatibility

and high performance, but were to provide an easy,

somewhat familiar interface for developers needing to issue

batch queries against Hadoop. This rather piecemeal

approach no longer works, so the demand grows for real

SQL support and good performance. Hortonworks

responded to this demand by creating the Stinger project,

where it invested its developer resources in improving Hive

to be faster, to scale at a petabyte level, and to be more

compliant to SQL standards. This work was to be delivered

in three phases.

In Phases 1 and 2, you saw a number of optimizations for

how queries were processed as well as added support for

traditional SQL data types; the addition of the ORCFile

format for more efficient processing and storage; and

integration with YARN for better performance. In Phase 3,

the truly significant evolutions take place, which decouple

Hive from MapReduce.

MASSIVELY PARALLEL PROCESSING DATABASES:

To provide a better understanding of the SQL on

Hadoop alternatives to Hive it would be helpful to provide

a primer on massively parallel processing (MPP) databases

first. Apache Hive is layered on top of the Hadoop

Distributed File System (HDFS) and the MapReduce

system and presents an SQL-like programming interface to

your data (HiveQL, to be precise). This combination of

Hadoop technologies deployed on a cluster is similar to

MPP databases that have existed for a while in the IT

marketplace. MPP databases usually provide an SQL

interface and a relational database management system

(RDBMS) running on a cluster of servers networked

together by a high-speed interconnect. The following figure

shows the components of an RDBMS that are typically

included in the SQL on- Hadoop solutions.

Figure 1-2: Components of RDBMS in MPP

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

2

The figure 1-2 shows the flow of a query as it’s processed

by an RDBMS engine. First, the query text is parsed and

understood. Then the syntax tree for the query is compiled

into a logical execution plan, which is then optimized to

form the final physical execution plan, which is then

executed by the runtime. For many of the SQL-on-Hadoop

solutions, we’re seeing similar components being deployed

in Hadoop.

APACHE DRILL:

Drill is a candidate project in the Apache incubator. We

don’t mean that Apache Drill is especially sickly, though.

The Apache Software Foundation (ASF) candidate

technologies all begin as incubator projects before

becoming official ASF technologies. The performance goal

for Drill is to enable SQL queries against a petabyte or

more of data distributed across 10,000-plus servers.

Figure 1-3: Apache Drill Architecture

The following figure 1-3 states that the key to the Drill

architecture are the DrillBit servers deployed on each data

node. Note that each server includes a query parser,

compiler, optimizer, and runtime, but there is a master

DrillBit server nominated by Zookeeper servers, which

oversees the execution of the queries and looks after the

task of pulling together the interim result sets into a single

set of output.

CONCLUSION:

Hadoop is often thought of as the one-size-fits-all

solution for big data processing problems, the project is

limited in its ability to manage large-scale graph

processing, stream processing, and scalable processing of

structured data. Big SQL, a massively parallel processing

SQL engine that is optimized for processing large-scale

structured data. We can observe how it compares to other

systems that were recently introduced to improve the

efficiency of the Hadoop framework for processing large-

scale structured data.

REFERENCES:

[1] Apache Hadoop. http://hadoop.apache.org/
[2] Hadoop - dummies - Dummies.com

www.dummies.com/programming/big data/hadoop/

[3] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. “PVFS:
A parallel file system for Linux clusters,” in Proc. of 4th Annual

Linux Showcase and Conference, 2000, pp. 317–327.

[4] J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” In Proc. of the 6th Symposium on Operating

Systems Design and Implementation, San Francisco CA, Dec.

2004.
[5] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam, C.

Olston, B. Reed, S. Srinivasan, U. Srivastava. “Building a High-

Level Dataflow System on top of MapReduce: The Pig
Experience,” In Proc. of Very Large Data Bases, vol 2 no. 2,

2009, pp. 1414–1425.

[6] O. O'Malley, A. C. Murthy. Hadoop Sorts a Petabyte in 16.25
Hours and a Terabyte in 62 Seconds. May 2009.

[7] S.Vikram Phaneendra & E.Madhusudhan Reddy “Big Data-

solutions for RDBMS problems- A survey” In 12th IEEE/IFIP
Network Operations & Management Symposium (NOMS 2010)

(Osaka, Japan, Apr 19{23 2013).

[8] Jimmy Lin “MapReduce Is Good Enough?” The control project.
IEEE Computer 32 (2013).

[9] Ahmed Eldawy, Mohamed F. Mokbel “A Demonstration of
SpatialHadoop:An Efficient MapReduce Framework for Spatial

Data” Proceedings of the VLDB Endowment, Vol. 6, No. 12

Copyright 2013 VLDB Endowment 21508097/13/10.
[10] Mrigank Mridul, Akashdeep Khajuria, Snehasish Dutta, Kumar N

“ Analysis of Bidgata using Apache Hadoop and Map Reduce”

Volume 4, Issue 5, May 2014” 27

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

3

