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Abstract-In this work, the frequency equation of vibration of elastic hollow cylinder in a magnetic field under large deformation is 

obtained for a semi-linear material. Also, the natural frequencies are numerically calculated and the effect of the magnetic field on the 

frequency modes are considered.  We describe the problem using the equations of elasticity and the Maxwell equations of 

electromagnetism taking into consideration the effect of the magnetic field on the frequency of vibration of the cylinder. We invoke the 

appropriate boundary conditions on the Maxwell stress tensor within and on the surface of the cylinder. In the result, the obtained 

frequency equation showed that it is a generalization of the frequency equation obtained for small deformation theory. The natural 

frequency of the body increases as the magnetic intensity increases.  
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1. INTRODUCTION 

The phenomenon of vibration involves an alternating interchange of potential energy to kinetic energy and vice-versa. Any body 

having mass and elasticity is capable of oscillatory motion. In engineering, an understanding of the vibratory behavior of 

mechanical and structural systems is important for the safe design, construction and operation of variety of machines and 

structures. The failure of most mechanical and structural elements and systems can be associated with vibration. Rumerman and 

Raynor (1971) considered the natural frequencies of axially symmetric longitudinal vibration of circular cylinders. Laura et al 

(1974) derived the frequency equation of a cantilever beam that has additional mass attach to it, which is considered as shear force 

that acted on the free end of the beam. Hutchinson and El-Azhari (1986) developed a series solution of the general three-

dimensional equations of linear elasticity which was used to find the natural frequencies of the vibration of hollow elastic cylinders 

with traction free surfaces. Oz and Ozkaya (2005) investigated the natural frequencies of transverse vibration of beam-mass 

systems for different boundary conditions. Abbas (2006) examined the natural frequencies of vibration of a poroelastic hollow 

cylinder. Yazdanparast (2011) investigated the vibrations of hollow cylinder in rotation. Abd-Alla (2012) examined the effect of 

magnetic field and non-homogeneity on the radial vibrations in hollow elastic cylinder under rotation. Yahya and Abd-Alla (2014) 

considered the radial vibrations of an isotropic elastic rotating hollow cylinder. Using Biot’s extension theory, Perati and Gurijala 

(2015) investigated the torsional vibrations in thick walled hollow poroelastic cylinder. Ebenezer and Ravichandran (2015) 

considered the free and forced vibrations of hollow elastic cylinders of finite length. Wang et al (2017) examined the frequency 

equation of flexural vibration of a cantilever beam considering the rotary inertial moment of an attached mass. The objective of 

this work is to derive the frequency equation of vibration of a magnetoelastic hollow cylinder in a magnetic field under large 

deformation for a semi-linear material in form of a determinant. Also, the natural frequencies for the modes of a magnetoelastic 

hollow cylinder were numerically calculated and the effect of the magnetic field on the frequency modes are considered. 

 

 

 

 

2.  PROBLEM SETTING 

2.1 Geometry of deformation 

Let Ω  be the subset of a three-dimensional Euclidean space 𝐸3 (i.e Ω ∁ 𝐸3) occupied an isotropic semi-linear elastic body with 

𝑟1  and 𝑟2   as the inner and outer radii respectively of the hollow cylinder. 

We seek for the plane finite deformation of Ω  from an initial configuration of Ω𝑖  into a current configuration of Ω𝑐 by the action, 

say, of externally applied magnetic field. 

The transformation from the initial configuration Ω𝑖   into the current configuration Ω𝑐 is the form   

                                                                       𝑅 = 𝑅(𝑟, 𝑡), Ф = 𝜃, 𝑍 = 𝑧,                                                       (1) 

Where (𝑟, 𝜃, 𝑧) are the material coordinates in the initial configuration Ω𝑖   and (𝑅, 𝜙, 𝑍) are the material coordinate in the current 

configuration Ω𝑐. 
The position vectors of every particle in the initial configuration Ω𝑖   and the current configuration Ω𝑐 are respectively given as  

                                         𝑟 = 𝑟𝑒𝑟⃗⃗ ⃗⃗ + 𝑧𝑒𝑧,⃗⃗ ⃗⃗ ⃗  𝑅⃗⃗ = 𝑅(𝑟, 𝑡)𝑒𝑅⃗⃗⃗⃗⃗ + 𝑍𝑒𝑧⃗⃗⃗⃗  ,                                                                   (2) 

where 𝑒𝑟⃗⃗ ⃗⃗ , 𝑒𝜃⃗⃗⃗⃗⃗, 𝑒𝑧⃗⃗⃗⃗  are the orthogonal local basis vectors associated with the cylindrical coordinates (𝑟, 𝜃, 𝑧) in Ω𝑖  and 𝑒𝑅⃗⃗⃗⃗⃗, 𝑒𝜙⃗⃗⃗⃗⃗, 𝑒𝑧⃗⃗⃗⃗   are 

the corresponding local basis vector associated with the cylindrical coordinates (𝑅, 𝜙, 𝑍)  in  Ω𝑐. 
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Let the geometry of deformation of Ω from initial configuration Ω𝑖  to current configuration Ω𝑐 be the deformation gradient ∇𝑅⃗⃗, 

where  ∇ is the gradient operator in the initial configuration Ω𝑖 .   
The governing equations of the magneto-elasticity problem we are considering are given as  

                                       

{
 
 

 
 ∇. 𝑃̃ + 𝐺̃ = 𝜌𝜕𝑡𝑡 𝑅⃗⃗ ,

∇. 𝐸⃗⃗ = 4𝜋𝜌∗ ,

∇. 𝐵⃗⃗ = 0 ,

∇ × 𝐸⃗⃗ = −𝑐−1𝜕𝑡𝐵 ,⃗⃗ ⃗⃗ ⃗

∇ × 𝐻⃗⃗⃗ = 4𝜋𝑗 ,

                                                                                         (3) 

 

where 𝐸⃗⃗ is the electric field intensity vector, 𝐺⃗ is the Lorentz force,  𝐻⃗⃗⃗ is the magnetic intensity, 𝐵⃗⃗ is the magnetic induction 

vector, 𝑐 is the speed of light, 𝑗 is the current density vector, 𝜌 is the mass density, 𝜌∗ is the charge density, and 𝑃̃ is the Piola-

Kirchhoff stress tensor.  

The component form of the equation of motion in equation (3)1 are  

{
 
 

 
 
𝜕

𝜕𝑟
𝑃𝑟𝑟 +

1

𝑟

𝜕

𝜕𝜃
𝑃𝑟𝜃 +

1

𝑟
(𝑃𝑟𝑟 − 𝑃𝜃𝜃) +

𝜕

𝜕𝑧
𝑃𝑟𝑧 + 𝐺𝑟 = 𝜌

𝜕2

𝜕𝑡2
𝑅(𝑟, 𝑡) ,

𝜕

𝜕𝑟
𝑃𝜃𝑟 +

1

𝑟

𝜕

𝜕𝜃
𝑃𝜃𝜃 +

1

𝑟
(𝑃𝑟𝜃 − 𝑃𝜃𝑟) +

𝜕

𝜕𝑧
𝑃𝑟𝑧 + 𝐺𝜃 = 0 ,

𝜕

𝜕𝑟
𝑃𝑍𝑟 +

1

𝑟

𝜕

𝜕𝜃
𝑃𝑍𝜃 +

1

𝑟
𝑃𝑧𝜃 +

𝜕

𝜕𝑧
𝑃𝑧𝑧 + 𝐺𝑧 = 0 ,

                                                         (4) 

 

where   𝐺𝑟 ,  𝐺𝜃 and 𝐺𝑧 are components of Lorentz force 𝐺⃗ acting on the body.  

 

2.2 Energy function and Piolar-kirchhoff stress tensor  

(John, 1960) constructed the energy function for isotropic semi-linear material under large deformation which is given as  

                                 𝑊̃ = 𝜇𝐼1(𝑈 − 𝐸̃)
2
+

1

2
𝜆𝐼1
2(𝑈̃ − 𝐸̃),                                                                       (5)                                                               

where 𝐼1(𝑈 − 𝐸̃) is the first invariant of the tensor (𝑈 − 𝐸̃)  and 𝑈 is the right stretch tensor.  

We invoke the hypothesis of hyperelasticity and take the Frechet derivative of the energy function (5)  with respect to the 

deformation gradient  ∇𝑅⃗⃗ to obtain the first Piola-Kirchhoff stress tensor 𝑃̃ which is given as  

                   𝑃̃(𝑟, ∇𝑅⃗⃗) =
𝜕

𝜕(∇𝑅⃗⃗)
[𝜇𝐼1(𝑈 − 𝐸̃)

2
+

1

2
𝜆𝐼1
2(𝑈 − 𝐸̃)] ,                                                             (6)  

                           𝑃̃(𝑟, ∇𝑅⃗⃗) = 2𝜇∇𝑅⃗⃗ + (𝜆𝐼1(𝑈 − 𝐸̃) − 2𝜇)𝑂̃ .                                                              (7)  

The set of equations in (3) above are complemented with constitutive relations given as  

                        

{
 

 𝑗 = 𝜎 (𝐸⃗⃗ +
1

𝑐

𝜕

𝜕𝑡
𝑅⃗⃗ × 𝐵⃗⃗) ,

𝑃̃(𝑟,⃗⃗⃗ ∇𝑅⃗⃗) = 2𝜇∇𝑅⃗⃗ + (𝜆𝐼1(𝑈 − 𝐸̃) − 2𝜇)𝑂 ,̃

𝐵⃗⃗ = 𝜇𝑒 𝐻⃗⃗⃗ ,

                                                                 (8) 

where 𝑂̃ is the second rank  rotation tensor and 𝜇𝑒 is the magnetic permeability of the body.  

For a perfect conductor (𝜎 → ∾), Ohm’s law written as equation (8)1 becomes  

                             𝐸⃗⃗ =
1

𝑐

𝜕

𝜕𝑡
𝑅⃗⃗ × 𝐵⃗⃗                                                                                     (9) 

 

2.3 Radial vibration in perfect conductor  

For radial vibration, the radial component of the displacement does not vanish identically, i.e  

                                                          𝑢𝑟 = 𝑢, 𝑢𝑧 = 𝑢𝜃 = 0                                                                   (10) 

Let the magnetic field 𝐻⃗⃗⃗ be such that 

                                                             𝐻⃗⃗⃗ = 𝐻0⃗⃗ ⃗⃗ ⃗ + ℎ ,⃗⃗⃗⃗⃗                                                                           (11)                                                    

where 𝐻0⃗⃗ ⃗⃗ ⃗ (constant) is the externally applied magnetic field acting parallel to the axis of the cylinder and  ℎ⃗⃗ = ℎ⃗⃗(𝑟, 𝑡) is the 

perturbation in the magnetic field due to deformation in the electrically conducting cylinder. Substituting equation (9) into 

equation (3)4 of Faraday's law and making use of equation (11) we have, 

                          ℎ⃗⃗ = −𝐻0⃗⃗ ⃗⃗ ⃗ + ∇ ×  (𝑅⃗⃗ × 𝐻0⃗⃗ ⃗⃗ ⃗)  + ∇  ×  ∫ (
𝜕

𝜕𝑡
𝑅⃗⃗ × ℎ⃗⃗) 𝑑𝑡 .                                                     (12) 

In component form, equation (12) can be expressed as  

                                                                    ℎ⃗⃗ = (0,0, ℎ) ,                                                                     (13) 

where ℎ satisfies the equation  

                  ℎ⃗⃗ = −𝐻0 −
𝐻0

𝑟

𝜕

𝜕𝑟
(𝑟𝑅(𝑟, 𝑡)) −

1

𝑟

𝜕

𝜕𝑟
∫ (𝑟ℎ

𝜕

𝜕𝑡
𝑅(𝑟, 𝑡)) 𝑑𝑡 .                                                   (14)  

The Lorentz force 𝐺⃗ acting on the body is 

                                                                𝐺⃗ = 𝜇𝑒𝑗 ⃗⃗⃗  × 𝐻0⃗⃗ ⃗⃗ ⃗ ,                                                                   (15) 
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substituting the Ampere-Maxwell equation in (3)5 into equation (15) and using equation (11) yields 

                                                       𝐺⃗ =
𝜇𝑒

4𝜋
(∇ × ℎ⃗⃗) × 𝐻0⃗⃗ ⃗⃗ ⃗ .                                                                  (16) 

Introducing ℎ⃗⃗ = ℎ(𝑟, 𝑡)𝑘⃗⃗ in ∇ × ℎ⃗⃗ gives  

           ∇ × ℎ⃗⃗ = (0, −
𝜕

𝜕𝑟
ℎ(𝑟, 𝑡), 0,0) =  −

𝜕

𝜕𝑟
ℎ(𝑟, 𝑡)𝑒𝜃⃗⃗⃗⃗⃗ .                                                                     (17) 

Using equation (17) in equation (16) gives  

                               𝐺⃗ = (−
𝜇𝑒

4𝜋
𝐻0

𝜕

𝜕𝑟
ℎ(𝑟, 𝑡), 0,0) ,                                                                               (18) 

so that  

                          𝐺𝑟 = −
𝜇𝑒

4𝜋
𝐻0

𝜕

𝜕𝑟
ℎ(𝑟, 𝑡),    𝐺𝜃 = 0,      𝐺𝑧 = 0 .                                                        (19) 

Substituting equation (19) into equation (4), we have  

 

{
 
 

 
 
𝜕

𝜕𝑟
𝑃𝑟𝑟 +

1

𝑟

𝜕

𝜕𝜃
𝑃𝑟𝜃 +

1

𝑟
(𝑃𝑟𝑟 − 𝑃𝜃𝜃) +

𝜕

𝜕𝑧
𝑃𝑟𝑧 −

𝜇𝑒

4𝜋
𝐻0

𝜕

𝜕𝑟
ℎ(𝑟, 𝑡) = 𝜌𝜕𝑡𝑡𝑅 ,⃗⃗⃗⃗⃗

𝜕

𝜕𝑟
𝑃𝜃𝑟 +

1

𝑟

𝜕

𝜕𝜃
𝑃𝜃𝜃 +

1

𝑟
(𝑃𝑟𝜃 − 𝑃𝜃𝑟) +

𝜕

𝜕𝑧
𝑃𝜃𝑧 = 0 ,

𝜕

𝜕𝑟
𝑃𝑍𝑟 +

1

𝑟

𝜕

𝜕𝜃
𝑃𝑍𝜃 +

1

𝑟
𝑃𝑧𝜃 +

𝜕

𝜕𝑧
𝑃𝑧𝑧 = 0 .

                                       (20) 

Substituting the components of Piola stress tensor in equation (20), (Olokuntoye et al, 2020) obtained the wave equation in the 

magnetoelastic semi-linear cylinder as 

                
(𝜆+2𝜇)

𝜌

𝜕

𝜕𝑟
(
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑅(𝑟, 𝑡))) −

𝜇𝑒

4𝜋𝜌
𝐻0

𝜕

𝜕𝑟
ℎ(𝑟, 𝑡) = 𝜕𝑡𝑡 𝑅⃗⃗                                               (21) 

ℎ(𝑟, 𝑡) = −𝐻0 −
𝐻0

𝑟

𝜕

𝜕𝑟
(𝑟𝑅(𝑟, 𝑡)) −

1

𝑟

𝜕

𝜕𝑟
∫ (𝑟ℎ(𝑟, 𝑡)

𝜕

𝜕𝑡
𝑅(𝑟, 𝑡)) 𝑑𝑡                                            (22)   

 

3.  STRESS FIELDS IN THE CYLINDER 

(Olokuntoye et al., 2020) obtained the solution of equation (21) by taking the first approximation of equation (22) i.e by 

approximating ℎ(𝑟, 𝑡) as −𝐻0 . The solution was given as  

                                                       𝑅(𝑟, 𝑡) = (𝑐1𝐽1(𝛼𝑟) + 𝑐2𝑌1(𝛼𝑟))𝑒
𝑖𝜔𝑡                                    (23) 

 

3.1   Zeroth-level stress field in the cylinder  

In order to obtain the stress fields associated with solution (23), we employ the relations  
𝑑

𝑑𝑟
𝐽1(𝛼𝑟) = −𝛼𝐽2(𝛼𝑟) +

1

𝑟
𝐽1(𝛼𝑟) ,                                       (24) 

𝑑

𝑑𝑟
𝑌1(𝛼𝑟) = −𝛼𝑌2(𝛼𝑟) +

1

𝑟
𝑌1(𝛼𝑟) .                                     (25) 

The non zero components  𝑃𝑟𝑟 , 𝑃𝜃𝜃    and 𝑃𝑧𝑧     of Piola-Kirchhoff’s  stress tensor 𝑃̃ are                    

𝑃𝑟𝑟 = (2𝜇 + 𝜆)
𝜕

𝜕𝑟
𝑅(𝑟, 𝑡) + 𝜆

𝑅(𝑟,𝑡)

𝑟
− (2𝜇 + 𝜆) ,                 (26) 

𝑃𝜃𝜃 = (2𝜇 + 𝜆)
𝑅(𝑟,𝑡)

𝑟
+ 𝜆

𝑅(𝑟,𝑡)

𝑟
− (2𝜇 + 𝜆) ,                       (27) 

𝑃𝑧𝑧     = λ(
𝜕

𝜕𝑟
𝑅(𝑟, 𝑡) +

𝑅(𝑟,𝑡)

𝑟
− 2) .                                       (28) 

Substituting the wave solution (23) in equations (26)-(28) and using the relations (24) and (25), we obtain  

𝑃𝑟𝑟 = (2𝜇 + 𝜆) [
𝜕

𝜕𝑟
(𝑐1𝐽1(𝛼𝑟) + 𝑐2𝑌1(𝛼𝑟))𝑒

𝑖𝜔𝑡 − 1] + 𝜆
1

𝑟
(𝑐1𝐽1(𝛼𝑟) + 𝑐2𝑌1(𝛼𝑟))𝑒

𝑖𝜔𝑡 , 

𝑃𝑟𝑟 = (2𝜇 + 𝜆)[−𝛼(𝑐2𝐽2(𝛼𝑟) + 𝑐2𝑌2(𝛼𝑟))𝑒
𝑖𝜔𝑡 − 1] + 2(𝜇 + 𝜆)

1

𝑟
(𝑐1𝐽1(𝛼𝑟) + 𝑐2𝑌1(𝛼𝑟))𝑒

𝑖𝜔𝑡 ,   (29) 

𝑃𝜃𝜃 = (2𝜇 + 𝜆)
1

𝑟
(𝑐1𝐽1(𝛼𝑟) + 𝑐2𝑌1(𝛼𝑟))𝑒

𝑖𝜔𝑡  + 𝜆
𝜕

𝜕𝑟
(𝑐1𝐽1(𝛼𝑟) + 𝑐2𝑌1(𝛼𝑟))𝑒

𝑖𝜔𝑡 − (2𝜇 + 𝜆) , 

𝑃𝜃𝜃 = −𝛼𝜆(𝑐1𝐽2(𝛼𝑟) + 𝑐2𝑌2(𝛼𝑟))𝑒
𝑖𝜔𝑡  + 2(𝜇 + 𝜆)

1

𝑟
(𝑐1𝐽1(𝛼𝑟) + 𝑐2𝑌1(𝛼𝑟))𝑒

𝑖𝜔𝑡 − (2𝜇 + 𝜆),     (30) 

𝑃𝑧𝑧 = 𝜆 (
𝜕

𝜕𝑟
(𝑐1𝐽1(𝛼𝑟) + 𝑐2𝑌1(𝛼𝑟))𝑒

𝑖𝜔𝑡 +
1

𝑟
(𝑐1𝐽1(𝛼𝑟) + 𝑐2𝑌1(𝛼𝑟))𝑒

𝑖𝜔𝑡 − 2) ,     

𝑃𝑧𝑧 = 𝜆 (−𝛼(𝑐1𝐽2(𝛼𝑟) + 𝑐2𝑌2(𝛼𝑟))𝑒
𝑖𝜔𝑡 +

2

𝑟
(𝑐1𝐽1(𝛼𝑟) + 𝑐2𝑌1(𝛼𝑟))𝑒

𝑖𝜔𝑡 − 2) .                               (31) 

The  current density 
𝑗
→   electric field intensity 

𝐸
→, and  Maxwell’s stress 𝑀𝑟𝑟  generated  in the body as a result of ℎ(𝑟, 𝑡) ≈

ℎ0(𝑟, 𝑡) = −𝐻0  are  

                                    𝑗 =
1

4𝜋
∇ × 𝐻⃗⃗⃗(𝑟, 𝑡) =−

1

4𝜋
∇ × (𝐻0⃗⃗ ⃗⃗ ⃗ + ℎ⃗⃗) = 0⃗⃗ ,                                              (32) 

                                   𝐸⃗⃗ = −
1

𝑐

𝜕𝑅⃗⃗

𝜕𝑡
× 𝐵⃗⃗ =−

𝜇𝑒

𝑐

𝜕𝑅⃗⃗

𝜕𝑡
× (𝐻0⃗⃗ ⃗⃗ ⃗ + ℎ⃗⃗) = 0⃗⃗⃗ ⃗ ,                                                  (33) 

and 

                                         𝑀𝑟𝑟 =
𝜇𝑒

4𝜋
𝐻0ℎ =

𝜇𝑒

4𝜋
𝐻0
2 ,                                                                       (34) 

respectively. 

3.2   First-level stress field in the cylinder 
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(Olokuntoye et al., 2020) obtained the first-level solution of equation (21) by taking the second approximation of equation (22) 

i.e by approximating ℎ(𝑟, 𝑡) 𝑎𝑠 − 𝐻0 −
𝐻0

𝑟

𝜕

𝜕𝑟
(𝑟𝑅(𝑟, 𝑡)). The solution obtained was given as  

𝑅(𝑟, 𝑡) = (𝐶1𝐽1(𝛽𝑟) + 𝐶2𝑌1(𝛽𝑟))𝑒
𝑖𝜔𝑡 , 𝛽 =

𝜔

𝛹
                                         (35)  

where 𝛽 =
𝜔

𝛹
 and  𝜓2 = (

2𝜇+ 𝜆

𝜌
+

𝜇𝑒𝐻0
2

4𝜋𝜌
 ) , 

𝐶1, 𝐶2  are constants and  𝐽1(𝛽𝑟),  𝑌1(𝛽𝑟)  are Bessel functions of first and second kinds of order one respectively. 

Using the relation in equation (24) and (25), the non-zero Piola-Kirchhoff stresses 𝑃𝑟𝑟, 𝑃𝜃𝜃  and 𝑃𝑧𝑧 are   𝑃𝑟𝑟 =

(2𝜇 + 𝜆)[−𝛽(𝐶2𝐽2(𝛽𝑟) + 𝐶𝑌2(𝛽𝑟))𝑒
𝑖𝜔𝑡 − 1] + 2(𝜇 + 𝜆)

1

𝑟
(𝐶1𝐽1(𝛽𝑟) + 𝐶2𝑌1(𝛽𝑟))𝑒

𝑖𝜔𝑡 ,        (36) 

𝑃𝜃𝜃 = −𝛽𝜆(𝐶1𝐽2(𝛽𝑟) + 𝐶2𝑌2(𝛽𝑟))𝑒
𝑖𝜔𝑡  + 2(𝜇 + 𝜆)

1

𝑟
(𝐶1𝐽1(𝛽𝑟) + 𝐶2𝑌1(𝛽𝑟))𝑒

𝑖𝜔𝑡 − (2𝜇 + 𝜆) ,   (37) 

𝑃𝑧𝑧 = 𝜆 (−𝛽(𝐶1𝐽2(𝛽𝑟) + 𝐶2𝑌2(𝛽𝑟))𝑒
𝑖𝜔𝑡 +

2

𝑟
(𝐶1𝐽1(𝛽𝑟) + 𝐶2𝑌1(𝛽𝑟))𝑒

𝑖𝜔𝑡 − 2) .                     (38) 

The current density 𝑗 = (0, 𝑗, 0) and the electric field 𝐸⃗⃗ = (0, 𝐸, 0)  generated in the cylinder under consideration are  

                                      𝑗 =
1

4𝜋

𝜕ℎ

𝜕𝑟
=−

1

4𝜋

𝜕

𝜕𝑟
(−𝐻0 −

𝐻0

𝑟

𝜕

𝜕𝑟
(𝑟𝑅(𝑟, 𝑡))) ,                          

                                                   𝑗 =
𝐻0

4𝜋

𝜕

𝜕𝑟
(
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑅(𝑟, 𝑡))) ,                                                            (39) 

and  

                                              𝐸 =
𝜇𝑒

𝑐

𝐻0

𝑟

𝜕

𝜕𝑡
𝑅(𝑟, 𝑡)

𝜕

𝜕𝑟
 (𝑟𝑅(𝑟, 𝑡)) ,                                                      (40) 

where 𝑅(𝑟, 𝑡)  is the solution of wave equation (21).     

 

 

 

4. BOUNDARY CONDITIONS AND FREQUENCY EQUATION 

In this section, we are going to obtain the frequency equation for the boundary conditions of an electrically conducting hollow 

cylinder.  

  

4.1 Zeroth-level frequency equation 

We proceed to construct the zeroth-level frequency equation which describes various modes of vibration of an electrically 

conducting semi-linear elastic cylinder. For this, we employ this set of boundary conditions compatible with the problem under 

consideration:  

                                           𝑃𝑟𝑟 +𝑀𝑟𝑟 + 𝑋0 = 𝑀𝑟𝑟
∗    at 𝑟 = 𝑎   and 𝑟 = 𝑏 ,                                         (41) 

                                                 𝐸 = 𝐸∗  at  𝑟 = 𝑎   and 𝑟 = 𝑏 ,                                                               (42) 

 

where 𝑋0  is a given prescribed stress at the boundary of the cylinder, 𝑀𝑟𝑟(𝑟, 𝑡), is the Maxwell’s stress inside the cylinder, 

𝑀𝑟𝑟
∗ (𝑟, 𝑡) is the Maxwell’s stress in the vacuum, 𝐸 = 𝐸(𝑟, 𝑡) is the electric wave generated in the cylinder, 𝐸∗(𝑟, 𝑡) is the electric 

wave in the vacuum, and   𝑃𝑟𝑟(𝑟, 𝑡)  is the radial component of the Piola-Kirchhoff stress 𝑃⃗⃗.          

We recall that the magnetic wave ℎ∗⃗⃗ ⃗⃗ (𝑟, 𝑡) and 𝐸∗⃗⃗⃗⃗⃗(𝑟, 𝑡) in  vacuum satisfy the electromagnetic field equations 

                                                                         ∇2ℎ∗⃗⃗ ⃗⃗ =
1

𝑐

𝜕2

𝜕𝑡2
ℎ∗⃗⃗ ⃗⃗ ,                                                           (43) 

                                                                          ∇2𝐸∗⃗⃗⃗⃗⃗ =
1

𝑐

𝜕2

𝜕𝑡2
𝐸∗⃗⃗⃗⃗⃗,                                                          (44)                                            

                                                                          ∇ × ℎ∗⃗⃗ ⃗⃗ =
1

𝑐

𝜕

𝜕𝑡
𝐸∗⃗⃗⃗⃗⃗,                                                          (45)   

                                                                          ∇ × 𝐸∗⃗⃗⃗⃗⃗ =
1

𝑐

𝜕

𝜕𝑡
ℎ∗⃗⃗ ⃗⃗ .                                                          (46)    

The solution of equation (43) is           

                   ℎ∗(𝑟, 𝑡) = ℎ1
∗(𝑟)ℎ2

∗(𝑡) = (𝑑1𝐽0 (
𝜔

𝐶
𝑟) + 𝑑2𝑌0 (

𝜔

𝐶
𝑟)) 𝑒𝑖𝜔𝑡 ,                                          (47) 

where 𝑑1, 𝑑2  are constants and   𝐽0 (
𝜔

𝐶
𝑟) , 𝑌0 (

𝜔

𝐶
𝑟)   are the Bessel function of the first and second kinds of order zero respectively. 

Using equation (47) in equation (46) we obtain 

                            𝐸∗(𝑟, 𝑡) = 𝑖
𝜔

𝑐

𝜕

𝜕𝑟
(𝑑1𝐽0 (

𝜔

𝐶
𝑟) + 𝑑2𝑌0 (

𝜔

𝐶
𝑟)) 𝑒𝑖𝜔𝑡.                                                 (48)                                                              

 

 

 

For  the purpose of the nature of the problem under consideration we set 

 ℎ∗(𝑟, 𝑡) = {
𝑑1𝐽0 (

𝜔

𝐶
𝑟) 𝑒𝑖𝜔𝑡 , 𝑤ℎ𝑒𝑛  𝑟 ≤ 𝑎

 𝑑2𝑌0 (
𝜔

𝐶
𝑟) 𝑒𝑖𝜔𝑡 , 𝑤ℎ𝑒𝑛  𝑟 ≥ 𝑏  ,      

                                                                             (49) 
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and  

𝐸∗(𝑟, 𝑡) = {
−𝑖𝑑1𝐽1 (

𝜔

𝐶
𝑟) 𝑒𝑖𝜔𝑡 , 𝑤ℎ𝑒𝑛  𝑟 ≤ 𝑎

−𝑖𝑑2𝑌1 (
𝜔

𝐶
𝑟) 𝑒𝑖𝜔𝑡 , 𝑤ℎ𝑒𝑛  𝑟 ≥ 𝑏 .

                                                                                 (50) 

The Maxwell’s stresses  𝑀𝑟𝑟(𝑟, 𝑡) and 𝑀𝑟𝑟
∗ (𝑟, 𝑡) in equation (41) are defined as  

                                                             𝑀𝑟𝑟(𝑟, 𝑡) = −
𝜇𝑒

4𝜋
𝐻0ℎ(𝑟, 𝑡) ,                                                   (51) 

                                                           𝑀𝑟𝑟
∗ (𝑟, 𝑡)  = −

𝜇𝑒

4𝜋𝜃
𝐻0ℎ

∗(𝑟, 𝑡) ,                                                (52) 

where ℎ(𝑟, 𝑡), ℎ∗(𝑟, 𝑡)  are the magnetic waves in the cylindrical body and vacuum respectively.  

Introducing equation (49) in equation (52) gives 

                          𝑀𝑟𝑟
∗ (𝑟, 𝑡) = {

−
𝜇𝑒

4𝜋
𝐻0𝑑1𝐽0 (

𝜔

𝐶
𝑟) 𝑒𝑖𝜔𝑡 , 𝑤ℎ𝑒𝑛  𝑟 ≤ 𝑎

−
𝜇𝑒

4𝜋
𝐻0𝑑2𝑌0 (

𝜔

𝐶
𝑟) 𝑒𝑖𝜔𝑡 , 𝑤ℎ𝑒𝑟𝑒  𝑟 ≥ 𝑏 .

                                        (53) 

Setting 𝑋0   as 

                                                   𝑋0 = (2𝜇 + 𝜆) −
𝜇𝑒

4𝜋
𝐻0
2 ,                                                                   (54) 

we obtain the following from equations (41) and (42) 

                                      𝑋11𝑐1 + 𝑋12𝑐2 = 0, 𝑋21𝑐1 + 𝑋22𝑐2 = 0,                                                           (55) 

                                                                        𝑑1 = 𝑑2 = 0 ,                                                                           (56) 

where the coefficient 𝑋11, 𝑋12, 𝑋21 and  𝑋22 in equation (55) are defined as  

𝑋11 = −𝛼(2𝜇 + 𝜆)𝐽2(𝛼𝑎) +
2(𝜇 + 𝜆)

𝑎
𝐽1(𝛼𝑎), 

𝑋12 = −𝛼(2𝜇 + 𝜆)𝑌2(𝛼𝑎) +
2(𝜇 + 𝜆)

𝑎
𝑌1(𝛼𝑎), 

𝑋21 = −𝛼(2𝜇 + 𝜆)𝐽2(𝛼𝑏) +
2(𝜇 + 𝜆)

𝑎
𝐽1(𝛼𝑏), 

and  

𝑋22 = −𝛼(2𝜇 + 𝜆)𝑌2(𝛼𝑏) +
2(𝜇 + 𝜆)

𝑎
𝑌1(𝛼𝑏), 

respectively.   

 

For non-zero solution 𝑐1, 𝑐2 in equation (55), we set 

                                                 ∆= |
𝑋11 𝑋12
𝑋21 𝑋22

| = 0                                                                                 (57) 

Equation (57) is the zeroth-level frequency equation of an electrically conducting semi-linear elastic cylinder. 

4.2  First-level frequency equation  

In order to obtain the frequency equation at first-level of approximation, we employ the boundary conditions:        

                                𝑃𝑟𝑟 +𝑀𝑟𝑟 + 𝑋0 = 𝑀𝑟𝑟
∗ , 𝑎𝑡  𝑟 = 𝑎 𝑎𝑛𝑑 𝑟 = 𝑏 ,                                                    (58) 
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and  

                                   ℎ(𝑟, 𝑡) + 𝐻0 = ℎ
∗(𝑟, 𝑡)  𝑎𝑡 𝑟 = 𝑎   𝑎𝑛𝑑 𝑟 = 𝑏 .                                                  (59)  

The solution of the electromagnetic field equations are 

               ℎ∗(𝑟, 𝑡) = {
𝐷1𝐽0 (

𝜔

𝐶
𝑟) 𝑒𝑖𝜔𝑡 ,          𝑤ℎ𝑒𝑛 𝑟 ≤ 𝑎

𝐷2𝑌0 (
𝜔

𝐶
𝑟) 𝑒𝑖𝜔𝑡    𝑤ℎ𝑒𝑛  𝑟 ≥ 𝑏

                                                                           (60) 

and  

                       𝐸∗(𝑟, 𝑡) =  {
−𝑖𝐷1𝐽1 (

𝜔

𝐶
𝑟) 𝑒𝑖𝜔𝑡 ,          𝑤ℎ𝑒𝑛 𝑟 ≤ 𝑎

−𝑖𝐷2𝑌1 (
𝜔

𝐶
𝑟) 𝑒𝑖𝜔𝑡    𝑤ℎ𝑒𝑛  𝑟 ≥ 𝑏 .

                                                                   (61) 

The associated  Maxwell’s stress in vacuum is  

                   𝑀𝑟𝑟
∗ (𝑟, 𝑡) =  {

−
𝜇𝑒

4𝜋
𝐻0𝐷1𝐽0 (

𝜔

𝐶
𝑟) 𝑒𝑖𝜔𝑡 ,          𝑤ℎ𝑒𝑛 𝑟 ≤ 𝑎

−
𝜇𝑒

4𝜋
𝐻0𝐷2𝑌0 (

𝜔

𝐶
𝑟) 𝑒𝑖𝜔𝑡    𝑤ℎ𝑒𝑛  𝑟 ≥ 𝑏

                                                      (62) 

 

 

Equations (58) and (59) gives the system of linear equations in variables 𝐶1, 𝐶2, 𝐷1 and 𝐷2 

 

                                   𝑋11𝐶1 + 𝑋12𝐶2 + 𝑋13𝐷1 + 𝑋14𝐷2 = 0 ,                                                                      (63) 

                                    𝑋21𝐶1 + 𝑋22𝐶2 + 𝑋23𝐷1 + 𝑋24𝐷2 = 0 ,                                                                    (64) 

                                    𝑋31𝐶1 + 𝑋32𝐶2 + 𝑋33𝐷1 + 𝑋34𝐷2 = 0 ,                                                                    (65) 

                                      𝑋41𝐶1 + 𝑋42𝐶2 + 𝑋43𝐷1 + 𝑋44𝐷2 = 0 .                                                                  (66) 

 

The coefficient of 𝑋11,   𝑋12,   … ,𝑋44,   in the above equation (63)-(66) are written as  

𝑋11 = −𝛽(2𝜇 + 𝜆)𝐽2(𝛽𝑎) +
2(𝜇 + 𝜆)

𝑎
𝐽1(𝛽𝑎) +

𝜇𝑒
4𝜋
𝐻0
2 (
2

𝑎
𝐽1(𝛽𝑎) − 𝛽𝐽2(𝛽𝑎)) 

𝑋12 = −𝛽(2𝜇 + 𝜆)𝑌2(𝛽𝑎) +
2(𝜇 + 𝜆)

𝑎
𝑌1(𝛽𝑎) +

𝜇𝑒
4𝜋
𝐻0
2 (
2

𝑎
𝑌1(𝛽𝑎) − 𝛽𝑌2(𝛽𝑎)) 

                        𝑋13 =
𝜇𝑒

4𝜋
𝐻0𝐽0 (

𝜔

𝑐
𝑎),  𝑋14 = 0,   𝑋34 = 0,   𝑋44 = 𝐽0 (

𝜔

𝑐
𝑏) 

𝑋21 = −𝛽(2𝜇 + 𝜆)𝐽2(𝛽𝑏) +
2(𝜇 + 𝜆)

𝑎
𝐽1(𝛽𝑏) +

𝜇𝑒
4𝜋
𝐻0
2 (
2

𝑎
𝐽1(𝛽𝑏) − 𝛽𝐽2(𝛽𝑏)) 

𝑋22 = −𝛽(2𝜇 + 𝜆)𝑌2(𝛽𝑏) +
2(𝜇 + 𝜆)

𝑎
𝑌1(𝛽𝑏) +

𝜇𝑒
4𝜋
𝐻0
2 (
2

𝑎
𝑌1(𝛽𝑏) − 𝛽𝑌2(𝛽𝑏)) 
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                           𝑋24 =
𝜇𝑒

4𝜋
𝐻0𝐽0 (

𝜔

𝑐
𝑎),  𝑋23 = 0,   𝑋43 = 0,   𝑋33 = 𝐽0 (

𝜔

𝑐
𝑎) 

                            𝑋31=𝐻0 (
2

𝑎
𝐽1(𝛽𝑎) − 𝛽𝐽2(𝛽𝑎)),    𝑋32=𝐻0 (

2

𝑎
𝑌1(𝛽𝑎) − 𝛽𝑌2(𝛽𝑎)) 

                            𝑋41=𝐻0 (
2

𝑏
𝐽1(𝛽𝑏) − 𝛽𝐽2(𝛽𝑏)),    𝑋42=𝐻0 (

2

𝑏
𝑌1(𝛽𝑏) − 𝛽𝑌2(𝛽𝑏)) 

For non-zero solution  𝐶1,  𝐶2, 𝐷1, 𝑎𝑛𝑑 𝐷2, 

 

                              ∆= |

𝑋11
𝑋21
𝑋31
𝑋41

𝑋12
𝑋22
𝑋32
𝑋42

𝑋13
0
𝑋33
0

0
𝑋24
0
𝑋44

| = 0  .                                                                                     (67)  

 

Equation (67) is the first level frequency equation for a perfectly conducting semi-linear elastic hollow cylinder under 

consideration.  

 

5. NUMERICAL RESULTS 

In this section, we evaluated the natural frequencies for the first four modes of an elastic hollow cylinder of various thickness 

for two different values of externally applied magnetic field. The results are shown in the tables below  

 
Table 1: First mode of Natural Frequencies of an magnetoelastic hollow cylinder of various thickness (ζ)  for two different values of externally applied magnetic 

field 

ζ 𝑯𝟎 = 𝟏𝟎𝟓 𝑯𝟎 = 𝟏𝟎
𝟏𝟎 

0.1 4.600489912 4.741371586 

0.2 5.911873584 6.092304748 

0.3 7.597071168 7.828151931 

0.4 9.762639461 10.05858459 

0.5 12.5455096 12.92452227 

0.6 16.12164534 16.60703595 

0.7 20.71716949 21.33878818 

0.8 26.6226618 27.41873278 

0.9 34.21153269 44.77870011 

 
Table 2: Second mode of Natural Frequencies of magnetoelastic hollow cylinder of various thickness (ζ)  for two different values of externally applied magnetic 

field 

ζ 𝑯𝟎 = 𝟏𝟎𝟓 𝑯𝟎 = 𝟏𝟎
𝟏𝟎 

0.1 12.20800396 12.7371271 

0.2 15.68793269 16.52081535 

0.3 20.15982573 21.42848523 

0.4 25.9064455 27.79402647 

0.5 33.29115675 36.05051403 

0.6 42.78090245 46.75967202 

0.7 54.97572909 60.65009019 

0.8 70.64672824 78.66679301 

0.9 119.4536756 128.6219678 

 

 

 

 

 
Table 3: Third mode of Natural Frequencies of magnetoelastic hollow cylinder of various thickness (ζ)  for two different values of externally applied magnetic 

field 
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ζ 𝑯𝟎 = 𝟏𝟎𝟓 𝑯𝟎 = 𝟏𝟎
𝟏𝟎 

0.1 20.43234346 20.80118 

0.2 25.43096458 27.3854 

0.3 32.68013854 36.05372 

0.4 41.99571165 47.46582 

0.5 53.96671726 62.49021 

0.6 69.3500945 82.27028 

0.7 89.11855032 108.3113 

0.8 114.5220647 142.5952 

0.9 185.3921045 199.6127 

 
Table 4: Fourth mode of Natural Frequencies of magnetoelastic hollow cylinder of various thickness (ζ)  for two different values of externally applied magnetic 

field 

ζ 𝑯𝟎 = 𝟏𝟎𝟓 𝑯𝟎 = 𝟏𝟎
𝟏𝟎 

0.1 27.3691174 27.930159 

0.2 35.28349447 36.62412121 

0.3 45.48648622 48.02429711 

0.4 58.63989551 62.97306358 

0.5 75.5968999 82.57500838 

0.6 97.45739184 108.2785499 

0.7 125.6393217 141.9829632 

0.8 161.970671 186.17872 

0.9 208.8080222 244.1315142 

 

6. CONCLUSIONS 

The frequency equation of vibration of a magnetoelastic hollow cylinder in a magnetic field under large deformation for a semi-

linear material was obtained. Also, the natural frequencies for the first four modes of a magnetoelastic hollow cylinder of various 

thickness for two different values of externally applied magnetic field were numerically calculated. It is shown in the tables above 

that the natural frequencies of the magnetoelastic hollow cylinder increases as the thickness of the hollow cylinder increases. 

Furthermore, the effect of the magnetic field on the frequency modes were considered. It is clearly shown from the tables above 

that the natural frequencies of the magnetoelastic hollow cylinder increases as the externally applied magnetic field intensity 

increases. The results shows that the natural frequencies obtained are greater than the corresponding small deformation case.  
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