

Network Monitoring using Test Packet Generation

Madhuram Kabra
(Student) Dept. of Computer Engineering

Modern Education Society’s College of Engineering Pune,

India

Jensil Mathias
(Student) Dept. of Computer Engineering

Modern Education Society’s College of Engineering, Pune

India.

Mohammed Sukhsarwala
(Student) Dept. of Computer Engineering

Modern Education Society’s College of Engineering Pune,

India

A. P. Kale
(Prof.) Dept. of Computer Engineering

Modern Education Society’s College of Engineering, Pune

India.

Abstract— Networks are getting larger and more complex.

Which results in improper maintenance of the networks. Yet

administrators rely on rudimentary tools like ping and traceroute

to debug problems, despite it being getting lesser and lesser

reliable. It is notoriously hard to debug networks. Everyday

network engineers wrestle with router misconfigurations, fiber

cuts, software bugs and myriad of reasons that cause the

networks to misbehave and fail completely. An Automatic Test

Packet Generation (ATPG) framework, which is an automated

and a systematic approach to for testing and debugging

networks, automatically generates a minimal set of packets to

exercise every link in the network as well as every rule in the

network. ATPG detects and diagnoses errors by independently

and exhaustively testing all forwarding entries, firewall rules, and

any packet processing rules in the network. In ATPG, test

packets are generated algorithmically from the device

configuration files and FIBs, with the minimum number of

packets required for complete coverage. It used for testing the

liveness of the underlying topology and the congruence between

data plane state and configuration specification. It also

complements but goes beyond the earlier work in static checking

and fault localization. The tool can automatically generate

packets to test performance assertions such as packet latency.

Keywords— Dataplane analysis, network troubleshooting ,test

packet generation, fault localization,network monitoring.

I. INTRODUCTION

 Whenever networking comes into picture, questions that we

come across are about “How to secure your network? Is my

network secure? What do I need to do make network secure?”

But network security does not limit only by implementing new

firewall optimizing techniques or to secure the information,

rather it also includes monitoring the packets, forwarding

entries etc. Now, this would arise the question of how this

would help to secure the network. The answer to this is, the

security could be easily breached by tampering the rules and

exploiting the errors.

Until now it is the network administrator’s problem to tackle

with such issues. Troubleshooting a network is difficult for

three reasons. First, the forwarding state is distributed across

multiple routers and firewalls and is defined by their

forwarding tables, filter rules, and other configuration

parameters. Second, the forwarding state is hard to observe

because it typically requires manually logging into every box

in the network. Third, there are many different programs,

protocols, and humans updating the forwarding state

simultaneously. (See Fig.1)

But creating a tool using ATPG algorithm would automate the

entire process.

Therefore our goal is “To build a system which would

automatically monitor functional and performance faults in

network. To detect and diagnose errors by independently and

exhaustively testing all forwarding entries, firewall rules, and

any packet processing rules in the network. To check the

liveness and fault localization of the network.”

Fig. 1. Static versus dynamic checking: A policy is compiled to forwarding

state, which is then executed by the forwarding plane. Static checking (e.g.,

confirms that A=B . Dynamic checking (e.g., ATPG in this paper) confirms
that the topology is meeting liveness properties (L) and that B=C.

Example: Suppose that video traffic is mapped to a specific

queue in a router, but packets are dropped because the token

bucket rate is too low. It is not at all clear how Alice can track

down such a performance fault using ping and traceroute.

While using ping and traceroute the network administrators

usually use a crude lenses to examine the current forwarding

state for clues to track down failure. This would be a

cumbersome method since the forwarding state is hard to
observe because it typically requires login into every box in

the network.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020119

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

109

Recently, researchers have proposed tools to check that A=B,

enforcing consistency between policy and the configuration

[1], [2], [3], [4]. While these approaches can find (or prevent)

software logic errors in the control plane, they are not

designed to identify liveness failures caused by failed links

and routers, bugs caused by faulty router hardware or

software, or performance problems caused by network

congestion. Such failures require checking for L and whether

B=C. Network Administrator’s problem was with B=C. (low

level token bucket state not reflecting policy for video

bandwidth). Instead of manually deciding which packet to

send the tool determines that it must send packets with certain

headers to “exercise” the video queue, and then determines

that these packets are being dropped.

ATPG detects and diagnoses errors by independently and

exhaustively testing all forwarding entries, firewall rules, and

any packet processing rules in the network. In ATPG, test

packets are generated algorithmically from the device

configuration files and FIBs, with the minimum number of

packets required for complete coverage. Test packets are fed

into the network so that every rule is exercised directly from

the data plane. Since ATPG treats links just like normal

forwarding rules, its full coverage guarantees testing of every

link in the network. It can also be specialized to generate a

minimal set of packets that merely test every link for network

liveness. At least in this basic form, we feel that ATPG or

some similar technique is fundamental to networks: Instead of

reacting to failures, many network operators such as Internet2

[5] proactively check the health of their network using pings

between all pairs of sources. However, all-pairs does not

guarantee testing of all links and has been found to be

unscalable for large networks such as

PlanetLab [6].

Organizations can customize ATPG to meet their needs; for

example, they can choose to merely check for network

liveness (link cover) or check every rule (rule cover) to ensure

security policy. ATPG can be customized to check only for

reachability or for performance as well. ATPG can adapt to

constraints such as requiring test packets from only a few

places in the network or using special routers to generate test

packets from every port. ATPG can also be tuned to allocate

more test packets to exercise more critical rules. For example,

a healthcare network may dedicate more test packets to

Firewall rules to ensure HIPPA compliance.

The contributions of this paper are as follows:

1) A test packet generation algorithm (Section 3);

2) A fault localization algorithm to isolate faulty devices and

rules (Section 4);

II. NETWORK MODEL

Let’s get familiar with some keywords.

Packets: A packet is defined by (port, header) tuple, where

the port denotes a packet’s position in the network at any time

instant; each physical port in the network is assigned a unique

number.

Switches: A switch transfer function T, models a network

device, such as a switch or router. Each network device

contains a set of forwarding rules (e.g., the forwarding table)

that determine how packets are processed. An arriving packet

is associated with exactly one rule by matching it against each

rule in descending order of priority, and is dropped if no rule

matches.

Fig. 2 summarizes the definitions in our model.

Rules: A rule generates a list of one or more output packets,

corresponding to the output port(s) to which the packet is sent,

and defines how packet fields are modified. The rule

abstraction models all real-world rules we know including IP

forwarding (modifies port, checksum, and TTL, but not IP

address); VLAN tagging (adds VLAN IDs to the header); and

ACLs (block a header, or map to a queue). Essentially, a rule

defines how a region of header space at the ingress (the set of

packets matching the rule) is transformed into regions of

header space at the egress [1].

Rule History: At any point, each packet has a rule history (r0,

r1,…) an ordered list of rules the packet matched so far as it

traversed the network. Rule histories are fundamental to

ATPG, as they provide the basic raw material from which

ATPG constructs tests.

Topology: The topology transfer function, , models the

network topology by specifying which pairs of ports (psrc, pdst)

are connected by links. Links are rules that forward packets

from psrc to pdst without modification. If no topology rules

match an input port, the port is an edge port, and the packet

has reached its destination.

Fig 3 Switch transfer function

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020119

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

110

III. ATPG

Let’s consider a scenario where an administrator maps video

traffic to a specific queue in a router, and packets are dropped

because the token bucket rate is low. What would the network

administrator do in such case?

Current system

The administrator manually decides which ping packets to

send.

Here, the approaches designed can prevent software logic

errors but fails to detect failures caused by failed links and

routers.

ATPG system

Instead of the administrator, the ATPG tool would do so

periodically on his or her behalf.

Whereas here, ATPG automatically detects the failures by

testing the liveness of the underlying topology.

Fig. 4. ATPG system block diagram.

When an error is detected, ATPG goes through the following

steps:

1. The system first collects all the forwarding state from the

network

2. ATPG uses Header Space Analysis to compute reachability

between all the test terminals.

3. The result is then used by the test packet selection algorithm

to compute a minimal set of test packets that can test all rules.

4. These packets will be sent periodically by the test terminals.

5. If an error is detected, the fault localization algorithm is

invoked to narrow down the cause of the error.

Step 1: Collect all forwarding states: Forwarding table which

usually involves reading the FIBs (Forwarding Information

States), ACLs (Access Control Lists), and config files, as well

as obtaining the topology.

Step 2: Generate All-Pairs Reachability Table: ATPG

Start’s by computing the complete set of packet headers that

can be sent from each test terminal to every other test

terminal. For each such header, ATPG finds the complete set

of rules it exercises along the path.

To do so, ATPG applies the all-pairs reachability algorithm as

follows:

1. Header constraints are applied.

For example, if traffic can be sent on VLAN A, then

instead of starting with an all- x header, the VLAN

tag bits are set to A.

2. Set of rules that match the packet are recorded in

packet history. Hence all-pairs reachability table as

shown in table1.

Table1 ALL-PAIRS REACHABILITY TABLE: ALL POSSIBLE HEADERS FROM

EVERY TERMINAL TO EVERY OTHER TERMINAL, ALONG WITH THE RULES

THEY EXERCISE

Therefore all packets matching this class of header will

encounter the set of switch rules.

Step 3: Test Packet Generation: We assume a set of test

terminals in the network can send and receive test packets.

Our goal is to generate a set of test packets to exercise every

rule in every switch function, so that any fault will be

observed by at least one test packet. This is analogous to

software test suites that try to test every possible branch in a

program. The broader goal can be limited to testing every link

or every queue.

When generating test packets, ATPG must respect two key

Constraints:

1) Port: ATPG must only use test terminals that are available;

2) Header: ATPG must only use headers that each test

terminal is permitted to send.

For example, the network administrator may only allow using

a specific set of VLANs. Formally, we have the following

problem.

Problem (Test Packet Selection): For a network with the

switch functions {T1,T2..Tn}, and topology function, T,

determine the minimum set of test packets to exercise all

reachable rules, subject to the port and header constraints.

ATPG chooses test packets using an algorithm we call Test

Packet Selection (TPS). TPS first finds all equivalent classes

between each pair of available ports. An equivalent class is a

set of packets that exercises the same combination of rules. It

then samples each class to choose test packets, and finally
compresses the resulting set of test packets to find the

minimum covering set.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020119

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

111

IV. FAULT LOCALIZATION ALGORITHM

1) Fault Model: A rule fails if its observed behavior differs

from its expected behavior. ATPG keeps track of where rules

fail using a result function. For a rule, the result function is

defined as

We divide faults into two categories: action faults and match

Faults. An action fault occurs when every packet matching the

rule is processed incorrectly. Action faults include unexpected

packet loss, a missing rule, congestion, and miswiring. On the

other hand, match faults are harder to detect because they only

affect some packets matching the rule: for example, when a

rule matches a header it should not, or when a rule misses a

header it should match.

We will only consider action faults because they cover most

likely failure conditions and can be detected using only one

test packet per rule.

2) Problem 2 (Fault Localization): Given a list of (pk0, (R(pk0),

(pk1, (R(pk1)) … tuples, find all that satisfies

ᴲpki,R(pki,r)=0.

Step 1: Consider the results from sending the regular test

packets. For every passing test, place all rules they exercise

into a set of passing rules, P. Similarly, for every failing test,

place all rules they exercise into a set of potentially failing

rules F. By our assumption, one or more of the rules F are in

error. Therefore F-P, is a set of suspect rules.

Step 2: ATPG next trims the set of suspect rules by weeding

out correctly working rules. ATPG does this using the

reserved packets (the packets eliminated by Min-Set-Cover).

ATPG selects reserved packets whose rule histories contain

exactly one rule from the suspect set and sends these packets.

Suppose a reserved packet p exercises only rule r in the

suspect set. If the sending of p fails, ATPG infers that rule r is

in error; if p passes, r is removed from the suspect set. ATPG

repeats this process for each reserved packet chosen in Step 2.

Step 3: In most cases, the suspect set is small enough after

Step 2, which ATPG can terminate and report the suspect set.

If needed, ATPG can narrow down the suspect set further by

sending test packets that exercise two or more of the rules in

the suspect set using the same technique underlying Step 2. If

these test packets pass, ATPG infers that none of the exercised

rules are in error and removes these rules from the suspect set.

If our Fault Propagation assumption holds, the method will not

miss any faults, and therefore will have no false negatives.

False Positives: Note that the localization method may

introduce false positives, rules left in the suspect set at the end

of Step 3. Specifically, one or more rules in the suspect set

may in fact behave correctly.

False positives are unavoidable in some cases. When two rules

are in series and there is no path to exercise only one of them,

we say the rules are indistinguishable; any packet that

exercises one rule will also exercise the other. Hence, if only

one rule fails, we cannot tell which one. For example, if an

ACL rule is followed immediately by a forwarding rule that

matches the same header, the two rules are indistinguishable.

Observe that if we have test terminals before and after each

rule (impractical in many cases), with sufficient test packets,

we can distinguish every rule. Thus, the deployment of test

terminals not only affects test coverage, but also localization

accuracy.

V. CONCLUSIONS

Current System uses a method which is neither exhaustive nor

scalable. Even though it reaches all the pairs of edge nodes it

fails to detect faults in liveness properties. ATPG, however,

goes much further than liveness testing with the same

framework. ATPG can test for reachability policy (by testing

all rules including drop rules) and performance health (by

associating performance measures such as latency and loss

with test packets). Our implementation also augments testing

with a simple fault localization scheme also constructed using

the header space framework.

ACKNOWLEDGMENT

We would like to thank our Project Guide, Prof. A.P.Kale, for

the guidance, inspiration and constructive suggestions that

helped us in coming so far in the project. We are grateful to

her. We also thank our Head of Department, Prof. N.F.Shaikh,

for her support and valuable suggestions. We also

acknowledge our colleagues who have helped us in building

the project so far.

REFRENCES

[1] Hongyi Zeng, Member, IEEE, Peyman Kazemian, Member, IEEE, George

Varghese, Member, IEEE, Fellow, ACM, and Nick McKeown, Fellow,
IEEE, ACM, “Automatic Test Packet Generation”.

[2] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:

Static checking for networks,” in Proc. NSDI, 2012, pp. 9–9.
[3] M. Canini, D.Venzano, P. Peresini, D.Kostic, and J. Rexford, “A NICE

way to test OpenFlow applications,” in Proc. NSDI, 2012, pp. 10–10.

[4] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with Anteater,” Comput. Commun.

Rev., vol. 41, no. 4, pp. 290–301, Aug. 2011.

[5] Hongyi Zeng, Peyman Kazemian,George Varghese,and Nick
McKeown,“Automatic Test Packet Generation”,VOL. 22, NO. 2,

APRIL 2014.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020119

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

112

