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Abstract—  Networks are getting larger and more complex. 

Which results in improper maintenance of the networks. Yet 

administrators rely on rudimentary tools like ping and traceroute 

to debug problems, despite it being getting lesser and lesser 

reliable. It is notoriously hard to debug networks. Everyday 

network engineers wrestle with router misconfigurations, fiber 

cuts, software bugs and myriad of reasons that cause the 

networks to misbehave and fail completely. An Automatic Test 

Packet Generation (ATPG) framework, which is an automated 

and a systematic approach to for testing and debugging 

networks, automatically generates a minimal set of packets to 

exercise every link in the network as well as every rule in the 

network. ATPG detects and diagnoses errors by independently 

and exhaustively testing all forwarding entries, firewall rules, and 

any packet processing rules in the network. In ATPG, test 

packets are generated algorithmically from the device 

configuration files and FIBs, with the minimum number of 

packets required for complete coverage. It used for testing the 

liveness of the underlying topology and the congruence between 

data plane state and configuration specification. It also 

complements but goes beyond the earlier work in static checking 

and fault localization. The tool can automatically generate 

packets to test performance assertions such as packet latency. 

 

Keywords— Dataplane analysis, network troubleshooting ,test 

packet generation, fault localization,network monitoring. 

I. INTRODUCTION 

 Whenever networking comes into picture, questions that we 

come across are about “How to secure your network? Is my 

network secure? What do I need to do make network secure?” 

But network security does not limit only by implementing new 

firewall optimizing techniques or to secure the information, 

rather it also includes monitoring the packets, forwarding 

entries etc. Now, this would arise the question of how this 

would help to secure the network. The answer to this is, the 

security could be easily breached by tampering the rules and 

exploiting the errors.  

 

Until now it is the network administrator’s problem to tackle 

with such issues. Troubleshooting a network is difficult for 

three reasons. First, the forwarding state is distributed across 

multiple routers and firewalls and is defined by their 

forwarding tables, filter rules, and other configuration 

parameters. Second, the forwarding state is hard to observe 

because it typically requires manually logging into every box 

in the network. Third, there are many different programs, 

protocols, and humans updating the forwarding state 

simultaneously. (See Fig.1)  

 

But creating a tool using ATPG algorithm would automate the 

entire process.  

Therefore our goal is “To build a system which would 

automatically monitor functional and performance faults in 

network. To detect and diagnose errors by independently and 

exhaustively testing all forwarding entries, firewall rules, and 

any packet processing rules in the network. To check the 

liveness and fault localization of the network.”  

 

 
 

Fig. 1. Static versus dynamic checking: A policy is compiled to forwarding 

state, which is then executed by the forwarding plane. Static checking (e.g., 

confirms that A=B . Dynamic checking (e.g., ATPG in this paper) confirms 
that the topology is meeting liveness properties (L) and that B=C. 

 

Example: Suppose that video traffic is mapped to a specific 

queue in a router, but packets are dropped because the token 

bucket rate is too low. It is not at all clear how Alice can track 

down such a performance fault using ping and traceroute.  

While using ping and traceroute the network administrators 

usually use a crude lenses to examine the current forwarding 

state for clues to track down failure. This would be a 

cumbersome method since the forwarding state is hard to 
observe because it typically requires login into every box in 

the network.  
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Recently, researchers have proposed tools to check that A=B, 

enforcing consistency between policy and the configuration 

[1], [2], [3], [4]. While these approaches can find (or prevent) 

software logic errors in the control plane, they are not 

designed to identify liveness failures caused by failed links 

and routers, bugs caused by faulty router hardware or 

software, or performance problems caused by network 

congestion. Such failures require checking for L and whether 

B=C. Network Administrator’s problem was with B=C. (low 

level token bucket state not reflecting policy for video 

bandwidth). Instead of manually deciding which packet to 

send the tool determines that it must send packets with certain 

headers to “exercise” the video queue, and then determines 

that these packets are being dropped.  

ATPG detects and diagnoses errors by independently and 

exhaustively testing all forwarding entries, firewall rules, and 

any packet processing rules in the network. In ATPG, test 

packets are generated algorithmically from the device 

configuration files and FIBs, with the minimum number of 

packets required for complete coverage. Test packets are fed 

into the network so that every rule is exercised directly from 

the data plane. Since ATPG treats links just like normal 

forwarding rules, its full coverage guarantees testing of every 

link in the network. It can also be specialized to generate a 

minimal set of packets that merely test every link for network 

liveness. At least in this basic form, we feel that ATPG or 

some similar technique is fundamental to networks: Instead of 

reacting to failures, many network operators such as Internet2 

[5] proactively check the health of their network using pings 

between all pairs of sources. However, all-pairs does not 

guarantee testing of all links and has been found to be 

unscalable for large networks such as  

PlanetLab [6].  

Organizations can customize ATPG to meet their needs; for 

example, they can choose to merely check for network 

liveness (link cover) or check every rule (rule cover) to ensure 

security policy. ATPG can be customized to check only for 

reachability or for performance as well. ATPG can adapt to 

constraints such as requiring test packets from only a few 

places in the network or using special routers to generate test 

packets from every port. ATPG can also be tuned to allocate 

more test packets to exercise more critical rules. For example, 

a healthcare network may dedicate more test packets to 

Firewall rules to ensure HIPPA compliance.  

The contributions of this paper are as follows:  

1) A test packet generation algorithm (Section 3);  

2) A fault localization algorithm to isolate faulty devices and 

rules (Section 4);  

II. NETWORK MODEL 

Let’s get familiar with some keywords.  

 

Packets: A packet is defined by (port, header) tuple, where 

the port denotes a packet’s position in the network at any time 

instant; each physical port in the network is assigned a unique 

number.  

 

 

 

Switches: A switch transfer function T, models a network 

device, such as a switch or router. Each network device 

contains a set of forwarding rules (e.g., the forwarding table) 

that determine how packets are processed. An arriving packet 

is associated with exactly one rule by matching it against each 

rule in descending order of priority, and is dropped if no rule 

matches.  

 

 
 

Fig. 2 summarizes the definitions in our model. 

 

Rules: A rule generates a list of one or more output packets, 

corresponding to the output port(s) to which the packet is sent, 

and defines how packet fields are modified. The rule 

abstraction models all real-world rules we know including IP 

forwarding (modifies port, checksum, and TTL, but not IP 

address); VLAN tagging (adds VLAN IDs to the header); and 

ACLs (block a header, or map to a queue). Essentially, a rule 

defines how a region of header space at the ingress (the set of 

packets matching the rule) is transformed into regions of 

header space at the egress [1].  

 

Rule History: At any point, each packet has a rule history (r0, 

r1,…) an ordered list of rules the packet matched so far as it 

traversed the network. Rule histories are fundamental to 

ATPG, as they provide the basic raw material from which 

ATPG constructs tests.  

 

Topology: The topology transfer function, , models the 

network topology by specifying which pairs of ports (psrc, pdst) 

are connected by links. Links are rules that forward packets 

from psrc to pdst without modification. If no topology rules 

match an input port, the port is an edge port, and the packet 

has reached its destination.  

 

 
 

Fig 3 Switch transfer function 
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III. ATPG 

 

Let’s consider a scenario where an administrator maps video 

traffic to a specific queue in a router, and packets are dropped 

because the token bucket rate is low. What would the network 

administrator do in such case?  

 

Current system  

The administrator manually decides which ping packets to 

send.  

Here, the approaches designed can prevent software logic 

errors but fails to detect failures caused by failed links and 

routers.  

 

ATPG system  

Instead of the administrator, the ATPG tool would do so 

periodically on his or her behalf.  

Whereas here, ATPG automatically detects the failures by 

testing the liveness of the underlying topology.  

 

 
 

Fig. 4. ATPG system block diagram. 

 

When an error is detected, ATPG goes through the following 

steps:  

1. The system first collects all the forwarding state from the 

network  

2. ATPG uses Header Space Analysis to compute reachability 

between all the test terminals.  

3. The result is then used by the test packet selection algorithm 

to compute a minimal set of test packets that can test all rules.  

4. These packets will be sent periodically by the test terminals.  

5. If an error is detected, the fault localization algorithm is 

invoked to narrow down the cause of the error.  

 

Step 1: Collect all forwarding states: Forwarding table which 

usually involves reading the FIBs (Forwarding Information 

States), ACLs (Access Control Lists), and config files, as well 

as obtaining the topology.  

Step 2: Generate All-Pairs Reachability Table: ATPG  

Start’s by computing the complete set of packet headers that 

can be sent from each test terminal to every other test 

terminal. For each such header, ATPG finds the complete set 

of rules it exercises along the path.  

To do so, ATPG applies the all-pairs reachability algorithm as 

follows:  

 

1. Header constraints are applied.  

For example, if traffic can be sent on VLAN A, then 

instead of starting with an all- x header, the VLAN 

tag bits are set to A.  

2. Set of rules that match the packet are recorded in 

packet history. Hence all-pairs reachability table as 

shown in table1.  

 

 
 
Table1 ALL-PAIRS REACHABILITY TABLE: ALL POSSIBLE HEADERS FROM 

EVERY TERMINAL TO EVERY OTHER TERMINAL, ALONG WITH THE RULES  

THEY EXERCISE  

 

Therefore all packets matching this class of header will 

encounter the set of switch rules.  

 
 

Step 3: Test Packet Generation: We assume a set of test 

terminals in the network can send and receive test packets. 

Our goal is to generate a set of test packets to exercise every 

rule in every switch function, so that any fault will be 

observed by at least one test packet. This is analogous to 

software test suites that try to test every possible branch in a 

program. The broader goal can be limited to testing every link 

or every queue.  

 

When generating test packets, ATPG must respect two key  

Constraints:  

1) Port: ATPG must only use test terminals that are available;  

2) Header: ATPG must only use headers that each test 

terminal is permitted to send.  

 

For example, the network administrator may only allow using 

a specific set of VLANs. Formally, we have the following 

problem. 

  

Problem (Test Packet Selection): For a network with the 

switch functions {T1,T2..Tn}, and topology function, T, 

determine the minimum set of test packets to exercise all 

reachable rules, subject to the port and header constraints. 

ATPG chooses test packets using an algorithm we call Test 

Packet Selection (TPS). TPS first finds all equivalent classes 

between each pair of available ports. An equivalent class is a 

set of packets that exercises the same combination of rules. It 

then samples each class to choose test packets, and finally 
compresses the resulting set of test packets to find the 

minimum covering set.  
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IV. FAULT LOCALIZATION ALGORITHM 

 

1) Fault Model: A rule fails if its observed behavior differs 

from its expected behavior. ATPG keeps track of where rules 

fail using a result function. For a rule, the result function is 

defined as  

 
We divide faults into two categories: action faults and match 

Faults. An action fault occurs when every packet matching the 

rule is processed incorrectly. Action faults include unexpected 

packet loss, a missing rule, congestion, and miswiring. On the 

other hand, match faults are harder to detect because they only 

affect some packets matching the rule: for example, when a 

rule matches a header it should not, or when a rule misses a 

header it should match.  

We will only consider action faults because they cover most 

likely failure conditions and can be detected using only one 

test packet per rule.  

 

2) Problem 2 (Fault Localization): Given a list of (pk0, (R(pk0), 

(pk1, (R(pk1)) … tuples, find all that satisfies  

ᴲpki,R(pki,r)=0.  

 

Step 1: Consider the results from sending the regular test 

packets. For every passing test, place all rules they exercise 

into a set of passing rules, P. Similarly, for every failing test, 

place all rules they exercise into a set of potentially failing 

rules F. By our assumption, one or more of the rules F are in 

error. Therefore F-P, is a set of suspect rules.  

 

Step 2: ATPG next trims the set of suspect rules by weeding 

out correctly working rules. ATPG does this using the 

reserved packets (the packets eliminated by Min-Set-Cover). 

ATPG selects reserved packets whose rule histories contain 

exactly one rule from the suspect set and sends these packets. 

Suppose a reserved packet p exercises only rule r in the 

suspect set. If the sending of p fails, ATPG infers that rule r is 

in error; if p passes, r is removed from the suspect set. ATPG 

repeats this process for each reserved packet chosen in Step 2.  

Step 3: In most cases, the suspect set is small enough after  

Step 2, which ATPG can terminate and report the suspect set. 

If needed, ATPG can narrow down the suspect set further by 

sending test packets that exercise two or more of the rules in 

the suspect set using the same technique underlying Step 2. If 

these test packets pass, ATPG infers that none of the exercised 

rules are in error and removes these rules from the suspect set.  

 

If our Fault Propagation assumption holds, the method will not 

miss any faults, and therefore will have no false negatives.  

False Positives: Note that the localization method may 

introduce false positives, rules left in the suspect set at the end 

of Step 3. Specifically, one or more rules in the suspect set 

may in fact behave correctly.  

 

 

False positives are unavoidable in some cases. When two rules 

are in series and there is no path to exercise only one of them, 

we say the rules are indistinguishable; any packet that 

exercises one rule will also exercise the other. Hence, if only 

one rule fails, we cannot tell which one. For example, if an 

ACL rule is followed immediately by a forwarding rule that 

matches the same header, the two rules are indistinguishable. 

Observe that if we have test terminals before and after each 

rule (impractical in many cases), with sufficient test packets, 

we can distinguish every rule. Thus, the deployment of test 

terminals not only affects test coverage, but also localization 

accuracy.  

V. CONCLUSIONS 

 

Current System uses a method which is neither exhaustive nor 

scalable. Even though it reaches all the pairs of edge nodes it 

fails to detect faults in liveness properties. ATPG, however, 

goes much further than liveness testing with the same 

framework. ATPG can test for reachability policy (by testing 

all rules including drop rules) and performance health (by 

associating performance measures such as latency and loss 

with test packets). Our implementation also augments testing 

with a simple fault localization scheme also constructed using 

the header space framework.  
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