
New Journey of Web Approach:O-Data

Shravani Vanka, Sharon Leo F, Bipradip Roy
Dept. of Computer Applications,

Dayananda Sagar College of Arts, Science and Commerce,

 Bangalore, India.

Abstract— There are quite a lot of interest showing how to

create OData services using Web API OData, but these requires

Entity Framework and a database server behind. If you want a

quick try or you have your own way of implementing data

sources, these tutorials may not be the best fit. In this paper, we

will show how to build an OData service using in-memory data

as data source and with basic function.

Keywords—Odata, Http, API.

I. DESCRIBING ODATA

Our world is awash in data. Vast amounts exist today, and

more is created every year. Yet data has value only if it can

be used, and it can be used only if it can be accessed by

applications and the people who use them. Allowing this kind

of broad access to data is the goal of the Open Data Protocol,

commonly called just OData. OData (Open Data Protocol) is

an OASIS standard that defines the best practice for building

and consuming RESTful APIs. OData helps you focus on

your business logic while building RESTful APIs without

having to worry about the approaches to define request and

response headers, status codes, HTTP methods, URL

conventions, media types, payload formats and query options

etc. OData also guides you about tracking changes, defining

functions/actions for reusable procedures and sending

asynchronous/batch requests etc. Additionally, OData

provides facility for extension to fulfill any custom needs of

your RESTful APIs.

II. THE PROBLEM: ACCESSING DIVERSE DATA

IN A COMMON WAY

There are many possible sources of data. Applications

collect and maintain information in databases, organizations

store data in the cloud, and many firms make a business out

of selling data. And just as there are many data sources, there

are many possible clients: Web browsers, apps on mobile

devices, business intelligence (BI) tools, and more. How can

this varied set of clients access these diverse data sources?

One solution is for every data source to define its own

approach to exposing data. While this would work, it leads to

some ugly problems. First, it requires every client to contain

unique code for each data source it will access, a burden for

the people who write those clients. Just as important, it

requires the creators of each data source to specify and

implement their own approach to getting at their data, making

each one reinvent this wheel. And with custom solutions on

both sides, there's no way to create an effective set of tools to

make life easier for the people who build clients and data

sources.

Thinking about some typical problems illustrates why this

approach isn't the best solution. Suppose a Web application

wishes to expose its data to apps on mobile phones, for

instance. Without some common way to do this, the Web

application must implement its own idiosyncratic approach,

forcing every client app developer that needs its data to

support this. Or think about the need to connect various BI

tools with different data sources to answer business

questions. If every data source exposes data in a different

way, analyzing that data with various tools is hard -- an

analyst can only hope that her favorite tool supports the data

access mechanism she needs to get at a particular data source.

III. THE SOLUTION: WHAT ODATA PROVIDES:

OData defines an abstract data model and a protocol that

let any client access information exposed by any data source.

Diagram shows some of the most important examples of

clients and data sources, illustrating where OData fits in the

picture.

Any OData client can access data provided by any OData

data source.As the figure illustrates, OData allows mixing

and matching clients and data sources. Some of the most

important examples of data sources that support OData today

are:Custom applications: Rather than creating its own

mechanism to expose data, an application can instead use

OData. Facebook, Netflix, and eBay all expose some of their

information via OData today, as do a number of custom

enterprise applications. To make this easier to do, OData

libraries are available that let .NET Framework and Java

applications act as data sources.Cloud storage: OData is the

built-in data access protocol for tables in Microsoft's

Windows Azure, and it's supported for access to relational

data in SQL Azure as well. Using available OData libraries,

it's also possible to expose data from other cloud platforms,

such as Amazon Web Services.Content management

software: For example, SharePoint 2010 and Webnodes both

have built-in support for exposing information through

OData.Windows Azure Marketplace DataMarket: This cloud-

based service for discovering, purchasing, and accessing

commercially available datasets lets applications access those

datasets through OData.While it's possible to access an

OData data source from an ordinary browser -- the protocol is

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRIT - 2016 Conference Proceedings

Volume 4, Issue 27

Special Issue - 2016

1

based on HTTP -- client applications usually rely on a client

library. As above fig. shows, the options supported today

include:Web browsers: JavaScript code running inside any

popular Web browser, such as Internet Explorer or Firefox,

can access an OData data source. An OData client library is

available for Silverlight applications as well, and other rich

Internet applications can also act as OData clients.Mobile

phones.

IV. ODATA QUERY STRING OPTIONS

The Query Options section of an OData URI specifies

three types of information: System Query Options, Custom

Query Options, and Service Operation Parameters. All OData

services must follow the query string parsing and

construction rules defined in this section and its subsections.

Option Description

$expand Directs that related records should be retrieved in the

record or collection being retrieved.

$filter Specifies an expression or function that must evaluate

to true for a record to be returned in the collection.

 $orderby Determines what values are used to order a collection
of records.

$select Specifies a subset of properties to return.

$skip Sets the number of records to skip before it retrieves

records in a collection.

$top Determines the maximum number of records to return.

$expand :

Directs that related records should be retrieved in the

record or collection being retrieved. If you want to retrieve

related records, locate the name of the entity relationship that

defines this relationship. You may have to view the entity

relationship information in the application to correctly

identify the relationship or the conceptual schema definition

language (CSDL) for the Organization Data Service.

For example:

 To retrieve opportunity records related to accounts,

use theopportunity_customer_accounts entity relationship.

The

query /AccountSet?$expand=opportunity_customer_accounts

 returns the opportunity records and the account records.

If you’re limiting the columns returned, you must also

include the name of the navigation property in the query. For

example, the

query /AccountSet?$select=Name,opportunity_customer_acc

ounts&$expand=opportunity_customer_accountsreturns only

the account name and the expanded opportunity records.

$filter

Specifies an expression or function that must evaluate

to true for a record to be returned in the collection.If you’re

retrieving additional sets of data using the next link, you

shouldn’t change the $filter query option value because this

causes unpredictable results. The OData specification for the

Filter System Query Option describes the operators used to

create an expression to evaluate in the filter. Microsoft

Dynamics CRM uses all the logical operators and a subset of

the functions available, but doesn’t support use of the

arithmetic operators.

V. USING DIVERSE DATA SOURCES WITH

DIFFERENT BI TOOLS:

Business intelligence, analyzing information to extract

meaning, is an important part of how people use data.

Analyzing data first requires accessing data, and given the

multiplicity of BI tools and data sources in use today, this is a

non-trivial problem. Different analysts prefer different tools,

and data is kept in different forms in different places. Much

of an organization's useful data is likely to be wrapped inside

custom and packaged applications, for example, while many

organizations also keep useful business data in SharePoint

lists. Another possible source for data is Microsoft's

Windows Azure Marketplace DataMarket, which provides a

cloud-based way to purchase and access commercial data

sets.Suppose an analyst wishes to combine data from these

various sources. Maybe a retailer is trying to decide where to

locate a new store, for example, and so needs to look at sales

information from one of its custom applications, customer

survey data stored in SharePoint lists, and demographic data

acquired from DataMarket. Or perhaps analysts in a local

government wish to access emergency call data from the

city's custom call center application, police reports stored in

SharePoint, and national crime statistics available through

DataMarket. In both cases, it's entirely possible that different

analysts wish to use different tools to work with this data.The

problem is clear: How can we connect multiple clients to

multiple data sources? Without a common approach to

exposing and accessing data, the situation is bleak. OData can

help.

Different BI tools can use OData to access data stored in

different formats across different data sources.In this

example, two different analysts using different BI tools --

Tableau Desktop and Microsoft Excel's PowerPivot -- are

accessing data from the three data sources just listed :

SharePoint 2010 lists, a custom application, and Windows

Azure Marketplace DataMarket. All of these technologies can

use OData today, and so making these connections is

straightforward. Because clients and data sources speak the

common language of OData, hooking them together gets

simpler, and analysts can begin working with new data more

rapidly.

Examining OData: A Closer Look at the Technology and Its

Implementation

OData began life as a Microsoft project code-named Astoria.

The technology was then renamed ADO.NET Data Services

before its protocol and data model were separated out and

became OData. (The parts of ADO.NET Data Services that

were focused on the Windows implementation of OData are

now known as WCF Data Services.) Whatever the name,

though, the fundamental technology of OData has remained

the same.As described earlier, it's useful to think about the

OData world in four parts: the data model, the protocol, the

client libraries, and the OData service itself. This section

describes all four, beginning with the data model.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRIT - 2016 Conference Proceedings

Volume 4, Issue 27

Special Issue - 2016

2

VI. RELATIONAL OPERATORS

OData protocol enables you to use other relational

operators such as not equal (ne), less than (lt), less or equal

(le), greater than (gt), greater or equal (ge). Some examples

are:

/Products?$filter=ID lt 4

/Products?$filter=ID ge 3

/Products?$filter=ID ne 2

Logical operators

You can create complex queries using the logical operators

and, or, not and brackets. One example of complex query is

shown in the following example:

/Products?$filter=ID lt 7 and (Name eq 'Milk' or ID gt 3) or

not(ID le 4 and ID ge 6)

Arithmetical operations

You can apply standard operators to add (add), subtract (sub),

multiply (mul), divide(div), or find remainder(mod). Example

of query that returns all products where a total value in stock

(unit price * units in stock) is less that 45 (with condition that

there are some items in stock) is:/Products?$filter=(UnitPrice

mul UnitsInStock) lt 45 and UnitsInStock ne 0.Note that

currently you can use arithmetical functions only in $filter

condition but not in the $select.

Numerical functions

If your properties are numbers you can apply floor, ceiling,

and round functions. Example of the query that uses these

functions is /Products?$filter=floor(Price) eq 3 or

ceiling(Price) eq 3

String functions

There are a lot of string functions you can use in your filter

expressions - some of them (with examples) are:

length(string) /Customers?$filter=length(CompanyName) lt

10

trim(string), toupper(string), tolower(string) -

/Products?$filter=toupper(Name) eq 'MILK'

substringof(‘part’, text)

/Customers?$filter=substringof(‘Sales’,ContactTitle)

endswith(text, ‘part’)

/Customers?$filter=endswith(ContactTitle,'Manager')

startswith(text, ‘part’)

/Customers?$filter=startswith(ContactTitle,'Sales')

Date functions

If you have datetime properties in the resources you can use

several date part functions such as year(), month(), day(),

hour(), minute(), and second(). As an example, URL query

that returns all orders with OrderDate in 1996 is:

/Orders?$filter=year(OrderDate) eq 1996

Ordering results

Another usable feature is ordering. You can order results by

some property or function using the $orderby query option.

Default order is ascending but you can change it. Some

examples are:

/Products?$orderby=ID desc

/Products?$orderby=length(Name)

Updating data

OData services are REST services so data modification

operations are also allowed. In the REST services a type of

data access operation is defined using the type of HTTP

request that is sent using the following rules:

HTTP GET request is used to read data

HTTP POST request is used to update existing entity

.

VII. CONCLUSION

Our world really is awash in data. Yet too much of it is

locked up in silos, inaccessible to many of the applications

that might use it. By providing a common way for diverse

clients to access an array of data sources, OData can help set

this information free.Because it relies on a simple abstract

data model based on entities and associations, OData can be

used with many kinds of data. Because it builds on familiar

technologies such as REST, Atom/AtomPub, and JSON,

OData isn't especially hard to understand. And because

support is available for creating clients and services on

various platforms and devices, OData is straightforward to

implement.

The value of a common approach to accessing data is

undeniable. Reflecting this, many clients and data sources

support OData today. Going forward, expect to see that

support get broader still. Our data is just too valuable to keep

locked away.

VIII. REFERENCES

1. http://www.odata.org/getting-started/basic-tutorial/

2. http://www.odata.org/getting-started/

3. http://www.odata.org/getting-started/advanced-tutorial/
4. http://www.codeproject.com/Articles/393623/OData-Services

5. http://www.asp.net/web-api/overview/odata-support-in-aspnet-web-

api/odata-v4/create-an-odata-v4-endpoint
6. https://msdn.microsoft.com/en-us/data/gg601462.aspx

7. http://www.asp.net/web-api/overview/odata-support-in-aspnet-web-

api

8. https://github.com/ODataOrg/tutorials

9. https://olingo.apache.org/doc/odata4/tutorials/read/tutorial_read.html

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRIT - 2016 Conference Proceedings

Volume 4, Issue 27

Special Issue - 2016

3

