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Abstract
In this paper we present new criteria for
oscillation of advanced neutral differential
equations second order of the form

A3)z(t) e C*([t,,0),R), r(t) <t,
limz(t)=c0.

t—ow

In following we set

[rOL(@EX() +bE)X(r(B)* ) T+cHX(z(R)]” = 0z(t) = a(t)x(t) + b(t)X(z(t)) . Bya solution

t>t,>0 1)
where the coefficient r(t) is nonnegative
continuous function, a(t), b(t) and c(t) are
continuous function which filled certain
conditions .

The conclusion is based also on building
functions where are involved coefficients of
equation , positive functions p(t) and the

positive function of Philo H(t,s) .

Here , by using the generalized Riccati technique
we get a new oscillation criteria for (1).

Key words: oscillation , differential equation,
second order, interval, criteria etc.

Introduction

Let consider and create new oscillation of
advanced neutral differential equations second
order of the form

[r® (@) +bOx(z(1))*) T+e®x(z ()" =0
t>1,
where ¢ is a quotient of odd positive integers

and « is a even number.
We assume that

ADa(t) >0, c(t)>0,0<b(t) <1,

A2)r(t) >0, j 11 -
bre(s)

of equation (1) we consider a function

X(t), telt,, o) c[t,,o} whichis twice
continuously differentiable and satisfies equation
(1) on the given interval. We consider only non-

trivial solutions . A solution x(t) of (1) is said
to be oscillatory if there exists a sequence

{A,}.., of pointsin the interval [t,,o0}, such
that im A, =0 and x(4,)=0, neN,

nN—o0
otherwise it is said to be non-oscillatory. An
equation is said to be oscillatory if all its
solutions are oscillatory, otherwise it is
considered that is non-oscillatory solution .

Lemma 1. If X(t) is a positive solution of (1)

then exists 1, € [t,,o0) such the corresponding

function
z(t) = a(t)x(t) + b(t)x(z(t)) 2)
satisfies

z(t)>0, z'(t)>0, z"(t) <0 for
t>t
eventually.

Proof: Assume that the function X(t) isa
positive solution of (1) . Then from (1) follow
that exists t, € [t,,0) such that

(r®OE ®)*)'=—c@)x(z®)" <0 for
t>t,

from where we get that the function

r(t)(z (t))* is decreasing for t >t and we
claim that r(t)(z (t))“ >0 or
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r(t)(z (t)* <0 . 1fwelet r(t)(z ()* <0
ont=>1 thenexists t, >t,, suchthat

)z ) < r(t,)(Z't,)* <0, for all

t>t, from where

(r(t,))“

(< 167 2()
()"

Integrating this from t, tot we have

20 < 2t) + (r(t)* 2 )j
- (r(s»a

we can see that Z(t) — —oo , where t — 0.

This contradicts because z(t) >0 we have
r(t)(z (t))* >0, fromwhere z'(t) > 0.
From (1) we get

((r®(@ ®)*)<0
r'(t)(z' (t)* +ar(t)(z't)* 2" (t) <0

from where

7"(t) <0.
This complete the proof.

a+l
Lemma 2. Let p(®) = Bw—Aw ¢ | A>0,
and B are constants, ¢ is a quotient of odd
positive integers. Then function ¢ attains its

maximum value on ‘R at

W . = al _a and
™ (a+1)” A
a a+l
max(w) = a—l B
(a Jrl)”H A“
Proof.: From
1
p'(w) =B -2 A
a
@'(W) =0, we get
ay Ba+1

T a+)*T AT
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o

a+1
2 <0, we have

Since @''(W) =

that the function (W) attains to max value on
R at W,
function ¢(W) and

oo 1€ (W, ) isamax value of

aa Ba+1

(a + 1) a+l Aa
and we can write the inequality
a+l ¥ a+l
— a B
Bw—-Aw ¢ < — :
(¢+D)"" A"

P(W,o ) =

Consider (2) we have
x(t) = i[Z(t) —b(O)x(z(t))]
a(t)

from where

X(z(t)) = 2 ( ) —— < [2(z(t) - b(z () x(z (z(1)))]
for x(t) >0, z(t) <t and x'(t) >0 , also
from (2) we get
X(z(t)) < x(t) and
x(z(1)) < z(z (1))

finally

X(z(1)) 2 [2(z(1)) = b(z (1) 2(z (V)]

1
a(z(t))
X(z(t)) >
Now define

r(t)(z ()"
OO ey

t>t, >0 (3)

1
2 0) [2(z(®)A-b(z(1))].

, for

differenting (3) and using (1) we see that

w'(t) =V'(t)

rOE ) o (02 ©) _
2%(z(t)) 2%(z(t)

oy 027 0707 )7 O

2 (z(1)
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w'(t) = ((t )) w(t)
() c(t)d-p(®)“ 2" (z(t)) () 2ED) O (z(t)z'(t)
a“(r(®))z“ (=(1) 2(z(t))
V'(t)
W (t) = w(t
w'(t) = " w(t)
—V(t) C(t)(l_ p(T(t))a —(Z\N(t)Wé (t) T‘(t)
) e (e ()
for L(t) = C(t)il;(f((:)?))“ >0
we obtain
vy V(1)
W (t) = w(t
(t) = G)()
o e

—V(L(t) —aw « (1) —
r @@W (t)

@)
for
g VO . T
v(t) s
vere (z(t)
we have

a+l

W (t) < —v(t)L(t) + BEOW() = Atw «
now to consider lemma 2, we have
aa Ba+1
w'(t) < —-v(t)L(t) + ———
(t) <-v(t)L(t) @) A

from where

(V' ()" r(z ()

(@ + )" v (O (1)"

t>t, >0 5)
We say that a function H (t,s) belongs to the
class X if

i) H e C(D,[0,));

i) H(t,t) =0 and H(t,s) >0, for
—00< S <t <+oo;

iii) H has continuous partial
derivatives on first and second variable

W () < ~V{E)L(E) +

IJERTV21S101178

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181

Vol. 2 Issue 10, October - 2013

=h,(t,s)yH(t,s) and
OH(ts) _ —h, (¢, s)VH(L,S)

oS

OH(t,s)
ot

Teorem 1. Assumed that Al) — A3) hold
Assume that exists a positive differentiable

function v(t) and a function H(t,s) € X and if
there exist (a,b) < [t,,),c €(a,b), such that

(8)-

H(t S)V'(s)+h,(t,s){H(t,s) 1ds
(a+1)‘“1v (S)H*(t, )7 (s)
1

TeL j [H (b, s)V(s)L(S) -

H (b, s)V'(s) = h, (b, )/H (b, 5) ),
(@ +1) v (5)H (b, s)r'" (s)

then every solution of eq. (1) is osillatory.

s> 0(6)

Proof: Suppose to the contrary, that x(t) be a
non-oscillatory solution of (1) , say X(t) # 0 on
[ty,o0) fromwhere z(t) # 0 on [t,,0).

If inequation (5) multiplying with H(t,s) and
integrate from ¢ to t where t € (c,b),s e (c,1)
we have

j H (t,s)v(s)L(s)ds < —j H(t,s)w'(s)ds +

a+1

‘ '(s) (W @ ()" (s)H(t.s)
!HGQM)MM3£ s

( (S)ve (s)

_t[ H (t, s)v(s)L(s)ds < -w(s)H (t,s) '

jhz (t,s)/H(t,s)w(s)ds +

a+l

s jW“ r(s ts)dS
¢ (T(S))V“(S)

+J.Hts

W(s)
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J: H (t,s)v(s)L(s)ds <w(c)H (t,c) + J:[(H (t,s) ve)

o+l

—h, (t,5)/H(t,s))w(s) NE l(s)r'(s)cigH (t, S)]ds
re (z(s))ve (s)

T (s)aH (t, s)

1

( (S))V"’(S)
B=H(ts) ((S) NN

we have

From Lemma2 for A=

j H (t, s)v(s)L(s)ds < w(c)H (t,c) +

PHOSVE) (09 HE9) o

a+l,,a a 177 (7)
(a+D) v (s)HA(t,s)7™ (s)
Let t —>b_ in (7 and dividing it by H(b,c) we
get

s )TH(b SNV(E)L(s)ds < w(e) +

_[H(b ,S)V'(s)—h,(b,s)y/H(b,s) s

(@ +1)“v (s)H (b, s)7™ (s)

G)

If (5)multiplying with H(s,t) and integrate
over (t,c) where te(a,c),se(t,c) we get

j H (s, t)v(s)L(s)ds < -j H(s,t)w'(s)ds +

a+l
¢

jH(st)—W(s)ds jW
‘ (())va(S)

(s)7' (s (s, t) ds

jH(s t)v(s)L(s)ds < —w(s)H (s, t)

a+l

s [ W T OHG
ore e (s)

w'(s)

+jH(st) e
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j H (s, )v(s)L(s)ds < -w(c)H(s,t) + j[(H (s.0)" ((S))

a+l

W“l(s)r'(s)ole (s,t)] s
re(@(s)ve (s)

T (s)aH (s, t)

1

( (S))V“(S)
+ h, (s,t){H(s,1)

+h, (s, 1)y H(s,t))w(s)

From Lemma2 for A=

B=H(s, t)
we have
j H (s, t)v(s)L(s)ds <w(c)H (s,t) +

J-H(s V() +h(s,1)yH (s, 1)

! (a+1) Ve (S)H (s, )7 (s)
in (9) ) and dividing it by H(c,a)

©)

Lett>a”
we obtain

j H (t,s)v(s)L(s)ds < w(c) +

H(c.a

1 jH(t ,S)V'(S)+hy(t,8)yH(t,s) s
H(c,a) ) (@ +D)“ v (s)H " (t,5)7™ (s)

Adding (8) and (10) we have the
following inequality

e )j[H (c, S)V(S)L(s) -
H(c,s)v'(s)+h(c,s){H(c, s

(a+1)‘”1v (s)H“(c,s)r™ (s)

1
el j [H (b, )v(s)L(s) -

j hy (t,5)\/H (5, t)w(s)ds + H(b,s)v'(s) —h, (b,s)yH(b,s) S

(@ +2)“* v (s)H“ (b,s)r" (s)

Which contradict to the condition (6) , therefore
, every solution of equation (1) be oscillatory .
The proof is complete.
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Corollary 1: Let assume that A;, A,, A; hold. If
t

limsup

t—o y

H(t,s)v'(s) + hy (t, S)\/"'(T >0 (12)
(o +1)* e (S)H*(t,5) 7™ (S)

L [[HEvEL(s) -
a1

limsup= j[(t S)V(S)L(s) -
(t—s)v'(s)-1
(o +1)“ v (s)(t—s)“ 7" (8)

forany H € X, veC*([t,,),(0,0)) and

]ds (15)

and . .
¢ forall k> t,, then every solution of (1) is
limsup I [H(t,s)v(s)L(s) - oscillatory.
o H(t,C) % Proof: From (14) and (15) for
HESNV () R ESVHLS) 000 g OH (t,5) OH(t.s) _
(a+1)“ v (s)H“(t, s)r'”‘() L T -1 we have

forany H € X, veC'([t,,),(0,0)) and

forall K >t,, then every solution of (1) is

oscillatory.

Proof: For K >, , from (11) if we take

k=a,and C>a,weget

imsup——— [[H (L SV(S)L(S) -
t—ow0 ,a)

H(t,s)v'(s)+h(t,s)yH(t,S) s

(@ +1) v (s)H (L, 9)7 '”()

(13)

From (12) for k =C andforany b >c

1 j [H(bVEL(S) -
C

(14) respectively (15). The proof is complete.
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