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Abstract 
 In this paper we  present new criteria for 

oscillation of advanced neutral  differential 

equations second order of the form 

0)(()(]')'))(()()()()[((([ 
  txtctxtbtxtatr

 0tt  >0  (1) 

where the coefficient  r(t)   is nonnegative 

continuous  function , a(t), b(t)  and c(t)   are 

continuous function which filled  certain 

conditions .  

The conclusion is based also on building  

functions  where are involved coefficients of 

equation  ,  positive functions )(t  and  the 

positive function of Philo ),( stH . 

Here , by using the generalized Riccati technique 

we get a  new oscillation criteria for (1). 

 

Key words: oscillation , differential equation, 

second order, interval, criteria etc. 

 

 

 

Introduction 

 

Let consider and create   new oscillation of 

advanced neutral  differential equations second 

order of the form 

 

0)(()(]')'))(()()()()((([ 
  txtctxtbtxtatr

     0tt   

where    is a quotient of odd positive integers 

and   is a even number. 

We assume that  

A1) 0)( ta , 0)( tc , 1)(0  tb ,  

A2) 0)( tr , 




0 )(

1
1

t sr 

 

A3) )),,([)( 0

1  tCt , tt )( , 




)(lim t
t

 . 

In following we set 

))(()()()()( txtbtxtatz  . By a  solution   

of  equation (1)   we consider  a function 

},[),[t  t),( 0x  ttx   which is twice 

continuously differentiable and satisfies equation 

(1)  on the given  interval. We consider only non-

trivial solutions  . A solution x(t)  of (1)  is said 

to be oscillatory if there exists a sequence 


1}{ nn  of  points in the interval  },[ 0 t , such 

that 


n
n

lim  and  0)( nx  ,  Nn , 

otherwise it is said to be non-oscillatory. An  

equation is said to be oscillatory if all its 

solutions are oscillatory, otherwise it is 

considered  that is  non-oscillatory solution . 

 

Lemma 1. If )(tx  is a positive solution of (1)  

then exists ),[ 01  tt such  the corresponding  

function  

))(()()()()( txtbtxtatz    (2) 

satisfies   

 0)( tz ,  0)(' tz ,   0)('' tz  for 

1tt   

eventually. 

Proof: Assume that the function  )(tx  is a 

positive solution of (1) . Then from (1) follow 

that exists ),[ 01  tt  such that  

 

0)(()()'))(')(((( 
  txtctztr   for  

1tt   

from where we get that the function 
))()(( ' tztr  is decreasing for  1tt   and we 

claim that 0))()(( ' tztr  or 
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0))()(( ' tztr  . If we let  0))()(( ' tztr  

on 1tt   then exists  12 tt  ,   such that   

0))(')(())(')(( 22   tztrtztr  , for  all  

2tt   from where   





1

2

1

2

))((

)('))((
)('

tr

tztr
tz   

 

Integrating this from 2t  to t  we have  



t

t

ds

sr

tztrtztz

2

12

1

22

))((

1
)(')(()()(



  

we can see that )(tz  , where  t . 

This contradicts because 0)( tz  we have 

0))()(( ' tztr , from where 0)(' tz . 

From (1) we get  

 0)'))(')(((( tztr  

 

0)(''))')(())(')((' 1   tztztrtztr    

from where 

 0)('' tz . 

 

This  complete the proof. 

 

Lemma 2. Let 




1

)(



 AwBw ,  A>0, 

and B are constants, is a quotient of odd 

positive integers. Then function  attains its 

maximum value on    at   













A

B
w

)1(
max


   and  













A

B
w

1

1)1(
)max(




  . 

Proof.: From  

 






1
1

)(' AwBw


  and 

0)(' w  , we get  

 












A

B
w

1

1)1(




 . 

Since 0
1

)(''

1

2














 Aww  , we have 

that the function )(w  attains to max value  on 

  at maxw  , i. e. )( maxw  is a max value of 

function )(w  and  

 













A

B
w

1

1max
)1(

)(



  

and we can write  the inequality  

 
















A

B
AwBw

1

1

1

)1(








 . 

 

Consider  (2)  we have  

 ))](()()([
)(

1
)( txtbtz

ta
tx   

from where  

 

)))]((())(())(([
))((

1
))(( txtbtz

ta
tx 


 

 

for 0)( tx , tt )(  and 0)(' tx  , also  

from (2)   we get  

 )())(( txtx   and 

))(())(( tztx    

finally  

 

))](())(())(([
))((

1
))(( tztbtz

ta
tx 


 

 

))]((1))((([
))((

1
))(( tbtz

ta
tx 


  . 

Now define  

 
))((

))(')((
)()(

tz

tztr
tvtw





  , for  

00  tt    (3) 

 

differenting (3) and using (1)  we see that  

)(')(' tvtw 
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))(')((
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for 0
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))((1)((
)( 
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we obtain 

 )(
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 (4) 

 for  

 
)(
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tv
B  , 

))(()(

)('
11
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we have  

 

)(
1

)()()()()()('
t

wtAtwtBtLtvtw 



  

now to consider lemma 2,  we have   

 








A

B
tLtvtw

1

1

)1(
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from where  

 









))(')(()1(

))(())('(
)()()('

1

1

ttv
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 00  tt    (5) 

We say that a function ),( stH  belongs to the 

class X  if  

 i) )),0[,(  DCH ; 

 ii) 0),( ttH   and 0),( stH ,  for  

 ts ; 

 iii) H  has continuous partial 

derivatives on first and second variable 

),(),(
),(

1 stHsth
t

stH





  and  

),(),(
),(

2 stHsth
s

stH





 

 

Teorem 1. Assumed that A1) – A3)  hold 

.Assume that exists a positive differentiable 

function v(t) and a function XstH ),(  and if  

there exist ),(),,[),( 0 bactba  , such that  

 

c

a

sLsvstH
acH

)()(),([
),(

1
 

ds
sstHsv

stHsthsvstH
]

)('),()()1(

),(),()('),(
1

1

  


 

 

b

c

sLsvsbH
cbH

)()(),([
),(

1
 

0]
)('),()()1(

),(),()('),(
1

2







ds
ssbHsv

sbHsbhsvsbH
 

(6) 

then every solution of eq. (1) is osillatory. 

 

Proof: Suppose to the contrary, that  x(t)  be a 

non-oscillatory solution of (1) , say 0)( tx  on 

),[ 0 t  from where  0)( tz  on ),[ 0 t .  

If  inequation  (5) multiplying with ),( stH  and 

integrate from c  to t  where ),(),,( tcsbct    

we have  

 

  

t

c

t

c

dsswstHdssLsvstH )('),()()(),(  

ds

svsr
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From Lemma2 for  
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we have  
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2

 
 (7) 

 

Let bt   in (7 and dividing it by H(b,c)  we 

get  


b
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 (8) 

 

If  (5)multiplying with ),( tsH  and integrate 

over ),( ct   where ),(),,( ctscat    we get  
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From Lemma2 for  
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we have  
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c

t

 



)('),()()1(

),(),()('),(
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 (9)    

Let 
 at   in (9) ) and dividing it by H(c,a)  

we obtain  


c
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cwdssLsvstH
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1
  

ds
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 (10) 

 

 Adding  (8) and  (10)  we have the 

following  inequality  

 

c

a

sLsvscH
acH

)()(),([
),(
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ds
sscHsv

scHschsvscH
]
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ds
ssbHsv
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Which  contradict  to the condition (6) , therefore 

, every solution of equation (1) be oscillatory . 

The proof is complete. 
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Corollary 1: Let assume that A1, A2, A3  hold. If  

 


t
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sLsvstH
atH

)()(),([
),(

1
suplim
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)('),()()1(
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1
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ds
sstHsv

stHsthsvstH
 

 (11) 

and 

 


t

k
t

sLsvstH
ctH

)()(),([
),(

1
suplim
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)('),()()1(

),(),()('),(
1

2







ds
sstHsv

stHsthsvstH
 

 (12) 

 

for any XH  ,  )),0(),,([ 0

1  tCv  and 

for all  0tk  , then every solution of (1) is 

oscillatory. 

Proof: For 0tk   , from  (11) if we take 

ak  ,  and   ac   , we get  
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ds
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      (13)

  

From (12)  for  ck    and for any  cb      
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ds
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If adding (12) to (13) ,we obtain the inequality of 

the theorem 1. Now, the proof is complete. 

 

If for  )(),( ststH  ,  0tst  ,  we have 

the following corollary. 

 

Corollary 1. Let assume that A1, A2, A3  hold. If  

 


t

k
t

sLsvst
t

)()()[(
1
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ds
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]
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 (14) 

and 
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ds
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)('))(()1(

1)(')(
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 (15) 

for any XH  ,  )),0(),,([ 0

1  tCv  and 

for all  0tk  , then every solution of (1) is 

oscillatory. 

Proof: From  (14)  and (15) for  

 

   1
),(






t

stH
 , 1

),(






s

stH
 we have   

(14) respectively (15). The proof is complete. 
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