
Noc Implementaion Using Generalized De Bruijn Graph
Sumalatha. N

1
 , Smt. Divya Prabha

2
 , Dr. M. Z.Kurian

3

1
Post Graduate M.Tech student, SSIT, Tumkur,Karnataka, India;

2
Asst.prof, ECE Department, SSIT, Tumkur,Karnataka, India;

3
Dean Academics, Registrar, Dr. & Head, ECE Department,SSIT, Tumkur,Karnataka, India;

Abstract -- NoC is a efficient on-chip

communication architecture for SoC

architectures. It enables integration of a

large number of computational and storage

blocks on a single chip. The Network-on-

Chip (NoC) provides a scalable

interconnection scheme. The concept uses

a set of buses connected to routers or

switches that interchange packets, much in

the same way as traditional computer

networks or multiprocessor machines do.

This project proposes the generalized

binary de Bruijn (GBDB) graph as a

reliable and efficient network topology for

a large NoC. A reliable routing algorithm

to detour a faulty channel between two

adjacent switches is proposed. A GBDB-

based NoC in which the number of

channels is less than that of Torus which

has the same number of links is proposed..

The low energy consumption of a de Bruijn

graph-based NoC makes it suitable for

portable devices which have to operate on

limited batteries. Also, the gate level

implementation of the proposed reliable

routing shows small area, power, and

timing overheads due to the proposed

reliable routing algorithm.

Key words: System-on-chips (SoCs), Generalized de

Bruijn graph, network-on-chip (NoC).

1. INTRODUCTION
A system on a chip or system on

chip (SoC or SOC) is an integrated circuit (IC) that

integrates all components of a computer or

other electronic system into a single chip. It may

contain digital, analog, mixed-signal, and often radio-

frequency functions—all on a single chip substrate.

Multiprocessor systems-on-chips (MPSoCs)

have emerged in the past decade as an important class

of very large scale integration (VLSI) systems. An

MPSoC is a system on-chip,a VLSI system that

incorporates most or all the components necessary for

an application that uses multiple programmable

processors as system components. MPSoCs are

widely used in networking, communications, signal

processing, and multimedia among other

applications.With the growing complexity in

consumer embedded products, new tendencies

forecast heterogeneous Multi-Processor Systems-On-

Chip (MPSoCs) consisting of complex integrated

components communicating with each other at very

high-speed rates. Intercommunication requirements

of MPSoCs made of hundreds of cores will not be

feasible using a single shared bus or a hierarchy of

buses due to their poor scalability with system size,

their shared bandwidth between all the attached cores

and the energy efficiency requirements of final

products.

To overcome these problems of scalability

and complexity, Networks-On-Chip (NoCs) have

been proposed as a promising replacement to

eliminate many of the overheads of buses and

MPSoCs connected by means of general-purpose

communication archit ectures. However , the

development of application-specific NoCs for

MPSoCs is a complex engineering process that

involves the definition of suitable protocols and

topologies of switches, and which demands adequate

design flows to minimize design time and effort.

1044

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70330

The network consists of wires and routers.

Processors, memories and other IP-blocks

(Intellectual Property) are connected to routers. A

routing algorithm plays a significant role on

network’s operation. Routers make the routing

decisions based on the routing algorithm. Different

devices with different purposes have different

requirements for routing algorithms. Thus there have

been designed several routing algorithms with

various features and purposes.

There are a couple of requirements that

every Network on Chip implementation has to meet.

Performance requirements are small latency,

guaranteed throughput, path diversity, sufficient

transfer capacity and low power consumption.

Architectural requirements are scalability, generality

and programmability. Fault and distraction tolerancy

as well as valid operation are major on Quality of

Service.

The generalized binary de Bruijn (GBDB)

graph is a reliable and efficient network topology for

a large NoC. The latency and energy consumption of

the generalized de Bruijn graph are much less than

those of Mesh and Torus network topologies.

2. SYSTEM DESIGN

In order to design an NoC a topology to

connect switches together, and a routing algorithm is

to be proposed.

2.1 Topology: Generalized binary de Bruijn graph

is the topology used. Generalized binary de Bruijn

graph prepares a high speed network to perform the

communication among cores in a NoC. This graph

can be defined as follows.

Definition: A generalized binary de Bruijn graph,

GBDB, has (n) nodes,where (n) can be any desired

natural number. Each two nodes i and j are connected

together if they satisfy one of the following

equations:

i=2*j+ r (mod n), r= 0 or 1 (1)

 j=2*i + r(mod n), r= 0 or 1 (2)

The generalized de Bruijn graph has a lot of

features that make it suitable for implementation of

reliable networks. The most important feature, which

is denoted in Theorem 2, is the logarithmic

relationship between the diameter of a generalized de

Bruijn graph and the number of its nodes.

Theorem 2: The diameter of a generalized

binary de Bruijn graph GBDB , which is defined as

the maximum among the lengths of shortest paths

between all possible pairs of nodes, is not greater

than [log2 n].For example, the diameter of the

generalized binary de Bruijn graph GBDB[14] is 4 i.e

[log214]~4.

In this subsection, some features of the

generalized binary de Bruijn graph that are used in

the rest of the paper is explained. Without loss of

generality, the generalized de Bruijngraph with 14

nodes is used (see Fig. 2.1(a) as an example to

explain the methods). Therefore, all the features,

explained using this example, are applicable to other

generalized binary de Bruijn graphs.

As shown in Fig. 2.1, using (1) and starting

from Nodes 0 and n-1(i.e., Node 13), two link-

disjoint binary spanning trees of generalized binary

de Bruijn graph can be constructed .To construct the

tree of Fig. 2.1(b), we start from Node 0 and using

the modular equation (1), the connected nodes to

Node 0 (i.e., Node 0, Node 1) is obtained. This

equation shows that there is a self-loop around Node

0.For the sake of generality and simplicity, this self-

loop in the tree structure is kept. Node 0 is a parent

for Node 1. The remainder part in (1) (i.e.r) is used as

a label for the link connected to corresponding

Nodes. Using (1) for Node 1, its children (i.e., Nodes

2 and 3) is obtained. Note that in this tree (Tree 1 of

Fig. 2.1(b), the node number of a child node is

greater than the node number of its parent. this tree is

constructed until all children nodes have a node

number less than their parent’s node number.

Therefore, all leaf nodes in this tree have a number

not less than n/2 (where n is the number of nodes in

the corresponding de Bruijn graph). Tree 2 of Fig.

2.1(c) can be constructed by using the similar

technique. Note that there is a kind of analogy

between Tree 1 and Tree 2. Each Node i in one tree

(e.g., Tree 1) is correspond to Node (n-i-1) in the

other tree (e.g., Tree 2). For example two nodes i=2

and j= 5 are connected together in Tree 1, and their

corresponding nodes that are Nodes 14-2-1=11 and

14-5-1=8 are also connected together in Tree 2.

Based on Fig. 2.1, each node has at most

two children and at most two parents. A directed link

that connects a node to its parent represents a

Parental relation (P-relation); and a directed link that

connects a node to its child represents a filial relation

(F -relation). For example, the link between Nodes 12

and 10 in Fig. 2.1(a) shows a P-relation for Node 10,

and an F -relation for Node 12.

1045

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70330

Fig. 2.1. Two link-disjoint spanning trees for GBDB (14). (a)

Generalized de Bruijn graph with 14 nodes: (b) Tree-1 and (c)

Tree-2.

2.2. Deadlock-Free Shortest Path Routing
This subsection explains how to find the

shortest deadlock free path between two nodes in the

GBDB. The following simple method explains how

to find a path with length m (which is the diameter of

the graph) between each two nodes.

Let us assume s and d be two nodes in

GBDB , n and m the diameter of the graph, then

T=d-s.2
m
(mod n) is a binary number(tm-1,……...t1,t0)

which defines path from s to d with length of m so

that

S=um um-1 …… u1 u0 =d

Where for ui=2 *ui +1+ti (mod n) for i =0,….m-1.

For example t=0100 for s=3 and d=10 in GBDB of

fig 2.2. therefore ,the corresponding path is

 S=3
0
 6

1
 13

 0
 12

0
 10=d

Using virtual channels, the deadlock-free

routing scheme is presented. For this purpose, each

channel needs m-[(m-1)/2] virtual channels in which

m represents the diameter of the GBDB. A unique

ordered channel number is assigned to each channel

so that in each tree all outgoing channel of a node are

greater than the incoming channel. The algorithm is

used to select virtual channels at each node to avoid a

possible deadlock. The algorithm run in node xcurr

gets three inputs xprev, xnext, s and d which are the

previous, next, source, and destination nodes.(Note

that flit headers contain this information.) Then, the

algorithm selects the next virtual channel based on its

inputs.

2.3. Routing Implementation

This section briefly explains how to

implement the proposed deterministic source routing

algorithms. Based on Theorem 2, the diameter of a

generalized de Bruijn graph has at most a logarithmic

relationship with the number of nodes. Considering

this logarithmic relationship, a simple routing

algorithm that can be implemented in switches of an

NoC with low area overhead is proposed. The packet

format of the proposed routing algorithm, which

utilizes the wormhole switching, consists of a few

flits, starting with head flit, continuing with data flits,

and ending with tail flit. The head flit is comprised of

four fields which are: source address, destination

address, tags, and flit-type. Flit-type bits determine

the head, data, and tail flits. The tag bits that are

grouped into two subfields (i.e., Tag-1 and Tag-2)

determine the exact route from a source node to a

destination node. Because our network uses source

routing algorithm, the source core generates the tag

bits which go through certain minor modification at

each intermediate node along the path to destination.

When a packet arrives at node s, there are

two possible actions that may be taken by . If the

packet is desired for the core connected to , the

switch at must deliver the packet to that core. On the

other hand, if the packet is destined for another core,

the switch at must forward the packet to one of its

neighbor switches which is the next hop in the path.

The selection of the next switch is based on the

corresponding tag bits in the tag field of the head flit.

The afore mentioned Tag-1 and Tag-2 in the

head flit are used to implement the routing algorithm

in each switch. These two tags indicate to each

intermediate node the next neighbor in the shortest

path. Each bit in the Tag-1 field determines the F- or

P-relation in a switch along the path, and each bit in

the Tag-2 field determines the label assigned to each

link in Fig.2.1. Source address, Destination address,

Tag-1, and Tag-2 fields have the same length of bits

(is the diameter of the generalized binary de Bruijn

1046

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70330

graph which for our example is [log 2 14]=4).

Therefore, the length of head flit

is(k+k+k+k+2)=4k+2 bits (the two first terms are

numbers of bits in source and destination addresses,

respectively; the third and forth terms are numbers of

bits in Tag-1 and Tag-2 and the last term shows the

two bits needed to determine the type of flits in each

packet). In other words, the length of head flit is

4*[log 2 n]+2 where n is the number of nodes in the

generalized de Bruijn graph.

When a packet is received at switch, the

following steps are carried out by the switch.

Step 1) If the destination address is , the

packet is delivered to the core connected to the

switch; otherwise, Steps 2 and 3 are performed.

Step 2) The first bit of Tag-1 is used for

selecting either P-relation or F-relation. Because

there are two P-relations and two F-relations, the

LSB bit of Tag-2 is used for selecting the specific

gender in P-relation or F-relation.

Step 3) When the next node in the path has

been determined, Tag-1 and Tag-2 are circulated one

bit to the right. Then the head flit is forwarded.

The following example elucidates the

proposed routing algorithm with more details.

Example 2: Fig.2.3 shows the GBDB (14)

for a NoC with directions and link labels which are

used to determine Tag-1 andTag-2, respectively. If

we want to send a packet from Node 0 to Node 13

through path 0 7 10 6 13 then the

head flit of this packet which is generated by core

connected to Node 0 is―0000-1101-0011-0010-00,‖

which based on Fig.2.1, ―0000‖ is the Node 0

address, ―1101‖ is the address of Node 13, 0011

isTag-1 (we have coded F-relation with 0 and P-

relation with 1),―0100‖ is Tag-2 which are link labels

along the path, and ―00‖ determines the head flit. Fig.

2.3 shows the path and head flit in deferent places

along the path for this example. When the head flit

established the path, the data and tail flits traverse

along this path using the wormhole routing without

any changes. The tail flit will close the established

path and release all channels along the path. In our

implementation, a bit attached to each channel shows

the state of the channel whether it is free or reserved.

2.4 Reliable Routing Algorithm

Implementation
 Each port in a node has a status bit, f ,

that determines the status of the R-channel

connected to that port. If this bit is ―1,‖ the R-

channel is faulty; otherwise, the link is functional. A

diagnostic circuit periodically checks the R-channel

and asserts the corresponding bit, f, in the presence of

a fault in the R -channel.

 Using the status bit (i.e.,f) and bits in

the tag fields of the head flit, each switch can detour

a faulty R-channel using another R-channel

connected to a member of its family, as shown in

Fig. 2.4. Replacing the faulty R-channel with another

R-channel in the family is a local decision that each

switch can handle it easily. Using the family

members to detour the faulty R-channel needs to add

two extra hops to the original path. As a result, two

extra bits in each tag are enough to detour a faulty R-

channel. Therefore, in the fault-tolerant switch, we

add two bits to each tag field, i.e., a tag field has

[Log2 n]+ 2 bits.

 In a node which changes the route, let

us assume that the LSB of Tag-1 and Tag-2 are a ,

and b, respectively. If an R-channel through which

the switch sends a packet is faulty\(i.e., f=1), by

expanding the LSB of Tage-1 (i.e.,a) to three

bits(a,a,a) and expanding the LSB of Tage-2 (i.e.b,)

to three bits(b,b,b), the switch can detour the packet

around the faulty R-channel using other members of

the family. After this two-bit tag expanding, the

switch connected to the faulty R-channel performs

the normal routing algorithm.

The following example elucidates the

proposed reliable routing algorithm with more

details.

Example3: In Example 2 in which a packet

traverses from Node 0 to Nodes 13, assume that

theR-channel between Nodes 7 and 10 is faulty. The

family covering R-channel from Node 7 to Node 10

consists of Nodes 7, 3, 6, and 10. Therefore, the new

path from Node 0 to Node 13 is 0 7 3 6

10 6 13.Fig. 2.5 shows the modified head flit

during this transfer.

1047

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70330

Fig 2.3 Head flit from Node 0 to Node 13 in GBDB(14)

 Fig. 2.4. Parents, siblings, and their relations

1048

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70330

 Fig. 3.5. Head flit from Node 0 to Node 13 in GBDB, when link between Nodes 7 and 10 is faulty.

4 EXPERIMENTAL RESULTS

The design was simulated using ModelSim

and was tested for functionality by giving various

stimuli.

 Fig.3.6 Data movement from node 0 to 13

1049

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70330

5 CONCLUSION

This project investigates the use of

generalized binary deBruijn graph as the network

topology in a large network-on chip. A deadlock-free

reliable routing algorithm will be presented

considering channel faults.

REFERENCE

 [1] L. Benini and G. D. Micheli, ―Networks on chips: A

new SoC paradigm,‖ IEEE Computer, vol. 35, no.1, pp. -

70–78, Jan. 2002.

[2] Deepthi chamkur .V and Vijayakumar‖Reliable

Routing & Deadlock free massive NoC Design with Fault

Tolerance based on combinatorial

application‖.International Journal of Engineering and

Advanced Technology (IJEAT) ISSN: 2249 – 8958,

Volume-1, Issue-5, June 2012 .

[3] H. P. Hofstee, ―Future microprocessors and off-chip

SOP interconnect,‖IEEE Trans. Adv. Packag., vol. 27, no.

2, pp. 301–303, Feb. 2000.

 [4] D.Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B.

Edwards, C. Ramey, M. Mattina, C. Miao, J. F. Brown III,

and A. Agarwal, ―On-chip interconnection architecture of

the tile processor,‖ IEEE Micro, vol. 27, no. 5, pp. 15–31,

Sep./Oct. 2007.

 [5] W. Dally and B. Towles, ―Route packets, not wires:

On-chip interconnection networks,‖ in Proc. IEEE Int.

Conf. Des. Autom., Jun. 2001, pp. 684–689.

[6] S. R. Vangal et al., ―An 80-tile sub-100-W TeraFLOPS

processor in 65-nm CMOS,‖ IEEE J. Solid-State Circuits,

vol. 43, no. 1, pp. 29–41, Jan. 2008

[7] S. M. Reddy, D. K. Pradhan, and J. G. Kuhl, ―Direct

graphs with minimumdiameter and maximal connectivity,‖

Sch. Eng., Oakland, Univ. Techn. Rep., Jul. 1980.

[8] H. Moussa, A. Baghdadi, and Jézéquel, ―Binary de

Bruijn on-chip network

for a flexible multiprocessor LDPC decoder,‖ in Proc. 45th

Annu. Des. Autom. Conf. (DAC), 2008, pp. 429–434.

1050

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70330

