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Abstract

This paper will focus on Fourier transform on the semidirect prod-
uct of two Lie groups to obtain some results in abstract harmonic
analysis. In fact the combining of the classical Fourier transform on
R, and on a compact Lie group permits us to define the Fourier trans-
form, and then to obtain the Plancherel formula on these groups. In
the end we will introduce some interesting new groups.
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1 Introduction.

1.1. Noncommutative Fourier analysis is a beautiful and powerful area of
pure mathematics that has connections to, theoretical physics, chemistry
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analysis, algebra, geometry, and the theory of algorithms. In mathematics,
abstract harmonic analysis is the field in which results from Fourier anal-
ysis are extended to topological groups which are not commutative. For
a long time, people have tried to construct objects in order to generalize
Fourier transform and Pontryagin,s theorem to the non abelian case. How-
ever, with the dual object not being a group, it is not possible to define
the Fourier transform and the inverse Fourier transform between G and Ĝ.
These difficulties of Fourier analysis on noncommutative groups makes the
noncommutative version of the problem very challenging. It was necessary
to find a subgroup or at least a subset of locally compact groups which were
not “pathological”, or “wild” as Kirillov calls them [13]. Unfortunatly If the
group G is no longer assumed to be abelian, it is not possible anymore to
consider the dual group Ĝ (i.e the set of all equivalence classes of unitary
irreducible representations). Abstract harmonic analysis on locally compact
groups is generally a difficult task. Still now neither the theory of quantum
groups nor the representations theory have done to reach this goal. So the
important and interesting question is: One can do abstract harmonic analy-
sis on Lie groups i.e. the Fourier transform can be defined to solve the major
problems of abstract harmonic analysis. Here are some interesting examples
of these groupse.

1.2. The linear group GL(n, R) consisting of all matrices of the form

GL(n,R) = {
(
aij
)

: aij ∈ R, 1 ≤ i ≤ n, 1 ≤ j ≤ n} (1)

The orthogonal group O(n,R)

O(n,R) = {A ∈ GL(n,R) : AA? = I and detA = 1 } (2)

1.3. The general Lorentz groupThe Lorentz group provides another in-
teresting example. Moreover, the Lorentz group O(3, 1) shows up in an
interesting way in computer vision. Denote the p×p−identity matrix by Ip,p
and define

Ip,q =

(
Ip,p 0
0 −Iq,q

)
We denote by O(p, q) the group consisting of all matrices of the form

O(p, q) = {A ∈ GL(n,R), AtIp,qA = Ip,q } (3)
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1.4. The n−dimensional real Heisenberg group H. the Galelian group
GA which is isomorphic onto the group Ho SO(3, R) semidirect product of
H by SO(3, R), i.e GA ' Ho SO(3, R). Let SL(2, R) be the 2 × 2 real
semisimple Lie group and let SL(2, C) be the 2× 2 complex semisimple Lie
group, then we get the Jacobi group GJ ' Ho SL(2, R) and the Poincare
group(Space time) ' R4 o SL(2, C).

Recently, these problems found a satisfactory solution with the papers
[6, 8, 10, 11] . The ways were introduced in those papers will be the business
of the expertise in the theory of abstract harmonic analysis, and in theoretical
physics, and that is what I am interested In this paper I will define the
Fourier transform and establishing Plancherel formula for the semidirect of
two vector groups Rn oRm (m ≤ n) and the motion group.

2 Fourier Transform and Plancherel Formula

for the Semidirect Product Lie groups.

2.1. Let L = Rn × Rm × Rm be the group with law:

(x, t, r)(y, s, q) = (x+ ρ(r)y, t+ s, r + q)

for all (x, t, r) ∈ L and (y, s, q) ∈ L. In this case the group G can be identified
with the closed subgroup Rn×{0}×ρ Rm of L and B with the subgroup Rn×
Rm × {0}of L.

Definition 2.1. For every f ∈ C∞(G), one can define a function f̃ ∈
C∞(L) as follows:

f̃(x, t, r) = f(ρ(t)x, r + t) (4)

for all (x, t, r) ∈ L. So every function ψ(x, r) on G extends uniquely as an

invariant function ψ̃(x, t, r) on L.

Remark 2.1. The function f̃ is invariant in the following sense:

f̃(ρ(s)x, t− s, r + s) = f̃(x, t, r) (5)

for any (x, t, r) ∈ L and s ∈ Rm.
Lemma 2.1. For every function F ∈ C∞(L) invariant in sense (5) and

for every u∈U , we have

u ∗ F (x, t, r) = u ∗c F (x, t, r) (6)
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for every (x, t, r) ∈ L, where ∗ signifies the convolution product on G with re-
spect the variables (x, r) and ∗csignifies the commutative convolution product
on B with respect the variables (x, t).

Proof: In fact we have

PuF (x, t, r) = u ∗ F (x, t, r) =

∫
G

F (y, s)−1(x, t, r)u(y, s)dyds

=

∫
G

F [(ρ(−s)(−y),−s)(x, t, r)]u(y, s)dyds

=

∫
G

F [ρ(−s)(x− y), t, r − s]u(y, s)dyds

=

∫
G

F [x− y, t− s, r]u(y, s)dyds = u ∗c F (x, t, r) = QuF (x, t, r) (7)

where Pu and Qu are the invariant differential operators on G and B respec-
tivel. As in [9], we will define the Fourier transform on G. Therefor let S(G)
be the Schwartz space of G which can be considered as the Schwartz space
of S(Rn×Rm), and let S ′(G) be the space of all tempered distributions on
G. The action ρ of the group Rm on Rn defines a natural action ρ of the dual
group (Rm)∗of the group Rm ((Rm)∗ ' Rm) on (Rn)∗, which is given by :

〈ρ(t)(ξ), x〉 = 〈ξ, ρ(t)(x)〉 (8)

for any ξ = (ξ1, ξ2, ..., ξn) ∈ Rn , t = (t1, t2, ..., tm) ∈ Rm and x = (x1, x2, ..., xn) ∈
Rn. Also we have, for every u ∈ S(G) and f ∈ S(G)

u ∗ f̃(x, t, r) = u ∗c f̃(x, t, r) (9)

Definition 2.1. If f ∈ S(G), one can define its Fourier transform Ff
by :

Ff (ξ, λ) =

∫
G

f(x, t) e− i (〈ξ,x〉+〈λ,t〉) dxdt (10)

for any ξ = (ξ1, ξ2, ..., ξn) ∈ Rn, x = (x1, x2, ..., xn) ∈ Rn, λ = (λ1, λ2, ..., λm) ∈
Rm and t = (t1, t2, ..., tm) ∈ Rm, where 〈ξ,x〉 = ξ1x1 + ξ2x2 + ... + ξnxn and
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〈λ,t〉 = λ1t1 + λ2t2 + ... + λmtm . It is clear that Ff ∈ S(Rn+m) and the
mapping f → Ff is isomorphism of the topological vector space S(G)
onto S(Rn+m).

Definition 2.2. If f ∈ S(G), we define the Fourier transform of its

invariant f̃ as follows

F(f̃)(ξ, λ, 0) =

∫
L×Rm

f̃(x, t, s)e− i (〈ξ,x〉+〈λ,t〉) e− i 〈µ,s〉 dxdtdsdµ (11)

where (µ,s) ∈ Rn+m and 〈µ, s〉 = µ1s1 + µ2s2 + ...+ µmsm
Corollary 2.1. For every u ∈ S(G), and f ∈ S(G), we have∫

Rm

F(
∨
u ∗ f̃)(ξ, λ, µ)dµ =

∫
Rm

F(f̃)(ξ, λ, µ)F(
∨
u)(ξ, λ)dµ

= F(f̃)(ξ, λ, 0)F(
∨
u)(ξ, λ) (12)

for any ξ = (ξ1, ξ2, ..., ξn) ∈ Rn, λ = (λ1, λ2, ..., λm) ∈ Rm and µ = (µ1, µ2, ..., µm) ∈
Rm, where

∨
u(x, t) = u(x, t)−1

Proof : By equation (9)we have

∨
u ∗ f̃(x, t, r) ==

∨
u ∗c f̃(x, t, r) (13)

Applying the Fourier transom we get∫
Rm

F(
∨
u ∗ f̃)(ξ, λ, µ)dµ = F(

∨
u ∗c f̃)(ξ, λ, 0)

F(f̃)(ξ, λ, 0)F(
∨
u)(ξ, λ) (14)

Theorem 2.1.(Plancherel’s formula). For any f ∈ L1(G)∩ L2(G),
we get ∫

G

|f(x, t)|2 dxdt =

∫
Rn+m

|Ff(ξ, λ)|2 dξdλ (15)

Proof: First, let
∨̃
f be the function defined by

∨̃
f(x, t, r) = f((ρ(t)x, r + t)−1) (16)
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then we have

f ∗
∨̃
f(0, 0, 0) =

∫
G

∨̃
f
[
(x, t)−1(0, 0, 0)

]
f(x, t)dxdt

=

∫
G

∨̃
f [ρ(−t)((−x) + (0)), 0, 0− t] f(x, t)dxdt

=

∫
G

∨̃
f [ρ(−t)(−x), 0,−t] f(x, t)dxdt

=

∫
G

∨
f [ρ(−t)(−x),−t] f(x, t)dxdt =

∫
G

f(x, t)f(x, t)dxdt

=

∫
G

|f(x, t)|2 dxdt (17)

Second by (12), we obtain

f ∗
∨̃
f(0, 0, 0)

=

∫
Rn+2m

F(f ∗
∨̃
f)(ξ, λ, µ)dξdλdµ =

∫
Rn+2m

F(f ∗c
∨̃
f)(ξ, λ, µ)dξdλdµ

=

∫
Rn+m

F(
∨̃
f)(ξ, λ, 0)F(f)(ξ, λ)dξdλ =

∫
Rn+m

F(f) (ξ, λ)F(f)(ξ, λ)dξdλ

=

∫
Rn+m

|F(f)(ξ, λ)|2 dξdλ =

∫
G

|f(x, t)|2 dxdt (18)

which is the Plancherel’s formula on G. So the Fourier transform can be
extended to an isometry of L2(G) onto L2(Rn+m).

Corollary 2.2. In equation (18), replace the second f by g, we obtain∫
G

f(x, t)g(x, t)dxdt =

∫
Rn+m

F(f)(ξ, λFg(ξ, λ)dξdλ (19)

which is the Parseval formula on G.
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3 Fourie Transform and Plancherel Formula

for the Motion Group.

3.1. Let V be the n− dimensional vectoriel group, K a compact Lie group
and ρ : K → GL(V ) a continuous linear representation from K in V .
Let G = V oρ K be the motion group, which is the semi-direct product of
the group V and K. We supply V byK−invariant scalar product which is
denoted by (p). Let S(V ) be the Schwartz space of V . We denote S(G)
the complemented of the space S(V ) ⊗C∞(K) tensor product of S(V ) and
C∞(K). The topology of the space S(G) which is defined by the family of
semi-normas

∂lα,β(f) = sup
|α≤p|,

sup
(v,y)∈V×K

(1 + |v|2)β
∥∥Qα

vD
lf(v, y)

∥∥
2

(20)

turns S(G) a Frechet space wich can be called the Schwartz space of G,
where| | signifies the norm associated to (p), see [5], lemma 2 and proposition
1. and 11, chap 45]. Let L = V ×K ×K be the group with law:

(v, x, y)(w, s, t) = (v + ρ(y)w, xs, yt) (21)

Let D(V ×K ×K ) and C∞(V ×K ×K) be C∞ with compact support
and the space of C∞- functions of the group L.In the same manner we define
the Schwartz space S(V ×K ×K)

Definition 3.1.. For every function f belongs to L1(V × K × K), one
can define the Fourier transform of f by the following manner

Ff(ξ, γ) =

∫
V

∫
K

f(v, x)e− i〈 ξ, v〉 γ(x−1)dvdx (22)

for all ξ ∈ V ' V ∗and for all γ ∈ K̂. In the following we will use the Lie
group L to prove by another way the plancherel formula.

Definition 3.2. For any f ∈ S(G), we can define an function f̃ ∈
S(V ×K ×K) as follows

f̃(v, x, y) = f(x.v.xy) (23)
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note here that the function f̃ is invariant in the following sense

f̃(tv, xt−1, ty) = f̃(v, x, y) (24)

We will denote by SK(V ×K ×K), SK(V ×K ×K), SK(V ×K ×K)
Definition 3.3.. for any two function f ∈ S(G) and F ∈ S(V ×K×K),

we can define a convolution product of f and F on G

f ∗ F (v, x, y) =

∫
G

F ((w, z)−1(v, x, y)f(w, z)dwdz

=

∫
G

F (z−1(v − w), x, z−1y)f(w, z)dwdz (25)

This leads to obtain
Lemma 3.1. If F is invarant in sense (24), then we get

f ∗ F (v, x, y) = f ∗c F (v, x, y) (26)

for every (v, x, y) ∈ L, where ∗ signifies the convolution product on G with
respect the variables (v, y) and ∗csignifies the convolution product on B with
respect the variables (v, x)

Proof: Let f ∈ S(G) and F ∈ SK(V ×K ×K), then we have

f ∗ F (v, x, y) =

∫
G

F ((w, z)−1(v, x, y)f(w, z)dwdz

=

∫
G

F (z−1(v − w), x, z−1y)f(w, z)dwdz

=

∫
B

F ((v − w), xz−1, y)f(w, z)dwdz (27)

So the lemma is proved.

Definition 3.4. If f ∈ S(G), one defines the Fourier transform of its

invariant f̃ as follows

F f̃(ξ, γ, 1) =

∫
V

∫
K

[
∑
δ∈K̂

dδ

∫
K

tr(=f̃(v, x, y)δ(y−1)dy)]γ(x−1)dxe− i〈 ξ, v〉dv

(28)
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where = is the partial Fourier transform on the compact Lie group.
Theorem 3.1. For any two functions g and f belong to G , the we have

F(g ∗ f̃)(ξ, γ, 1) = F(g)(ξ, γ)F(f̃)(ξ, γ, 1) (29)

Proof: By lemma 3.1. we have if f and g two functions from S(G)

F(g ∗ f̃)(ξ, γ, 1)

=

∫
V

∫
K

∑
δ∈K̂

dδtr[(g ∗ f̃)(v, x, δ)]γ(x−1)dxe− i〈 ξ, v〉dv (30)

=

∫
V

∫
K

∑
δ∈K̂

dδtr[

∫
K

((g ∗ f̃)(v, x, y))δ(y−1)dy]γ(x−1)dxe− i〈 ξ, v〉dv (31)

=

∫
V

∫
K

∑
δ∈K̂

dδtr[

∫
K

((g ∗c f̃)(v, x, y))δ(y−1)dy]γ(x−1)dxe− i〈 ξ, v〉dv(32)

Chinging variables v − u = w, xt−1 = z, this implies

F(g ∗ f̃)(ξ, γ, 1)

=

∫
V

∫
K

∫
V

∫
K

f̃(v − u, xt−1, 1)]g(u, t)dudtγ(x−1)dxe− i〈 ξ, v〉dv

=

∫
V

∫
K

∫
V

∫
K

f̃(w, z, 1)]g(u, t)γ(t−1z−1)dxe− i〈 ξ, w+u〉dudtdwdzvdx

=

∫
V

∫
K

∫
V

∫
K

f̃(w, z, 1)]g(u, t)γ(z−1)γ(t−1)dzdte− i〈 ξ, w〉e− i〈 ξ, u〉dudw

= F f̃(ξ, γ, 1)Fg(ξ, γ) (33)

Theorem 3.2.(Plancheral’s formula) For any f ∈ L1(G)∩ L2(G),we
get

f ∗
∨
f(0, 1) =

∫
G

|f(v, x)|2 dvdx

=
∑
γ∈K̂

dγ

∫
V

‖Ff(ξ, γ)‖22 dξ (34)
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Proof: First, let
∨̃
f be the function defined by

∨̃
f(v, x, y) = f((xv, xy)−1) (35)

then we have

f ∗
∨̃
f(0, 1, 1) =

∫
V

∑
γ∈K̂

∑
δ∈K̂

dγdδtr(F(f ∗
∨̃
f)(ξ, γ, δ))dξ

=

∫
V

∑
γ∈K̂

dγtr{[
∑
δ∈K̂

dδtr[=F
∨̃
f(ξ, γ, δ)]Ff(ξ, γ))}dξ

=
∑
γ∈K̂

dγ

∫
V

tr[F
∨̃
f(ξ, γ, 1)Ff(ξ, γ)]dξ =

∑
γ∈K̂

dγ

∫
V

tr[Ff(ξ, γt)Ff(ξ, γ)]dξ

=
∑
γ∈K̂

dγ

∫
V

tr[(Ff(ξ, γ))∗Ff(ξ, γ)]dξ

=
∑
γ∈K̂

dγ

∫
V

‖Ff(ξ, γ)‖22 dξ =

∫
G

|f(v, x)|2 dvdx (36)

4 New Groups.

In this section I will introduce new group whose names are not known for
Mathematicians and Physicians. But they will be very useful.

4.1. The first new group is: R?
− = {x ∈ R; x 〈0 } , with law

x · y = −x .y (37)

for all x ∈ R?
− and y ∈ R?

−, where · signifies the product in R?
− and . signifies

the ordinary product of two real numbers.
Theorem 4.1. (R?

−, ·) with the law · becomes a commutative group
isomorphic with the multiplicative group (R?

+, .) and with the real vector
group (R, +).

Proof: the identity element is −1 because

(−1) · x = −(−1) · x = x, and

x · (−1) = −x .(−1) (38)
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If (x ,y) ∈ R?
− × R?

−, such that x · y = −1, then we get

x · y = −x .y = −1 (39)

From this equation we obtain y = x−1 = 1
x
∈ R?

−, which is the inverse of
x. Now let x, y, and z be three elements belong to R?

−, then we have

(x · y) · z = −(x · y).z = −(−x .y).z = x .y.z (40)

and
x · (y · z) = x · (−y.z) = −x.(−y.z) = x.y.z (41)

So the law is associative and clearly commutative.
Let ψ : R?

− → R?
+ the mapping defined by

ψ(x) = −x (42)

then we get

ψ(x · y) = −(x · y)

= x.y = (−x).(−y) = ψ(x).ψ(y) (43)

That means ψ is homomorphism from R?
− to R?

+ and evidently is one-to-one
and surjective, and so ψ is a group isomorphism from R?

− onto R?
+. Then

R? = R?
− ∪ R?

+ = R?
+ ∪ R?

+

Definition 4.1. Let f belongs to D(R?
−), on can define the Fourier

transform of by

Ff(λ) =

∫
R?
−

f(y)(−y)−iλ
dy

y
(44)

Corollary 4.1. For any f ∈ L1(R?
−)∩ L2(R?

−), we get∫
R?
−

|f(x)|2 dx
x

=

∫
R

|Ff(λ)|2 dλ (45)

4.2. The second group is: GL−(n,R): Let GL(n,R) be the general
linear group consisting of all matrices of the form

GL(n,R) = {X =
(
aij
)
, aij ∈ R, 1〈i, j 〈n, and detA 6= 0} (46)
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and let be the subset GL−(n,R) of GL(n,R), which is defined as

GL−(n,R) = {A ∈ GL(n,R), detA 〈0 } (47)

Definition 4.2. We supply GL−(n,R) by the law noted ·following struc-
ture

A •B = I−A.B (48)

for any A ∈ GL−(n,R) and B ∈ GL−(n,R), where · signifies the multiplica-
tion in GL−(n,R) and . signifies the usual multiplication of two matrix and
I− is the the following matrix defined as

(aij) (49)

where a11 = −1 and aii = 1 for any 1〈i ≤ n, and aij = 0, i 6= j.
Theorem: (i) (GL−(n,R), •) is group, and is isomorphic onto the sub-

group GL+(n,R)
Proof: It sufficies to consider the mapping

ϕ(A) = I−A, ∀A ∈ GL−(n,R) (50)

4.3. The third new group is: O−(n,R): LetO(n,R) be the orthogonal
Lie group consisting of all matrices of the form

O(n,R) = {A ∈ GL(n,R), AA∗ = I } (51)

where I is the identity matrix. Let O−(n,R) be the subset of O(n,R) that
is defined by

O−(n,R) = {A ∈ O(n,R), detA 〈0 } (52)

It is easy to show that (O−(n,R), •) becomes group isomorphic onto SO(n,R.
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