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Abstract: This paper analyses the stability characteristics of 

a rigid rotor mounted in flexibly supported hydrodynamic oil 

journal bearings considering pressure depended viscosity 

including the effect of elastic distortion on the surface of 

bearing liner. This theoretical analysis is intended to show how 

the effect of elastic distortion along with the flexible support on 

the journal bearing performance considering pressure 

depended viscosity can be calculated for three-dimensional 

bearing geometries. The deformation equations for bearing 

surface will be solved simultaneously with hydrodynamic 

equations considering constant viscosity. A Non-linear time 

transient method is used to simulate the journal and bearing 

centre trajectory and thereby to estimate the stability 

parameter. In this analysis forth order Runge-Kutta method is 

used to determine the locus of the journal and the bearing 

centre for the various operating conditions. The stability of the 

system is determined from the combined stability effect in 

journal and bearing centre. It has been found that stability 

decreases with increase of of the elasticity parameter of the 

bearing.  

 

Keyward - Journal bearing, surface deformation, variable 

viscosity, eccentricity ratio, Reynolds equation 
 

 

I. INTRODUCTION 
 

Journal bearings are widely used in rotating machineries 

to support large loads at mean speed of rotation. Regardless 

of significant advancement in lubrication technology, these 

bearings fail due to metal to metal contact when they operate 

below certain minimum speed especially during starting and 

stopping operations. In order to save cost of replacing the 

bearing, these bearings are provided with flexible liner. But 

the deformation of liner, affects the performance 

characteristics of the bearing particularly at high values of 

eccentricity ratio. 

Many investigators notably  O’Donoghue et al. [10], 

Brighton et al. [11] and Majumder et al. [9], Jain et al. [ 13 ], 

Chandrawat and Sinhasan  [ 5 ], Oh and Huebner [19] solved 

the journal bearing problem considering the effect of elastic 

distortion of the bearing liner. O’Donoghue et al. [10 ] dealt 

the analysis with the infinitely long bearing approximation. 

Brighton et al.[11] described the methods of solution for 

finite journal bearing considering the effect of elastic 

distortions. Majumder et al. [9] used the numerical methods 

to determine the effects of elastic 

distortion in the bearing liner on bearing performance. 

Majumder [9] had done the stability analysis also by 

linearised method. The displacement equations thus derived 

were compared with those of O’Donoghue et al. [10] for two 

dimensional elasticity problem with axial displacements 

reduced to zero. The displacement equations and form of 

film pressure tallied completely with Mazumder et al. [9] 

and stability performance analysis is done considering liner 

deformation through parametric study of the various 

variables like eccentricity ratio, slenderness ratio, Poisson 

ratio, liner thickness to radius ratio with variation in pressure 

depended viscosity. 
 

 
Fig. 1: shows the schematic diagram of the flexibly supported oil journal 

bearing with flexible liner: 

 

II. BASIC THEORY 
 

Using the normal assumptions in the theory of 

hydrodynamic lubrication, modified Reynolds equation for 

dynamic conditions with fluid in rotating coordinate systems 

derived from Navier-Stokes equations and continuity 

equation in the bearing clearance of an oil-lubricated bearing 

as follows: 
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Where h is the oil film thickness, p is the oil film pressure, 

 is the oil viscosity,  is the angular velocity of journal and 

R is the journal radius. 
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The arrangement of journal bearing system with bearing 

liner is shown in a schematic diagram (figure 1) above.  

Equation (1) when non-dimensionalised with the following 

substitutions,  
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The following modified Reynolds equation considering 

variable viscosity is obtained in non-dimensional form: 
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Boundary conditions for equation (1) are as follows  

1. The pressure at the ends of the bearing is assumed to be 

zero (ambient):   01, 


p  

2. The pressure distribution is symmetrical about the mid-

plane of the bearing:   00, 
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Where 

2 is the angular coordinate at which the film 

cavitates. 

The oil fluid film thickness, h , in the case of flexible bearing 

can be written as,    

  cosech                                                             (3)                          

where  is the deformation of the bearing surface and it is a 

function of and z . 

Therefore, 
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Before finding solution to equation (1) satisfying the 

appropriate boundary conditions, the elastic deformation 


0

is obtained by a method similar to that of Majumder et al. [9] 

and Brighton et al. [11]. In present calculation  

the three displacement components vu, & w  in ,r & z

directions are solved simultaneously satisfying the boundary 

conditions with an approximate method, as Brighton et al. 

[11], to evaluate the displacements. 

The pressure distribution in the bearing clearance of the rigid 

bearing is first calculated by solving two dimensional steady 

state Reynold’s equation. The film pressure is then expressed 

in double Fourier series of the form:    
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Where


l indicates that the first term of the series is halved.  

n,mp  and nm,  as follows, 
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These displacements are substituted in the stress-strain 

relationships using Lame’s constants. The six components of 

stresses are then used in the equations of equilibrium to 

obtain the following three displacement equations, 

The first term of the right-hand side of equation (5) is
0,0

2

1
p . 

Using the end condition of the bearing (i,e 0p at 2Lz ) we 

can obtain 
00 ,p . This term does not contribute any 

deformation at 2Lz  . Its effect for the other values of z is 

included in the total deformation. The boundary conditions 

of the inner radius are  
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                                          (9) 

After non-dimensionalisation, the equation (6), (7) and (8) 

becomes  
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The outer surface of the bearing is rigidly enclosed by the 

housing, preventing any displacement of the outer surface. 

The ends of the bearing are prevented from expanding 

axially, but are free to move circumferentially or radially.   
 

The displacement components in ,r and z directions are 

found from the pressure distribution, which has been 

expressed in a Fourier series. It is apparent that the 

displacements will also be harmonic functions. 

These displacements were substituted in the stress-strain 

relationships using Lame's constants. The six components of 

stresses were then used in the equations of equilibrium to 

obtain the following three displacement equations. 
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The equations (13), (14) and (15) expressed first in finite 

difference form solving the displacement equations with the 

boundary conditions (16-19) the values of the distortion 

coefficient 
n,md were obtained and  expressed as,   
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Considering the bearing clearance is very small in compare 

to the diameter of the journal, the total radial deformation 
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After non-dimensionalisation, the equation (21) becomes  
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0,0p from equation (12) the radial deformation in the 

inner bearing surface 
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at any point ),(
_

z was computed. 

 
 

III. METHOD OF ANALYSIS 
 

The modified film pressure p  was first obtained from 

equation (2) in finite difference form assuming a constant 

film shape and using Gauss-Seidel method with successive 

over relaxation scheme. The convergence criterion adopted 

for pressure is    
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Then this pressure distribution was expressed as a double 

Fourier series as given by equation (5). The deformation 

equation (22) was then calculated for a given F  using 

distortion coefficients from equation (20). The film thickness 

equation was then modified using equation (4). The process 

was repeated until a compatible film shape and pressure 

distribution was determined.  
 

A.   Fluid film forces:  At any point on the journal the film 

pressure is p and the film force is zddRp  , where zddR 

is any small segment at an angle   with the line of centres. 

This will have components  coszddRp  in the direction 

along the line of centres and  sinzddRp  in the direction 

normal to the line of centres.  
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the non-dimensional form is given by,  
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B. Steady state load   
 

From the film forces in r and   directions, neglecting the 

time dependent term in Reynolds equation, the resultant film 

force which is balanced by the load applied to the shaft can 

be calculated and the angle between load 0
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W  and the line of 

centres (i,e attitude angle 
0 ) are determined by 
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where rF


 and 



F are the dimensionless steady state 

hydrodynamic forces in r and   directions respectively.   

Since the film pressure has been obtained numerically for all 

the mesh points, integrations in equations (25) and (26) can 
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be easily performed numerically by using Simpson’s 1/ 3 rd. 

rule to get rF


and 



F .  The steady state load )( 0



W  and the 

attitude angle )( 0  are then calculated by using equations 

(27) and (28). 
 

C. Equation of Motion: 

 

The equation of motion for a rigid rotor supported on four 

identical flexibly supported bearings are given by, 

 
Fig. 2: Coordinate system of hydrodynamic fluid film forces in 

circumferential & radial direction 
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The relation between rotor & bearing motion are given 

by, 
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The above two equations are substituted in equations of 
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where,  

  CosFSinF
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
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








 

SinA 1
,  CosA 2

,   CosA .3  ,   SinA .4   



_

bXG  



_

bYH  

GCE   

HDF   
 

D. Solution scheme: 
 

For stability analysis, a non-linear time transient analysis is 

carried out using the equations of motion [equations (29) to 

(32)] to compute a new set of 
bb YX ,,,   and their 

derivatives for the next time step for a given set of ,DL

steady state eccentricity ratio ,0 deformation factor ,F mass 

parameter
_

M .The fourth order Runge-Kutta method is used 

for solving the equations of motion. The hydrodynamic 

forces are computed every time step by solving the partial 

differential equation for pressure satisfying the boundary 

conditions. 
 

E. Stability Analysis 

 

To study the effect of bearing surface deformation on journal 

centre trajectory of flexibly supported bearings a set of 

trajectories of journal and bearing centre has been studied 

and it is possible to construct the trajectories for numbers of 

complete revolution of the journal the plots shows the 

stability of the journal when the trajectory of journal and 

bearing centre ends in a limit cycle. Critical mass parameter 

for a particular eccentricity ratio, slenderness ratio and 

deformation factor is found when the trajectories end with 

limit cycle (Fig. 10 & Fig. 11) or it changes its trend from 

stable to unstable. 

 

IV. RESULTS AND DISCUSSION 
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A  Effect of Eccentricity ratio   :  

Figure.3 shows that the critical mass parameter of journal 

bearings as a function of deformation factor  F  for 

4.0,3.0,0.1  RHDL  when eccentricity ratio  0  is 

considered as a parameter. From the figure it is found that 

when other parameters remain same as eccentricity ratio 

increases the critical mass parameter increases. Further, for 

the eccentricity ratio beyond 0.6 the family of the curves 

shows drooping trend which becomes more significant up to

4.0F . For the eccentricity ratio 6.00   the characteristics are 

more or less horizontal meaning that the mass parameter
_

M  

remains unaffected with a change in F . The stability 

threshold falls rapidly with F at higher eccentricity ratio. 

 

 
 

.B  Effect of Poisson’s ratio   : 

Figure.4 is the plot of dimensionless critical mass parameter 

of journal bearing as a function of deformation factor  F  for 

6.0,3.0,0.1 0  RHDL  when Poisson’s ratio    is 

considered as a parameter. A scrutiny of the figure reveals 

that as Poisson’s ratio increases, the dimensionless critical 

mass parameter increases. Further, the family of the curves 

shows declining trend i.e., critical mass parameter decreases 

with increase in deformation factor. The decreasing trend of 

the curve is very slow. 

 

 
 

 

C.  Effect of slenderness ratio  DL : 

Effect of slenderness ratio DL  on the critical mass 

parameter of the bearing can be studied from figure 5. Here, 

dimensionless critical mass parameter of journal bearings is 

shown as a function of deformation factor  F for 

4.0,3.0,6.00   RH . It is found that when other factors 

remain unaltered, an increase in DL decreases the critical 

mass parameter.   

 

 
 

D.  Effect of liner thickness to journal radius ratio  RH : 

In figure.6 the dimensionless critical mass parameter of 

journal bearings is shown as a function of deformation factor

 F  for 6.0,4.0,0.1 0  DL , liner thickness to journal 

radius ratio  RH  is considered as a parameter. It is 

observed from the figure that as  RH  increases the 

dimensionless critical mass parameter decreases.  

 

 
  

E.  Effect of support  damping co-efficient  bb : 

Effect of damping co-efficient (bb) on dimensionless critical 

mass parameter of the bearing can be studied from figure 7. 

Here, dimensionless critical mass parameter of journal 

bearings is shown as a function of deformation factor  F  
for

4.0,3.0,6.00   RH . It is found that when other factors 

remain unaltered, an increase in bb increases the critical 

mass parameter.  
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F.  Effect of mass ratio  m  : 

 

Figure.8 is the plot of dimensionless critical mass parameter 

of journal bearing as a function of deformation factor  F  for 

6.0,3.0,0.1 0  RHDL  when mass ratio is considered as 

a parameter. A scrutiny of the figure reveals that as mass 

ratio increases, the dimensionless critical mass parameter 

decreases.  

 

 
 

G.  Effect of support stiffness co-efficient  kb : 

In figure.9 the dimensionless critical mass parameter of 

journal bearings is shown as a function of deformation factor

 F  for 6.0,4.0,0.1 0  DL , stiffness co-efficient is 

considered as a parameter. It is observed from the figure that 

as kb increases the dimensionless critical mass parameter 

increases.  

 

 
 

V. CONCLUTION 

 

Numerical methods are used to determine the effects of 

elastic distortions in the bearing liner on bearing stability of 

finite journal bearing:  
 

1. The stability decreases as the bearing liner is made 

more flexible for high eccentricity ratios (i.e., 
0  > 

0.8). For 
0  < 0.5, the flexibility of the bearing 

liner had little or no effect on stability.  

2. Bearing is highly stable when DL is small but 

drops as DL increases from 0.5 to 2.0. This 

stability drops as deformation factor increases. 

3. The hydrodynamic pressure and hence the stability 

is reduced as the bearing liner becomes more 

flexible, especially at eccentricities greater than 

0.8. 

4. As the Poisson ratio increases the stability 

increases but drop sharply when bearing liner is 

made more flexible.  

5. As the liner thickness to radius ratio increases the 

stability decreases but drop when bearing liner is 

made more flexible 

 

NOMENCLATURE 

 

ira   
Inner radius of the bearing liner  [ m  ] 

0rb  
Outer radius of the bearing liner [ m  ] 

c  Radial clearance [ m  ] 

R  Journal radius [ m ] 

D  Journal diameter [ m  ] 

n,md  Distortion coefficient of n,m harmonic 

nm,  Axial and circumferential harmonics             

e  Eccentricity [ m ] 

0e  Steady state eccentricity [ m ] 

E  Young’s modulus [ 
2m/N ] 

F  Elasticity parameter or deformation factor,   

Ec

R

3

3

0 


 

SF  
Shear force on journal surface [ N ] 

rF


 
Nondimensional fluid film force along the line of 
centers 
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Fig.8:Variation of critical mass parameter with 
deformation factor for various mass ratio
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Fig.9:Variation of critical mass parameter with 
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



F  
Nondimensional fluid film force perpendicular the 

line of centres 

00 



F,F r  
Non-dimensional steady state fluid film forces  

h  Oil film thickness [ m ] 

0h  Steady state oil film thickness [ m ] 



h  

Non-dimensional oil film thickness 

H  Thickness of bearing liner  [ m ] 

L  Length of bearing  [ m ] 

p  Oil film pressure [ Pa ] 

0p           Steady state film pressure [ Pa ] 

_

p  

 
Dimensionless oil pressure 

Q  
End flow of oil [ s/m3

] 



Q  
 

Nondimensional End flow 



w,v,u  

Components of fluid velocity in the x, y, and z 

direction, respectively. [ s/m ] 

U  Shaft peripheral speed  [ s/m ] 

0W             Steady state load  [ N ] 

0



W  
 
Dimensionless steady state load 

z,y,x  Circumferential, radial and axial coordinates 



z,y,  

 
Dimensionless coordinates in circumferential, radial 

and axial directions 

0  
Viscosity at inlet condition [ Pa  s] 

_

  
Non-dimensional viscosity of oil 

  
Density [ 

3m/kg ] 

  Poisson’s ratio 

          Eccentricity ratio  

0       
Steady state eccentricity ratio  

  Attitude angle [ rad ] 

0  Steady state attitude angle [ rad ] 

1  Angular coordinates at which the fluid film 
commences [ rad ] 

2  Angular coordinates at which the fluid film cavitates 

[ rad ] 

  Angular velocity of journal [ rad / s] 

 
Whirl ratio. [ p  ]                                                                  

        
Deformation of bearing surface.  [ m  ]            

0        Steady state deformation of bearing surface.  [ m  ]            

c 


 
Non-dimensional deformation of bearing surface 

,       

bX  

bY  

rX  

rY  

rM  

Lame’s constants 
 

Coordinate of bearing centre in x-direction 

 
Coordinate of bearing centre in y-direction 

Coordinate of rotor centre in x-direction 

 
 

Coordinate of rotor centre in y-direction 

Mass of rotor or journal 

bM  

r

b

M

M
m 

                         

O

r

W

cM
M

2_ .. 


 

2

2

0

c

R
B


  

kbK 
_

 

bbB 
_

 

Mass of bearing 

Mass ratio 

Critical Mass Parameter 

 

Viscosity Parameter 
 

Bearing support stiffness coefficient 

Bearing support damping coefficient 
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