
NQMSort: A Fast and Efficient Way of Sorting
Mr. Sanjay Chandrakant Khubchandani

School of Management

MIT-World Peace University

Pune, India

Abstract— We want to rearrange them in ascending or

descending order, if we have said n items in a list. Different

Sorting algorithms can be used to accomplish the task, such as

Merge Sort, Quicksort, Bubble Sort, Insertion Sort, Selection

Sort. But any Sorting algorithm either works in quadratic time

or only works for shorter array sizes. A modern Sorting method

called the NQMSort Algorithm is introduced here. NQMSort is a

divide-and-conquer algorithm which aims to overcome the

complexity of time and space that other Sorting techniques are

facing. Keywords-component; Sort; ascending; descending;

array;

Keywords—sort, quicksort, merge sort, sorting

I. INTRODUCTION

Sorting algorithms are basically used by search engines. If

you search online for something or any key words, the input

information is provided and presented to you Sorted by the

web page's significance and index. BubbleSort, SelectionSort

and InsertionSort, all of them have an O(N2) time complexity,

restricting their utility to a limited number of elements not

more than a few thousand data points in a set.

The quadratic time complexity of current algorithms like

BubbleSort, SelectionSort and InsertionSort limits their

efficiency as array elements increase i.e. array length.

In this paper, we present NQMSort that is capable of

rearranging list elements in ascending or descending order.

The NQMSort functions as an algorithm for dividing and

conquering. In 3 division ratio, it divides the given set into

three parts.

Our main contribution is the implementation of NQMSort,

an efficient algorithm can Sort a list of array elements with

MergeSort efficiency and rapid Sorting time.

Several current Sorting algorithms are listed in the next

section: BubbleSort, InsertionSort, and SelectionSort.

Section 3 provides an explanation of our algorithm for the

NQM Type. Section 4 deals with conceptual analysis and

explanation. Section 5 summarizes and concludes our

analysis.

II. EXISTING SORTING ALGORITHMS

A. Selection Sort

SelectionSort [1] works as follows: at each iteration of

Sorting, we define two areas, sorted area (no item from the

beginning) and un Sorted area. We "pick" from the unsorted

region one of the smallest elements and place it in the Sorted

area. In each iteration, the number of array elements in the

Sorted region will increment by 1. Repeat on the rest of the

un Sorted area until it is complete. This method is called

SelectionSort because the smallest element in the remaining

elements is constantly "selected" to work.

B. Insertion Sort

We sometimes use InsertionSort [2] to Sort bridge hands:

We define two areas, sorted area (one data point from the

beginning being the smallest or the lowest) and un Sorted

area at each iteration. We take from the un Sorted field one

data point and "drop" it into the Sorted area. In each iteration,

the elements in the Sorted area will increment by 1. Repeat

this without the 1st data point on the rest of the unsorted field.

Astrachan’s work [3] of Sorting strings in Java showed that

the BubbleSort is about five times slower than the

InsertionSort and forty percent slower than the SelectionSort,

which shows that InsertionSort is the fastest of the 3 Sorting

algorithms.

C. Bubble Sort

BubbleSort algorithm works as follows: keep going

through the list, interchanging the adjacent element, if the list

is out of order; when zero interchanges are required on some

pass of list, the list is Sorted.

In BubbleSort, InsertionSort and SelectionSort, the

O(N2) time complexity limits the performance when N gets

very big.

D. Merge Sort

MergeSort is an efficient, widely used, Sorting algorithm

that compares elements in software engineering. Some use

produces a steady type, which means that the information

and yield specification for comparable components is the

equivalent. MergeSort is a calculation of Divide-and-

Conquer created in 1945 by John von Neumann. In a study

by Goldstine and von Neumann, a thorough description and

analysis of MergeSort appeared as early as 1948. [4]

E. Quicksort

Quicksort is an efficient Sorting algorithm that fills in as

a deliberate technique to bring together the components of a

random-access file or an array. This tends to be around a few

times faster at the stage when well actualized than other

Sorting algorithms, Sorting Merge and heapsort. [5]

Quicksort is a Correlation Sort, which means that it can

Sort things of any kind that are distinguished by a ‘less than'

connection. Quicksort Productive Implementations are not a

Stable, meaning that there is no protection of the general

requirement for equivalent Sorting things. Quicksort will

operate on an Array, which needs little extra memory to

perform the Sorting. It is exactly the same as Selection Sort,

except that it typically does not select Worst-case Partition.

III. NQM SORT

NQMSort uses a divide-and-conquer approach:

1) Divide the array into three parts with subject to two pivots.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICSITS - 2020 Conference Proceedings

Volume 8, Issue 05

Special Issue - 2020

1

www.ijert.org

2) For each part,

• Pick a pivot element, say P.

• Re-arrange the elements into 3 sub-parts, Those less

than or equal to <= P (the left-part); P (the only element in

the middle-part);

Those greater than or equal to >= P (the right-part)

• Repeat the process for all sub-parts

3) Merge the three sub-arrays.

Pseudo-Code –

Array as the Input: A [1.N], indices p, q, r (p ≤ q < r).

A [p…r] is the array to be Sorted.

Further implementation can be found in the box on side of

the paper.

IV. EXPLANATION

The NQM Sorting Algorithm follows a divide and conquer

approach where after division in 3 parts, every part is then

Sorted into itself.

The NQM Sorting Algorithm follows a divide and conquer

approach where after division in 3 parts, every part is then

Sorted into itself. All 3 parts of the array are then merged into

one final Sorted array using pivot and merging techniques.

CONCLUSIONS

The NQMSort Algorithm tries to encapsulate all the best

features of Sorting algorithms into one. The theoretical

implementation of the algorithm and pseudo code describes the

flow and functionality of the algorithm. The time complexity of

this algorithm may be better than Merge Sort algorithm and the

Space Complexity of this algorithm may be better than

Quicksort Algorithm for larger arrays.The Theoretical Analysis

and Empirical Analysis of this algorithm is required to have

further understanding and detailed comparison with other

Sorting arrays.

REFERENCES
[1] Sedgewick, Algorithms in C++, pp.96‐99, 102, ISBN 0‐201-

51059‐6, Addison-Wesley , 1992

[2] Sedgewick, Algorithms in C++, pp.98‐101, ISBN 0‐201‐

51059-6 ,Addison‐Wesley , 1992

[3] Owen Astrachan, BubbleSort: An Archaeological Algorithmic
Analysis,SIGCSE 2003,

http://www.cs.duke.edu/~ola/papers/bubble.pdf

[4] Katajainen, Jyrki, Träff, Jesper Larsson (1997). "A meticulous-
analysis of MergeSort programs". pp. 217–228. CiteSeerX

10.1.1.86.3154.
[5] Skiena, Steven-S. (2008). The Algorithm Design Manual. Springer.

p. 129. ISBN 978 1 84800 069 8.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICSITS - 2020 Conference Proceedings

Volume 8, Issue 05

Special Issue - 2020

2

www.ijert.org

