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Abstract—To produce details and component of tearing and 

cracking is complicated. The detail and component for every 

object would also produce certain type of tearing line. 

Meanwhile using traditional finite element method will need 

such a complex computation caused by updated value for every 

crack made. Such model needed to predict magnitude and angle 

of tearing or cracking depend on the variables value.  

To generate tearing model that satisfy the requirements and 

produce tearing line with small computational cost, numerical 

scheme will be needed. This research will be focused on thin 

plates especially paper. Modification of finite element method 

will be proposed. Every step of process will be done adaptively 

depending on the existing results each step.  

Experiments generate a model which stiffness matrix 

convergent for each time function and each variation of elastic 

variables such as Young modulus and Poisson’s ratio. 

Experiments shows that computation time for tearing model 

without inclusion component works on average 21.17 seconds 

faster than with inclusion with average 30.57 seconds. 

Computation time for tearing model with circular inclusion 

work faster dan linear inclusion. 

Keywords— Graphic, Stiffness Matrix, Tearing Propagation, 

FEM Modification 

 

I.  INTRODUCTION 
Dynamic tearing for various objects has been developed 

for years in computer graphic field. However, to produce 
details and tearing variation for various objects still considered 
challenging [1]. Meanwhile using traditional finite element 
method for tearing and cracking will need a complex 
computation. Therefore, this research will proposed on 
simulation technique which focused on applying proper 
method and components values with modification of finite 
element method so that the model produce tearing line, 
magnitude, and angle precisely [2]. 

Research by Terzopoulos and Fleischer represent 
viscoelastic and plastic deformation model. This method 
applied with three fundamental metric tensors to represent 
changes in energy function which calculate the deformation 
on face and volume of object. The behaviors are 
viscoelasticity, plasticity, and fracture. The deformation will 
be done locally based on viscous and plastic processes within 
the models. The simple fracture mechanic process depends on 
yield and creep relationship that be affected by force and/or 
instantaneous deformation. This fracture introduces local 
discontinuities as a function of the instantaneous deformation 
through the model [3]. 

When objects deform by forces, thin sheets of material 
such as paper tend to crumple. A crumple defines as 
distinctive patterns characterized by networks of sharp folds 
and cone singularities. These crumples form due to interaction 
between low bending resistance and high in-plane stiffness. 
Framework by Narain allows efficient modeling sharp features 
and avoids bend locking that would be otherwise caused by 
stiff in-plane behavior. Shape diffusion caused by remeshing 
prevented by using an explicit plastic embedding space [4]. 

In particular case, fractures caused by tearing are different 
form fractures caused by in-plane motions. Stress relaxation 
method applied to avoid shattering artifacts after generating 
each fracture cut. To adaptively provide some fracture details, 
a fracture-aware remeshing scheme based on constrained 
Delaunay triangulation formulated. The method will provide 
efficient and realistic multi-layered fractures of thin plates [5]. 

Displacement-based approximation caused by 
discontinuities with the finite element method is chalenging 
due to the need for update the mesh to match the 
discontinuities of the geometry. Some research provide new 
technique to model cracks and crack growth without 
remeshing [6]. 

Deformation technique without remeshing applied by 
using the unity properties of finite element method. This 
concept will allows local enrichment elements to be combined 
into finite element approach. This approach aplied in such a 
way that degree of freedom from enrichment elements connect 
with the mesh. Enrichment elements on tearing and cracking 
will be focused on crack tip area and calculate discontinuities 
function to represent displacement along the tearing lines [7]. 

To model strong discontinuities which represent tearing 
area, two types of enrichment elements needed. The first 
element is Heaviside elements which represent discontinuities 
along tearing line. The second element is crack tip element 
which considered as determinant of the next crack. Tearing 
line represented by mesh independently by enrichment 
element so that the geometry of tearing could be updated 
without adding or rebuild the mesh in the domain. Material 
interface represent by enrichment element will be processed 
using absolute value enrichment which gives the shortest 
signed distance from a given point to the interface between 
two materials [8].  

To produce accurate and efficient computational stages, 
such numerical schemes which satisfy the requirements will 
be needed. Based on previous research, we proposed tearing 
models with specific value of variables so that the 
computational process works realistically and efficiently 
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against displacement by the time function. Approach on 
parameters value expected to optimize and reduce 
computational cost.  

II. THEORETICAL BACKGROUND 

A. XFEM 
Finite Element method used to solve problem related to 

discontinuity. Discontinuity will happened around the tearing 
tip nodes and will cause displacement of the nodes position on 
domain. The discontinuity value and displacement will be 
calculated with Finite Element method. The point change on 
domain is calculated using (1). 

𝑢ℎ(𝑥) = ∑𝑁𝐼(𝑥) [𝑢𝐼 + ∑ 𝑣(𝑥)𝑎𝐼

𝐼∈Ω𝑑

]

𝐼∈Ω

 
(1) 

Variable Ω in Equation 1 is domain while Ω𝑑  is the 

discontinued domain. 𝑁𝐼(𝑥) is  traditional finite elements, 

𝑣(𝑥) is enrichment elements discontinuities function, while 𝑢𝐼 
and 𝑎𝐼  is degree of freedom for traditional and enrichment 

elements. 

Inclusion elements represented as formulation using (2). 

𝜁(𝑥) = √(𝑥𝑖 − 𝑥𝑐)
2+(𝑦𝑖 − 𝑦𝑐)

2 − 𝑟𝑐  (2) 

Variable 𝑥𝑖 and 𝑦𝑖  are the i-th coordinate meanwhile 𝑥𝑐 
and 𝑦𝑐 are center coordinates for composite material, and 𝑟𝑐  is 
the radius of the inclusion. 

On discrete formulation of finite element method, 
Heaviside and tearing tip elements approach represents as (3) 
and (4) 

𝜙(𝑥(𝑡), 𝑡) ≤ 0 (3) 
𝜓(𝑥(𝑡), 𝑡) = 0 (4) 

B. Stiffness matrix 
Displacement calculated by (1) happen numeric 

computation field. To apply the displacement into mesh 
domain and interface domain, the displacement value needs to 
be adapted into its nodal form. Interface domain could be 
represented as matrix. This matrix also include stress and 
strain values which declare force within domain.  

To obtain stress and strain value, stiffness matrix which 
represent derivative of initial shape function needs to be 
calculated. For traditional stiffness matrix without enrichment 
elements, the matrix could be represents as (5). And for 
stiffness matrix for enrichment elements could be represents 
as (6) 

𝐵𝑢 =

[
 
 
 
 
 
 
𝑁𝐼,𝑥 0 0

0 𝑁𝐼,𝑦 0

0 0 𝑁𝐼,𝑧

0 𝑁𝐼,𝑧 𝑁𝐼,𝑦

𝑁𝐼,𝑧 0 𝑁𝐼,𝑥

𝑁𝐼,𝑦 𝑁𝐼,𝑥 0 ]
 
 
 
 
 
 

 (5) 

𝐵𝑎 =

[
 
 
 
 
 
 
 (𝑁𝐼Υ𝐼

𝐽
),𝑥 0 0

0 (𝑁𝐼Υ𝐼
𝐽
),𝑦 0

0 0 (𝑁𝐼Υ𝐼
𝐽
),𝑧

0 (𝑁𝐼Υ𝐼
𝐽
),𝑧 (𝑁𝐼Υ𝐼

𝐽
),𝑦

(𝑁𝐼Υ𝐼
𝐽
),𝑧 0 𝑁𝐼,𝑥

(𝑁𝐼Υ𝐼
𝐽
),𝑦 (𝑁𝐼Υ𝐼

𝐽
),𝑥 0 ]

 
 
 
 
 
 
 

 (6) 

 

 

 

III. METHOD 

Tearing model performed on Matlab with certain required 
stages of method. The method stages explained as pseudocode 
on Fig. 1.  

Input consists of five main elements. The five elements are 
Domain which represents the objects size, MAT which 
represents objects variables, Crack which represents the initial 
crack of the object, INC which represents the inclusion 
elements, Grow which represents the amount of tearing that 
must be established, and Force which represents the amount of 
force that must be distributed on the object. These inputs 
proceeded in stages as follows 

earing Model Pseudocode  
1. Input 
2. If isempty(GROW) = 1 

3. iter  1 

4. elseif length(GROW) = 2 

5. iter  GROW(1) 

6. end 
7. for i = 1 to iter 
8. if i = 1  

9. connectivity 

10. pHDOF  [] 

11. else 

12. clear status on NODES  

13. end 

14. omega  levelSet(i) 

15. [DOF,DISP]  calcDOF 

16. [updElem, IElem] = enrElem(i,pHDOF) 

17. if i = 1 

18. globalK  stiffnessMatrix 

19. else 

20. globalK  updateStiffness 

21. end 

22. globalF  forceVector 

23. freeDOF  boundaryCond 

24. DISP(freeDOF,:) globalK \ globalF 

25. if isempty(CRACK) != 0 

26. pHDOF  2*max(NODES(:,2)) 

27. [KI,KII]  JIntegral(omega,DISP) 

28. Gopt  -(KI(1)^2+KII(1)^2)*(1-

MAT(2)^2)/MAT(1); 

29. exit  growCrack(KI,KII,omega) 

30. if exit = ‘YES’ 

31. plot result 

32. break 

33. end 

34. print time 

35. end 

36. end 

 
Figure 1. Tearing Model Pseudocode 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS010207

Vol. 6 Issue 01, January-2017

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 247



A. Connectiviy Formation 

Connectivity is formed by Domain input. The size that 

must be established is expressed in the form of a grid and 

represented as a matrix of connectivity. Connectivity matrix 

stores coordinates of the nodes, the index element and its 

members, as well as index element enrichment information at 

any nodes. This stage only executed at initialization or first 

iteration. For the next iteration neutralizing index element 

enrichment information by returning the value to null is 

performed. 

B. Level Set Formation 

Level Set used as part of discretization method. 

Level Set is a function that used for stating the shape function 

of elements that exist in the domain so that the value of each 

element may be calculated as information on the connectivity 

matrix. 

For each node, the calculated value ζ (x) as a shape 
function of inclusions elements in accordance with Equation 
2. Declaration of initial tearing tip node on the matrix domain 
is calculated. In accordance with Equation 3 and 4, the points 
are eligible to be categorized as Heaviside elements and 
endpoints tear. 

C. Degree of Freedom Calculation 

Degree of Freedom is calculated in corresponding to each 
node in each element. For Heaviside element calculated in 
accordance with the terms Equation 7 and tip tear element is 
calculated by Equation 8. 

ℎ(𝑥) = {
1 , above tearing line

−1 , below tearing line
 (7) 

∅𝛼(𝑥),𝛼=1−4 = √𝑟 [𝑠𝑖𝑛
𝜃

2
, 𝑐𝑜𝑠

𝜃

2
, 𝑠𝑖𝑛𝜃𝑠𝑖𝑛

𝜃

2
, 𝑠𝑖𝑛𝜃𝑐𝑜𝑠

𝜃

2
] (8) 

D. Stiffness Matrix Calculation 

The Stifness matrix is calculated by calculate 𝐵𝑢 and 𝐵𝑎 as 
in (5) and (6). Matrix value of 𝐵𝑢 and 𝐵𝑎 will later be a global 
stiffness matrix which used in the next step to calculate stress 
and strain value.  

The updated stiffness matrix for the second iteration until 
the appointed total iteration will be done without calculating  
inclusion nodes matrix because it doesn’t altered by time 
function. 

E. Force Calculation 
The force distributed in nodes is in corresponding with 

Degree of Freedom which calculated before. Force magnitude 
value obtained from users input. 

F. Tearing Tip Determination 

The first thing to do to determine the second and further 

tearing is calculate stress intensity factor by J-Integral 

method. Stress intensity factor is used to determine tearing 

direction. Further tearing coordinates determined by force 

from users input and the angle which calculated from stress 

intensity factor. 

IV. RESULT AND ANALYSIS 

The main experiment was conducted with two scenarios, 
the first one is without inclusion and the second one is using 
inclusion. From both of the main scenarios, there are several 
sub scenarios that are affected by Young’s modulus variable 
and Poisson’s ratio based on user input. In the scenario with 
inclusion, there are two scenarios that are determined by the 
inclusion that are applied—circular and linear. 

The results of the experiment without inclusion are shown 

in the form of nodal stress values as shown in Fig. 2. 

Meanwhile, the results of the trial with inclusion are shown in 

the contour of nodal stress values as shown in Fig. 3. Nodal 

stress value is a stress values that are influenced by Gauss’s 

value at a point. In this contour image shown that every point 

tear is depended on stiffness matrix computed at any time 

function. The contour image also shows that the distribution 

of the stiffness matrix at each iteration are still associated 

with the stress distribution matrix in the previous iteration. 

The experiment result in terms of stiffness matrix 

assembly model without inclusion is shown in Fig 4. While 

the experiment results in terms of stiffness matrix assembly 

model with the inclusion is shown in Fig 5. Both of the 

implementation graphs of stiffness matrix assembly against 

the time function indicates the properties of convergence 

model against matrix stiffness calculation for each iteration. 

The experiment results show that the model began to 

converge on average at fifth iteration. The trial results also 

showed that the convergence rate will be applicable on both 

models with or without the inclusion as well as with the 

variation of elasticity variable. 

From the experiment results obtained an average 

computation time that are required to form a tear in the 

object. The computing time can be seen entirely in Table 1. It 

can be seen that in table 1 the form of a tear in material 

without inclusion is faster than the one with inclusion. 

Meanwhile the time required for the circle inclusion is faster 

than linear inclusion. 

 
Table 1. Experiments Computational Time 

No Modulus 

Young 

Rasio 

Poisson 

Inclusion Computational 

time (seconds) 

1 10E9 0.3 - 23.67 

2 5E9 0.3 - 21.34 

3 10E9 0.1 - 24.49 

4 10E9 0.3 Circular 24.51 

5 5E9 0.3 Circular 25.29 

6 10E9 0.1 Circular 24.46 

7 10E9 0.3 Linear 33.68 

8 5E9 0.3 Linear 36.44 

9 10E9 0.3 Linear 39.05 
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Figure 4. Stiffness matrix assembly time without inclusion model 

 
Figure 5. Stiffness matrix assembly time with inclusion model 

 

 

 
(a) (b)    (c)    (d) 

Figure 2. Stress distribution for tearing model without inclusion (a) 1st iteration (b) 10th iteration (c) 20th iteration (d) 30th iteration 

 

(a) (b)   (c)    (d)  

Figure 3 Stress distribution for tearing model with inclusion (a) 1st iteration (b) 10th iteration (c) 20th iteration (d) 30th iteration 
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