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Abstract - Natural convection heat transfer in enclosures find 

many applications such as heating and cooling of building 

spaces, solar energy utilization, thermal energy storage, 

cooling of electrical and electronic components etc.   In the 

present study, Numerical Investigation is conducted in a 

square cavity with one vertical wall maintained at a high 

temperature and with the opposing vertical wall at a low 

temperature. The influence of Grashof numbers ranging from 

20000 to 200000 for Prandtl number 0.7 (air) is studied. The 

governing vorticity and energy equations are solved by finite 

difference methods including Alternating Direction Implicit 

(ADI) and Successive Over Relaxation (SOR) techniques with 

C coding. Steady state isothermal lines and streamlines are 

obtained for all the Grashof numbers considered. In addition, 

the average Nusselt number, over the hot wall for the range of 

Grashof numbers is calculated. The contours of streamlines 

and isothermal lines are presented for all the parameters 

investigated. Changes in the streamline and isothermal line 

patterns are observed with the change in Grashof numbers. 

The results obtained in this study are useful for the design of 

devices with enclosures subjected to high temperature 

differences. 

 

Keywords: Natural convection, ADI, SOR, Prandtl number, 

Grashof number, Nusselt number.     

 

1. INTRODUCTION 

  
Natural convection heat transfer in enclosures has 

been extensively studied by researchers, because of its 

practical significance in science and technology. 

Applications include heating and cooling of building 

spaces, solar energy collectors, heat exchangers and 

effective cooling of electronic components and machinery. 

The fluid flow and heat transfer behavior of such systems 

are analysed numerically and experimentally by a number 

of researchers with different boundary conditions.   

An effective algorithm for the analysis of 

unsteady thermo capillary convection in a rectangular 

cavity was developed by Hamed and Folryan [1].  

Kazmierezak and Chinoda [2] investigated numerically the 

problem of laminar buoyancy driven flow of a fluid in a 

square cavity driven by a warm vertical wall having a 

uniform surface temperature whose magnitude is 

periodically changing. The transient behavior of an 

enclosure when the temperature of only a single wall was 

suddenly changed, while other walls were adiabatic, was 

studied by Hall et al [3]. Schaldow et al [4] performed an 

additional run in which they ramped the driving wall 

temperature in a linear fashion over a five second interval 

equal in magnitude to the step change.  Vasseur and 

Robillard [5] investigated the case of transient convective 

coding of a rectangular enclosure with end walls that 

continually decreased in temperature at a constant rate. 

Kumar and Kandaswamy [6] have studied convection 

purely driven by buoyancy force in a square cavity with 

two different thermal boundary conditions; isothermal and 

linearly varying hot wall temperature in the presence of a 

uniform transverse magnetic field. This result shows the 

suppression of convection by an increase in the magnetic 

field strength. Wilkes and Churchill [7] used an implicit-

alternating direction finite difference method to study 

numerically the natural convection of a fluid contained in a 

long horizontal rectangular enclosure with vertical wall 

temperature for different Grashof number and aspect ratios. 

Hellums and Churchill [8] developed an explicit finite 

difference methods for generating the transient solution for 

free convection at a vertical plate. Sundaravadivelu and 

kandaswamy [9] have taken a fourth order polynomial 

approximation of the temperature-density relation for water 

and studied the buoyancy driven nonlinear convection in a 

square cavity. The natural convection in the presence of a 

magnetic field in a rectangular enclosure is studied by 

Rudhraiah et al [10] who established that the magnetic field 

dampens the rate of heat transfer and velocity profiles. 

Also the influence of magnetic field on the combined 

mechanism in a low Prandtl number fluid was studied. 

Saikrishnan and Roy [11] investigated numerically the 

effect of temperature dependent viscosity on forced 

convection flow over a rotating sphere. Their results show 

that the heat transfer rate is found to depend strongly on 

viscous dissipation. Kandaswamy et al [12] studied the 

natural convection heat transfer in a cavity with a variable 

viscosity fluid applying ADI method coupled with SOR 

technique in which the heat transfer rate is found to 

increase with an increase in viscosity of the fluid, where in 
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they have chosen various Prandtl numbers like 0.05 (liquid 

metal),  0.7 (air) and 10(water). The objective of the 

present study is to numerically investigate in detail the 

natural convection in a two dimensional square cavity in 

which momentum transfer is significant.   

 

 

 

2. MATHEMATICAL FORMULATION 

 

  A square cavity with different wall boundary 

conditions within which the fluid enclosed is considered 

for analysis. The geometry and temperature boundary 

conditions are shown in figure 1. Two of the opposing 

vertical walls are maintained at different temperatures. The 

horizontal walls are insulated from the surroundings. When 

a fluid is enclosed within the cavity, it starts to circulate 

within the cavity and the heat transfers by natural 

convection from the hot wall to the cold wall.     

    

 
 

Figure 1 – Schematic of the square enclosure 

 

2.1 Governing Equations 

The two-dimensional governing equations are 
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2.2 Boundary Conditions 

The initial and boundary conditions are, 
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3.  DISCRETIZATION OF THE GOVERNING EQUATIONS 

 At any grid point the term  
Y

T




 in the energy equation, after nondimensionalising and the co-efficient velocities U & 

V are treated as constants over a time step. All space derivatives are given centered difference representations. The relevant 

finite-difference approximations to the energy equations, to be used consecutively over two half time steps, each of duration 

2
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For X-direction , 
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Similar approximations also hold for the vorticity equation which precedes the stream function across a time step. 

 

4. METHOD OF SOLUTION 

 

The governing equations- energy, vorticity and 

stream function are solved via a finite difference technique 

consisting of Alternating Direction Implicit (ADI) and 

Successive Over Relaxation (SOR) methods. The added 

advantage of using this unconditionally stable numerical 

scheme is that larger time increments may be used without 

loss of stability. The vorticity and temperature equations 

are parabolic, while the stream function equation is elliptic. 

The resulting stream function values are then used to 

determine the velocity components and the boundary 

values of the vorticity. Thus the sequence beginning with 

the solution of the energy equation is applied repeatedly 

until the desired results are obtained. The convergence 

criterion used for the field variables   is 
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In the above expression the subscript n refers to 

appropriate time level and   represents  andT , . The 

mesh 51 x 51 was opted as the ideal one with a suitable 

time increment. In this study a computational code, using 

‘C’ language is developed to obtain the finite difference 

solution implementing Alternating Direct Implicit (ADI) 

and Successive Over Relaxation (SOR) methods. The 

contour plots for various quantities are plotted using 

MATLAB. 

 

5. RESULTS AND DISCUSSION 

 

   The analysis is performed for five different 

Grashof numbers viz. (a) 20000 (b) 50000 (c) 100000 (d) 

150000 and (e) 200000, maintaining Prandtl number equal 

to 0.7 for all the cases. In this study, the configuration 

consists of one vertical cold wall, one vertical hot wall and 

with two adiabatic top and bottom wall. Program iterations 

are performed for each case with time increment  equal 

to 0.0002, until a steady state solution is arrived. Figures 2 

to 6 show the streamline and isothermal contours and also 

the average Nusselt number over the hot wall for the range 

of Grashof numbers considered. Observation of stream line 

pattern in Figure 2, for Grashof number equal to 20000, 

show that the stream line spacing is low close to the top 

boundary and are high in the region close to the bottom 

boundary. This indicates higher velocity regions close to 

the top boundary and lower velocity region over the bottom 

boundary. The streamline pattern is almost symmetrical 

about the centroidal X-axis (Y=0.5). The temperature 

contour line shows the uniform temperature variation 

within the domain i.e. T = 1.0 at the left wall and gradually 

changes to T = -1.0 at the right boundary. No significant 

temperature variation is observed along the X direction at 

any location. During the iteration the average Nusselt 

number is initially high and it decreases continuously, 

when the steady state solution is obtained and beyond 

which it remains constant. Figure 3 shows the streamlines, 

isothermals and average Nusselt number for Pr = 0.7, Gr 

=50000. The streamlines and isotherms were found to be of 

minimal variation to the above case.  In Figure 4 for Pr = 

0.7, Gr = 100000, the isotherms bends slightly towards the 

hot wall.  In Figures 5 and 6, for Pr = 0.7, Gr = 150000 and 

200000 respectively, the streamlines are crowded more 

near the hot wall and the isotherms are found to bend 

slightly towards the hot wall.  The average Nusselt number 

over the hot wall estimated for the range of Grashof 

number is analysed and they are given in Table 1. 
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Table 1.   Average Nusselt numbers for different Grashof numbers 

  

 

 

 

 

 

 

            

Figure 2. Streamlines, Isothermal lines and Average Nusselt Number for Gr = 20000 

            

Figure 3. Streamlines, Isothermal lines and Average Nusselt Number for Gr = 50000 

           

Figure 4. Streamlines, Isothermal lines and Average Nusselt Number for Gr = 100000 

 

         
 

Figure 5. Streamlines, Isothermal lines and Average Nusselt Number for Gr = 150000 

Prandtl number Grashof number Average Nusselt number 

0.7 
0.7 

0.7 

0.7 
0.7 

20000 
50000 

100000 

150000 
200000 

1.461311 
1.590601 

1.894743 

2.222238 
2.540704 
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Figure 6. Streamlines, Isothermal lines and Average Nusselt Number for Gr = 200000 

 

6. CONCLUSION 

A finite difference technique has been 

developed using ‘C’ language to predict the 

natural convection heat transfer in an enclosed 

cavity consisting of a fluid, with different wall 

boundary temperatures. The numerical results are 

obtained   for the range of Grashof number 20000 

to 200000 and Pr=0.7. The influences of wall 

boundary temperature, Prandtl and Grashof 

number of fluid within the cavity on flow pattern 

and temperature distribution are analyzed in 

detail. It is observed that the increase in Grashof 

number changes the streamline pattern and 

temperature contours. The fluid velocities are 

increased in the regions where the streamline 

spacing is low. Increase in Grashof number, 

considerably gives an increase in average Nusselt 

number which in turn increases the heat transfer 

rate. The results obtained are presented in the 

form of contour plots of streamlines and 

isotherms drawn using MATLAB. The scope of 

the work involves the design of devices with 

enclosures subject to high temperature 

differences and the devices which include 

partition walls 

 

 
Nomenclature 

  
g = acceleration due to gravity 

β = volume coefficient of thermal 

expansion 

α = thermal conductivity 

ρ = density 

 = kinematic viscosity 

θh = hot wall temperature  

θc  = cold wall temperature 

θ0 = initial temperature 

θ = temperature of fluid at any point  

T= non-dimensional form of temperature  

u,v = components of velocity along x and 

y directions respectively 

U,V = non-dimensional forms of velocity 

components along X and Y directions 

respectively 

∆X,∆Y = grid spacing in the X and Y 

directions respectively  

∆τ = time increment 

ζ = dimensionless vorticity 

ψ = dimensionless stream function 

ω = relaxation parameter 

Pr = Prandtl number 

Gr = Grashof number 

Nu = Nusselt number 

L   = ratio of cavity height to its width 
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