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Abstract—Transverse vibration of power line conductors under 

pure bending conditions was developed and modelled using the 

finite elements analysis (FEA) tool. The finite element model was 

used to investigate the effect of varying the conductor stringing 

axial tensions on its dynamic characteristics. The developed 

numerical method was implemented in MATLAB using the 

properties for the conductor with code-name TERN. Transient 

simulations were performed and used to determine the 

conductors’ mode shapes, natural frequencies and damping. 

Calculated results and experimental measurements were 

compared and discussed.   

 

Keywords: Wind-induced vibration, finite-element model, 

numerical method, natural frequencies, self-damping. 

I. INTRODUCTION  

The dynamic behaviour of transmission line conductors has 

been a subject of interest to the design of power lines. This 

phenomenon occurs due to the aerodynamic effects, 

generating vortex shedding. The vortex shedding induces a 

transverse displacement that is perpendicular to the plane of 

the wind direction. The conductors’ response to this 

aerodynamic effect is non-linear. Due to this phenomenon, 

the excitation of conductors when subjected to dynamic 

forces is still not completely understood. Thus, ongoing 

investigations by researchers are of vital importance in order 

to improve on the understanding of mechanical oscillations of 

conductors.  

Since conductors vibration was observed on power lines, 

conscious effort have been made by researchers to model this 

phenomenon and early investigation can be found in [1, 2]. 

The earliest mathematical model was developed by R. Claren 

and G. Diana [3], they developed the mathematical model 

using the concept of the conductor’s principal modes to 

describe the transverse vibration of a suspended conductor 

with small sag, tensioned at both ends. Other aspect of the 

conductor vibration seemed to be studied by researchers and 

details of concepts and aspects of investigation can be found 

in [4-10]. Most of these models were developed with the 

assumptions that the conductors were considered to be a 

continuous structure subjected to either distributed or 

concentrated forces. From [4], it was ascertained that 

modelling a conductor as a beam was more accurate than 

modelling it as a taut string due to the effect of the bending 

stiffness. 

Some researchers have employed the numerical tool such as 

finite element method to analyze the dynamic response of 

conductors. In [11, 12] the authors carried out the finite 

analysis of conductor. These finite element method FEM was 

implemented in commercial finite element software 

packages. In these software libraries, the beam element used 

to implement conductor dynamic response. Due to the 

rigorous process of evaluating the conductor self-damping, 

the implementation becomes a challenge. There arise a need 

for a customized process to analyze the self-damping 

parameters.    

The power line conductors can be described by a nonlinear 

partial differential equation as a function of parameters such 

as deformation, stress-strain relations and damping. This 

paper presents the finite element analysis of power line 

conductor using the global discretization approach to 

characterize its damping capability. This discretization 

approach uses the deformed beam element to model 

transverse vibration of conductor as function of its sag due to 

gravity. The developed numerical model for conductors is 

used to simulate the dynamic response of the conductors. The 

simulation was done for Aeolian vibration. This model is 

used to obtain the conductor natural frequencies, mode shape 

and also to evaluate the conductor self-damping.  

 

2. MODELING APPROACH 

 

The conductor can be treated either as a continuous 

distributed parameter system, as a discrete set of concentric 

orthotropic cylinders i.e. the individual layer of wires is 

replaced by an equivalent cylindrical orthotropic sheet or as 

an arrangement of helically curved rods, assembled as a 

bundle. Analytical modeling was done with different 

assumptions about the conductor geometry or the inter-

strands contacts, with respect to approach applied by the 

author(s).  

In modeling a power line, depending on the parameters of 

interest usually determine the modeling approach to be used. 

Also, the degree of accuracy and the ease of linearizing the 

equation in achieving the set objectives influenced the 
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approach adopted. The approach that can be used for the 

analytical modeling of conductors. They are: 

 The Global Approach 

 The Local Approach 

2.1 The Global Approach 

The global approach has proofed to be sufficiently 

accurate for cases where conductors’ parameters are 

assumed to be distributed under relatively high stress 

and small displacement. In this condition, the 

solution of the equation used to model the system 

is of global interest. This is achieved by employing either 

a straight or catenary profile of a distributed 

system to model the geometry of conductor.  The solid 

beam or the taut string model is used for the conductor 

analytical modeling. In this approach, the global phenomena 

that are of interest are the natural frequencies, mode shapes, 

damper placements, loop lengths, wave speed etc. 

 

2.2 The Local Approach 

The local approach is implemented, w h e r e  t h e  

conductor i s  model as a discrete element of an 

assembly of strands. This approach tends to treat 

the conductor as a composite structure rather than a 

continuous distributed structure. The conductor is 

treated as a composite structure formed by the assembly of 

helical strands in various layers over the core. This approach 

make it possible to analyze for the conductor, the inter-strand 

point contact areas, the effects of friction and the stick-slip 

regimes during the periodic motion. This approach gives a 

more accurate representation and results for the  

conductor. Because the formulation of the equation 

for strands element yield complex expressions, it 

used when a higher level of accuracy is required.  

 

3. STATIC PROFILE 

 

The single span of a transmission line conductor can be 

described by a set of parabolic or hyperbolic functions to 

describe the deformed shape curves as shown in fig.1. Under 

the static condition, the conductor is deformed due to gravity; 

the conductor assumes a centenary profile by sagging along 

the span. The conductor shape can be described by a parabola 

or centenary curves. In analysis, a parabolic curve is the 

shape that is formed by a conductor support by an evenly 

distributed horizontal weight whereas a catenary is the shape 

that is formed by a hanging the conductor whose weight is 

constant per unit of the arc length. 

The hyperbolic or the centenary curve equations produce 

accurate results, but the mathematical formulae which are 

derivations for the parabola are much simpler with very good 

accuracy. The parabolic equations were used in this study. 

Consider a conductor attached to two fixed points A and B 

and supporting it weight. Assume the conductor between AB 

carries its weight, uniformly distributed along the horizontal. 

If w denote the weight per unit length expressed in N/m.  

  
 

 

Applying the equation of a parabola to a span of the same 

elevation, with a vertical axis and it’s vertex at the origin of 

coordinates located at point A. The curve formed by the 

conductor loaded uniformly along the horizontal is modelled 

as: 
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Where S = mid-span sag (m), w = conductor weight (N/m), L 

= horizontal span length (AB), (m), T = conductor tension 

(N). The sag equations for the power lines strung for cases 

were the power line passes non-level and mountainous terrain 

can be found in [13].  

 

4. ANLYTICAL MODEL 

Most researches that are conducted to investigate the 

phenomenon of conductor transverse vibrations, model the 

conductor either as taut string or beam. The vibrating 

conductors are modeled as a simply supported beam with 

sectional parameter such as stiffness, variable linear density, 

area, and section modulus, subjected to either point or 

distributed loading. Modelling the conductor as a simply 

supported beam, the equation of motion of the conductor with 

axial loading (tensioned at both ends) as described in [3-10] 

is given as 
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Where EI is the flexural rigidity or bending stiffness, S is the 

tension, ρ is the density, y (x, t) is transverse displacement, 

and A is the cross-sectional area. 

 f (x, t ) is the external force, defined as: 
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Fig 1: The Conductor Static Profile 

Vol. 5 Issue 03, March-2016

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS031005

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

585



 

 

Initial conditions: 

)()0,( 0 xyxy      at x = 0 
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
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The natural frequencies, is determined by finding the solution 

to equation (2) assuming that the mode shape is the same as 

the pinned-pinned eigenfunction with no external force. The 

mode shape is expressed as: 

t
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The natural frequencies becomes 
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In [14], it was inferred that to improve on this conductor 

models, some form of non-linear concepts should be 

introduced when modelling the conductor dynamic 

behaviour. The mechanical oscillation of conductors is 

characterized by non-linearity either from its geometry or 

damping. In the case of Aeolian vibration, because of the 

small displacement, the non-linearity is mostly attributed to 

its damping mechanism.  

Based on the work of C. Hardy [15], when the conductor 

flexes, the strands of the conductor slip against each other; 

this relative motion generates frictional forces that provide 

damping. Also, conductors can damp out energy by internal 

energy losses at microscopic (molecular) level within the core 

and individual strands of the conductor this is known as 

metallurgical or material damping. The combination of these 

energy dissipative processes by a conductor is known as the 

conductor self-damping. During bending, the energy 

dissipation due to frictional effects around the area of 

contacts induced by the sinusoidal forcing function coupled 

with the material damping tends to limit the amplitude of 

vibration.  

Consider the conductor as visco-elastic beam with the two 

forms damping as explained in [14]. If the conductor obeys 

the stress-strain relationship given as: 

t
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Hence the equation of motion for the transverse vibration of 

the conductor is expressed as  
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Using the Rayleigh Method, the above damped nonlinear 

equation for the conductor, the damping coefficient is 

obtained as  
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5. FINITE ELEMENT METHOD 

 

The finite element method is a very efficient numerical tool 

for the evaluation of dynamic systems problems such power 

line Aeolian vibration. This method is a computational 

technique that can be employed to evaluate the dynamics of 

systems. Though, a conductor is continuous system but to 

analyse the transverses vibration using the FEA method 

involves discretizing the system into its finite elements.  The 

equations are obtained for each finite element. The 

assembling of these finite element equations results to the 

global equations that can be used to generate the equations 

for the inertial, stiffness, applied and damping forces in 

matrices and vector form. In system dynamics, the mass, 

stiffness and damping matrices of the system are required to 

solve the required dynamic response.  The dynamic 

parameters are determined through the use of the classical 

beam model.  

 

4.1 Finite Elements 

 

The FEA for the conductor formulation is done with the finite 

element formulation for the beam as shown fig 2. In this 

method the space dimension was approximated by the higher-

order approximation finite element basis function (cubic 

polynomial) with respect to time i.e. cubic Hermits 

polynomial. To this regard, the finite element interpolation 

functions as time dependent such that u is approximated by:  
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Thus if   ],,,[][ 4321 NNNNN                                                 (7a) 

Then  4321 ,,,][ NNNNA                                                      (7b)

             4321 ,,, NNNNB                                                      (7c) 

     

4.2 Finite Element Formulations 

Some physical phenomena can be described by differential 

equation that relates certain quantities to their derivatives 

with respect to time and space variables. The weak 

formulation is used to derive the finite element equation and 

this is obtained from the equation of motion describing 

conductor vibration. The Galerkin’s method (method of 

weighted residual), using the differential equation, is used to 

develop the finite element formulation for the conductor. By 

applying the Galerkin’s variational principle to the time 

dependent problems, considering the boundaries conditions, 

Fig 2:  Beam Element 
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the finite element model is obtained. Hence, damped equation 

(5) for the transverse vibration of the conductor is used for 

this finite element formulation. The weak formulation for the 

finite element equation is obtained by multiplying equation 

(5) by the finite element interpolation functions defined by 

equation (6) to obtain: 
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Secondly, carrying out the integration by parts twice on 

equation (8) and taking into account the finite-element 

discretize model as defined by the number of finite elements 

in the system domain. Because a curved beam is used, there 

will be a coupling of axial and bending deformation.   

Hence, the resultant equation is obtained as: 
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Where   is the element domain                                                               

From the weak formulation, the equations for the finite 

element in terms of the stiffness, mass, damping matrices and 

force vector are given as: 
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Using equations (7), equations (10) become: 
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Considering the equations (11d), it can be seen that before the 

equation can be implemented the damping constants have to 

be determined first. Based on the classical work done by H.H 

Cudney and D.J. Inman [16], they outlined the procedures to 

estimate the values for each damping model and also for 

combination of the both models. The evaluation of the 

damping constants C and   was done by the least squares 

method also known as the pseudo-inverse routine. For the 

values of both C and   are evaluated by 
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 The values for damping coefficients and natural frequencies 

can be obtained from the experimental values such those 

document in [14]. 

 

6. THE SYSTEM MATRIX 

 

Conductor transverse vibration is a classic example of such 

practical problems in which in the differential equation both 

the position and time dimension have to be considered. 

Hence, the method use for the finite element approximation 

of the dynamic type element of time and space dependent 

equation (time dimensions).  

When strung under tension, the overhead transmission lines 

conductors support its weight thereby sagging and sag/span 

ratio depends on the axial tensions at both ends. When 

subjected to transverse vibration, each member of the 

conductor is subjected to both axial and bending loads. Given 

that the sag/span ratio is small, the axial and transverse 

deformations can be decoupled. Therefore, modelling for 

transverse vibration for pure bending only, the axial effect 

can be neglected.  

Fig. 3 shows the discretized model of a single span of 

conductor. The conductor is discretized into n number of 

nodes and (n-1) number of elements.  

 
 
The deformed beam element shown fig. 2 is mapped to form 

the discretize model shown fig 3. To achieve this, the 

reference 2D beam formulation done for the beam (fig 2) is 

geometrically mapped to form the global structure of 

conductor, where the axial deformation is neglected. The 

displacement of the 2D beam element expressed in the global 

coordinate system for the conductor and this is defined: 

Fig 3: Discretize Model of the Conductor  
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Using the deformed finite element equation in eq (13) with 

reference to the beam element the stiffness matrix, mass 

matrices and load vector for the conductor are obtained as 

follows: 
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The assembly of finite element equations derived in equ (14) 

to form the system finite element equation requires the 

satisfaction of the boundary conditions as defined in the 

diagram of the discretize domain (figure 3). Therefore, the 

assembled global equation must satisfy the boundaries 

conditions of simply supported beam i.e. 

011  nnuu 
 

The above transformation results to damped equation for the 

transverse vibration of conductor. Thus, the system matrix 

equation was obtained as:
 

          FyKyDyM                                    (15)                                                                                

  

7. MATLAB IMPLEMENTATION 
  

An improved MATLAB code [17] for beam element was 

used to simulate above finite element equation for the 

conductor. The code was improved to include the 

transformation function. The Code was written to determine 

the conductor static profile from which the coordinate used to 

determine the angle of deformation along the sag. Another 

code was written based on modal analysis to obtain the 

eigenvalue, mode shape and natural frequencies. Also, 

another code was developed, using the least square method to 

obtain the damping constant (β and C) according to equation 

(12).  

These Matlab programs were implementation and used to 

simulate the numerical problem developed in the paper are 

for the vibrating conductor. The code was simulated to find 

the solution to the displacement field developed from FEA.  

The implementation was done for Tern conductor and 

physical properties are document in [14].  

The simulation was used to generate the dynamic response 

for free vibration for three different axial tensions. The 

MATLAB results and the work that is documented in [14] 

were compared. This various results are shown table 1.   

 

8. RESULTS 
 

The finite element analysis modeling of transmission lines 

conductor simulation can be found in [14], in which the 

simulations of the conductor vibrations were done using 

ABAQUS software. In this study Matlab software was used 

for the conductor vibration simulation for the Aeolian 

vibration. Thus, finite element analysis for the mechanical 

oscillation for transmission line conductors was simulated 

using the code for deformed beam properties.   

In similar manner as done for conductor vibration using 

ABAQUS, the eigenvalues were searched and computed in 

the frequency range for both conductors. For purpose of 

comparison results for the Tern conductor, the first ten 

resonance frequencies for the conductor were obtained and 

recorded in table 1. The comparison of the values obtained 

for the models were for the tensions of 20%, 25%, and 30% 

of its UTS.  

To compute the damping constants, the modal damping from 

the experimental values in [14] was used. Using the 

experimental resonance frequencies values, the least squares 

method (pseudo-inverse routine) was used to compute the 

damping constants using Matlab. These obtained values were 

then used as proportional damping constants to simulate the 

conductor vibration for damping.  

The Matlab simulation results for the eigenvalues and the 

natural frequencies for both conductors are presented in the 

tables below 

Table 1: The comparison of natural frequencies values 

obtained from analytical, FEM and experimental result for 

Tern conductor 

 

 

 
Natural  Frequency (Hz) 20% UTS 

Analytical 
Model 

FEM Exp. 
value 

4.521 4.450 5.237 

9.044 8.900 10.212 

13.570 13.354 14.613 

18.099 17.810 19.13 

22.634 22.272 22.929 

27.175 26.739 29.022 

31.723 31.214 32.992 

37.062 35.698 37.70 

40.180 40.1692 42.211 

44.682 44.699 45.829 

 

 
 

Natural Frequency (Hz)    25% UTS 

Analytical 
Model 

FEM Exp. 
value 

5.034 4.953 6.785 

10.069 9.909 10.224 

15.107 14.866 15.829 

20.148 19.826 21.134 

25.193 24.790 26.833 

30.244 29.760 31.815 

35.302 34.737 36.249 

41.262 39.721 42.274 

44.702 44.716 45.613 

49.702 49.721 51.527 

 

Table 1a: Natural Frequencies at 20% UTS 

Table 1b: Natural Frequencies at 25% UTS 
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Natural Frequency (Hz)    30% UTS 

Analytical 

Model 

FEM Exp. 

value 

5.510 5.422 5.463 

11.021 10.845 9.098 

16.535 16.27 17.435 

22.051 21.698 23.678 

27.571 27.130 28.746 

33.097 32.567 34.415 

38.628 38.010 38.109 

45.967 43.461 45.22 

49.714 48.921 51.073 

55.271 54.390 56.200 

 

Also, the free vibration of the conductor was done to obtain 

its response when the conductor is subjected to some form of 

impact or displacement and the amplitude of vibration decay 

with time due to damping. A diagram of the decay is shown 

in fig. 4 below. The free response were done for the three 

axial tensions as indicated earlier and logarithm decrement 

was used to evaluate damping. The results obtained shows a 

good agreement with that documented in [14] 
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9. CONCLUSIONS 

 

The dynamic characteristic of conductors’ vibration is very 

complex process. In this paper, a finite element model for the 

conductor in 2-D was developed.  Finite-element analyses 

were used to determine the nonlinear response of the 

conductor system to dynamic loading from wind. The FEM 

implementation of a simply supported conductor model for 

the transverse vibration of conductor was presented for three 

different conductor stringing tensions. 

 Matlab was used to simulate the dynamic behaviour of 

conductor for free vibration i.e. impulse loading. The results 

obtained from the simulation were used to verify the effects 

of axial tension variations on the conductor natural 

frequencies. The parameters obtained from the above, to 

some degree of accuracy can be used to predict the response 

of conductors to wind loading.  

This present work is being extended to implement a FEM 

model that includes the axial effects. This will be document 

in part two this work 
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Fig 4:  Free Vibration of the Conductor 

Table 1c: Natural Frequencies at 30% UTS  
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