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Abstract-Most of the structures and the mechanical systems 

are failed due to excessive vibrations in their working life. 

Since most human activities involve vibration in one form or 

other. The vibrations having certain amplitude and frequency 

may be reliable for human being. But excessive vibrations 

may lead to structural or mechanical failure of the system. 

Thus, study of vibration has more importance in order to 

avoid failures. The study of vibrations is necessary to 

understand the vibration behaviour of the system. 

The phenomenon of vibration can be applied to identify the 

crack size and location. Modern NDT techniques like dye 

penetrant testing, ultrasonic testing, acoustic emission 

techniques are hold the position of crack identification but 

such techniques require more time interval for processing. 

Thus it is necessary to develop new techniques for crack 

identification. 

The improved Fuzzy logic techniques and curve fitting in 

Matlab are the alternatives for NDT techniques. These 

techniques give approximately solution for the problems of 

cracks. This paper contains certain knowledge about fuzzy 

logic techniques applied for different beam models. 

Keywords- vibrations, NDT techniques, crack 

identification, Fuzzy logic techniques 

I. INTRODUCTION 

 

Any motion which repeats itself after a certain 

interval of time is called vibration. The swing of pendulum 

is a typical example of vibration. The theory of vibration 

deals with study of oscillatory motions of bodies and the 

forces associated withthem. A vibration can caused due to 

external unbalanced forcealso. A vibratory system, in 

general, includes elastic memberfor storing potential 

energy, a mass or inertia member forstoring kinetic energy 

and damper by which gradual loss ofenergy takes place. A 

simple pendulum as shown in figure 1 isan example of 

vibration system. Pendulum has a string forelastic  

 

 

 

 

 

 

 

 

 

nature, mass of bob acts as a means for kinetic energy.Like 

pendulum, spring-masssystem, vehicle suspensionsystem, 

simply supported and cantilever beam, lateralvibrating 

string, vibration due to unbalance reciprocating orrotating 

force, etc. are the examples of vibrating system. 

A. Lateral vibrations of a cantilever beam 

The vibrations in which particles of the 

systemvibrates in the direction perpendicular to the axis of 

system isknown as lateral vibration. A large number of 

practicalsystems can be described using finite number of 

degree offreedom; such a system is shown in figure 1but 

some systems,especially those involving continuous elastic 

members, have 

an infinite number of degree of freedom. As an 

example,consider a cantilever beam shown in figure .2. 

Since the beamhas infinite number of masses, we need 

infinite number ofcoordinates to specify the deflected 

configuration. Thus,cantilever beam is infinite degree of 

freedom system and it isnecessary to study lateral 

vibrations of cantilever beam. 

 

Figure 1 Vibrations of Simple Pendulum 

 

Figure 2 Cantilever Beam as Multi Degree of Freedom System 
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B. Crack identification in cantilever beam structure 

Vibration-based methods have been proved as a 

fastand inexpensive means for crack identification. A crack 

in astructure induces a local flexibility which affects the 

dynamicbehaviour of the whole structure to a considerable 

degree. Itresults in reduction of natural frequencies and 

changes inmode shapes. An analysis of these changes 

makes it possibleto determine the position and depth of 

cracks. Most of theresearches used in their studies are open 

crack models, that is,they assume that a crack remains 

always open duringvibration. The assumption of an open 

crack leads to a constantshift of natural frequencies of 

vibration. 

The decrease in experimental natural frequencies willlead 

to an underestimation of the crack depth. Harish andParhi, 

2009 have performed analytical studies on freevibrations of 

cracked beam models and obtains the appropriateresults. 

 

II. LITERATURE REVIEWS 

Different researchers have discussed damage 

detection of vibrating structures in various ways. They are 

summarized below. 

Free and forced vibration analyses of a cracked 

beam were performed by S Orhan et al. in order to identify 

the crack in a cantilever beam. Single- and two-edge cracks 

were evaluated. The study results suggest that free 

vibration analysis provides suitable information for the 

detection of single and two cracks, whereas forced 

vibration can detect only the single crack condition. 

F Leonard, J Lanteigne, S Lalonde and Y Turcotte 

et al. proposed a study based on cracks that occurred in 

metal beams obtained under controlled fatigue-crack 

propagation. Spectrograms of the free-decay responses 

showed a time drift of the frequency and damping: the 

usual hypothesis of 

constant modal parameters is no longer appropriate, since 

the latter are revealed to be a function of the amplitude.  

An experimental investigation has been carried 

out byM. Karthikey and R. Tiwari et al. to establish an 

identification procedure for the detection, localization, and 

sizing of a flaw in a beam based on forced response 

measurements. The experimental setup consisted of a 

circular beam, which was supported by rolling bearings at 

both ends. 

Sensibility analysis of the inverse problem of the 

crack parameters (location and depth) determined by M. B. 

Rosales, C P Filipich and F S Buezas et al. An efficient 

numerical technique is necessary to obtain significant 

results. Two approaches are herein presented: The solution 

of the inverse problem with a power series technique (PST) 

and the use of artificial neural networks (ANNs). 

An analytical, as well as experimental approach 

by H. Nahvi and M. Jabbari et al. to the crack detection in 

cantilever beams by vibration analysis is established. 

A model-based approach is developed by Zhigang 

Yu and Fulei Chu et al. to determine the location and size 

of an open edge crack in an FGM beam. The p-version of 

finite element method is employed to estimate the 

transverse vibration characteristics of a cracked FGM 

beam. A rational approximation function of the stress 

intensity factor (SIF) with crack depth and material 

gradient as independent variables is presented in order to 

overcome the cumbersomeness and inaccurateness caused 

by the complicated expression of the analytical SIF 

solution in crack modelling. 

An analytical approach forcrack identification 

procedure in uniform beams with an open edge crack, 

based on bending vibration measurements, is developed by 

N. Khaji, M. Shafiei and M. Jabalpur et al. The method is 

based on the assumption that the equivalent spring stiffness 

does not depend on the frequency of vibration, and may be 

obtained from fracture mechanics. The results provide 

simple expressions for the characteristic equations, which 

are functions of circular natural frequencies, crack location, 

and crack depth. 

III. THEORETICAL FORMULATIONS 

A Governing equation for free vibration of beam 

The cantilever beam with a transverse edge crack 

is clamped at left end, free at right end and has same cross 

section and same length like model in Figure 3 and 4. The 

Euler- Bernoulli beam model is assumed for the theoretical 

formulation. The crack in this particular case is assumed to 

be an open surface crack and the damping is not being 

considered in this theory. Both single and double edged 

crack are considered for the formulation.The free bending 

vibration of a beam of a constant rectangular cross section 

having length l, width b, and depth w is given by the 

Euler’s beam theory as follows: 

If the cross sectional dimensions of beam are 

small compared to its length, the system is known as Euler-

Bernoulli beam. Only thin beams are treated in it. The 

differential equation for transverse vibration of thin 

uniform beam is obtained with the help of strength of 

materials. The beam has cross section area A, flexural 

rigidity EI and density of material ρ. Consider the small 

element dx of beam is subjected to shear force Q and 

bending moment M, as shown in figure 5. 

 While deriving mathematical expression for 

transverse vibration, it is assumed that there are no axial 

forces acting on the beam and effect of shear deflection is 

neglected. The deformation of beam is assumed due to 

moment and shear force. 

 The net force acting on the element, 

𝑄 −  𝑄 +
𝜕𝑄

𝜕𝑥
𝑑𝑥 = 𝑑𝑚 ∗ 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 

 

Figure 3 Uncracked Cantilever Beam Model 
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Figure 4 Cracked Cantilever Beam Model 

 

Figure 5 Shear Force and Bending Moment acting on Beam Element  

−
𝜕𝑄

𝜕𝑥
𝑑𝑥 =  𝜌𝐴𝑑𝑥 

𝜕2𝑦

𝜕𝑡2
 

𝜕𝑄

𝜕𝑥
+ 𝜌𝐴

𝜕2𝑦

𝜕𝑡2 = 0(Equation 1) 

 Considering the moments about A, we get 

𝑀 −  𝑀 +
𝜕𝑀

𝜕𝑥
𝑑𝑥 +  𝑄 +

𝜕𝑄

𝜕𝑥
𝑑𝑥 𝑑𝑥 = 0 

−
𝜕𝑀

𝜕𝑥
+ 𝑄 +

𝜕𝑄

𝜕𝑥
𝑑𝑥 = 0 

So 𝑄 =
𝜕𝑀

𝜕𝑥
 higher order derivatives are neglected here 

 
𝜕𝑄

𝜕𝑥
𝑑𝑥 = 0  

or
𝜕𝑄

𝜕𝑥
=

𝜕2𝑀

𝜕𝑥2                      (Equation 2) 

From the above two equations 1 and 2, we get 
𝜕2𝑀

𝜕𝑥2 = 𝜌𝐴
𝜕2𝑦

𝜕𝑡2   (Equation 3) 

We know from strength of materials that 

𝑀 = −𝐸𝐼
𝜕2𝑦

𝜕𝑥2
 

𝜕2𝑀

𝜕𝑥2 = −𝐸𝐼
𝜕4𝑦

𝜕𝑥4                      (Equation 4) 

Comparing equation 3and 4 we get, 
𝜕4𝑦

𝜕𝑥4 +  
𝜌𝐴

𝐸𝐼
 
𝜕2𝑦

𝜕𝑡2 = 0                         (Equation 5) 

This is the general equation for transverse 

vibration. Thus the natural frequency can be found out by 

this theory (Appendix A) as,  

𝜔𝑛 = 𝐶 ∗  
𝐸𝐼

𝜌𝐴𝑙4                            (Equation 6) 

Where,  

E= Young’s modulus of the material, 

I= Moment of inertia, 

A= Area of cross section, 

l=length of the beam, 

C= Constant depending mode of vibration, 

C1=0.56 for first mode, 

C2= 3.51 for second mode, 

C3= 9.82 for third mode.  

 The moment of inertia can be found out by 

relation, 

𝐼 =
𝑏𝑑3

12
Equation 7) 

Where,  

b= width of the cantilever beam section, 

d= depth of the cantilever beam section.  

Due to presence of crack, moment of inertia of the 

beam changes and correspondingly the natural frequency 

also changes. For a constant beam material and cross 

section the reduced moment of inertia will be found by 

relation below. 

𝐼1 = 𝐼 − 𝐼𝑐               (Equation 8) 

Where, 

I1=Moment of inertia of a cracked beam, 

I= Moment of inertia of Uncracked beam, 

Ic= Moment of inertia of cracked beam element. 

 Thus by the use of equation 6, 7 and 8 we can find 

out the different modes of natural frequencies for the 

cantilever beam. Instead of using crack depth and location, 

the terms RCD and RCL are considered and calculated by 

the formula, 

RCD = 
𝑑𝑒𝑝𝑡   𝑜𝑓  𝑡𝑒  𝑐𝑟𝑎𝑐𝑘

𝑑𝑒𝑝𝑡   𝑜𝑓  𝑡𝑒  𝑏𝑒𝑎𝑚
                    (Equation 9) 

RCL = 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑜𝑓  𝑐𝑟𝑎𝑐𝑘  𝑔𝑟𝑜𝑚  𝑓𝑖𝑥𝑒𝑑  𝑒𝑛𝑑

𝑙𝑒𝑛𝑔𝑡   𝑜𝑓  𝑡𝑒  𝑏𝑒𝑎𝑚
      (Equation 10) 

The theoretical calculations are carried out by 

using above theory. Here total 10 models have been studied 

for natural frequency analysis having different crack depth 

and location. The beam models no. 1 to 5 is of rectangular 

cross section while beam model from 6 to 10 are of square 

cross section. It is assumed that the natural frequency 

changes due to the change in moment of inertia only. The 

beam made up of structural steel material by extrusion 

process. The Young’s modulus for the beam material of 

length 700 mm is 210×10
9
 N/m

2
. 

 From the theory it is predicted that presence of 

crack in structure reduces the natural frequency. The 

natural frequency is the function of flexural rigidity and 

inversely proportional to the density of material and length 

of the beam. 

 The calculations show the natural frequency and 

mode shapes for first three beam models. Similarly, the 

natural frequency and different mode shapes for remaining 

beam models are calculated and tabulated in Table 1. 
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Table 1 THEORETICAL NATURAL FREQUENCY FOR 

THE BEAM MODELS 

 

Bea

m 

mode

l no. 

RC

D 

RC

L 

First 

Natural 

Frequenc

y 

Second 

Natural 

Frequenc

y 

Third 

Natural 

Frequenc

y 

1 0 0 8.53 53.63 149.61 

2 0.2 0.25 8.49 53.40 148.98 

3 0.4 0.25 8.25 51.88 144.24 

4 0.2 0.5 8.49 53.40 148.98 

5 0.4 0.5 8.25 51.88 144.24 

6 0 0 17.06 107.22 299.11 

7 0.2 0.25 17.04 107.14 298.82 

8 0.4 0.25 16.98 106.76 297.84 

9 0.2 0.5 17.04 107.14 298.82 

10 0.4 0.5 16.98 106.76 297.84 

 

IV. FINITE ELEMENT FORMULATIONS 

Finite element analysis has been carried out 

byANSYS12 software. ANSYS is a general-purpose 

finiteelementmodelling package for numericallysolving a 

widevariety of mechanical problems. These problems 

includestatic/dynamic, structural analysis (both linear and 

nonlinear),heat transfer, and fluidproblems, as well as 

acoustic and 

electromagnetic problems. 

In general, a finite-element solution may be 

brokeninto the following three stages. 

(1) Pre-processing: defining the problem 

The major steps in pre-processing are 

 (i) Define keypoints/lines/areas/volumes, 

(ii) Define element type and material/geometric 

properties,and (iii) mesh lines/areas/ volumes as required. 

 

The amount of detail required will depend on 

thedimensionality of the analysis,i.e., 1D, 2D, 

axisymmetric, and3D. 

(2) Solution: assigning loads, constraints, and solving. 

Here, itis necessary to specify the loads (point or 

pressure),constraints (translational and rotational), and 

finally solve theresulting set of equations. 

(3) Post processing: Further processing and viewing of 

theresultsIn this stage one may wish to see (i) lists of 

nodaldisplacements, (ii) elementforces and moments, (iii) 

deflection plots, and (iv) frequencies and temperature 

maps. 

Following steps show the guidelines for carrying 

outModal analysis. 

Define Materials 

1. Set preferences. (Structural) 

2. Define constant material properties. 

Model the Geometry 

3. Follow bottom up modelling and create/import 

thegeometry 

Generate Mesh 

4. Define element type. 

5. Mesh the area. 

Apply Boundary Conditions 

6. Apply constraints to the model. 

Obtain Solution 

7. Specify analysis types and options. 

8. Solve. 

The ANSYS 12 finite element program was used 

forfree vibration of thecracked beams. For this purpose, the 

total10 models are created at various crack positions in 

CADsoftware (CATIA) and imported in ANSYS (.stp file). 

Thebeammodel wasdiscretised into no. of elements with N 

nodes.Cantilever boundary conditions can also be modelled 

byconstraining all degrees offreedoms of the nodes located 

onthe left end of the beam. The subspace mode extraction 

method was used to calculate the natural frequencies of the 

beam. 

 The results of finite element analysis for the 

beams have first natural frequencies are tabulated in Table 

2. 

Table 4.1 Finite Element Analysis Result of Beam Models 

 

V. FUZZY LOGIC TECHNIQUE 

  

A fuzzy inference system (FIS) essentially defines a 

nonlinear mapping of the input data vector into a scalar 

output, using fuzzy rules. The mapping process involves 

Bea

m 

Mod

el 

No. 

RC

D 

RC

L 

First 

Natural 

Frequenc

y 

Second  

Natural 

Frequenc

y 

Third  

Natural 

Frequenc

y 

1 0 0 8.34 53.20 146.32 

2 0.2 0.25 8.31 53.11 145.90 

3 0.4 0.25 8.23 52.88 144.97 

4 0.2 0.5 8.33 52.09 146.34 

5 0.4 0.5 8.31 51.43 146.30 

6 0 0 16.65 104.25 291.46 

7 0.2 0.25 16.62 104.25 291.38 

8 0.4 0.25 16.55 104.25 291.13 

9 0.2 0.5 16.64 104.20 291.40 

10 0.4 0.5 16.62 104.06 291.46 
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input/output membership functions, FL operators, fuzzy if–

then rules, aggregation of output sets, and defuzzification. 

An FIS with multiple outputs can be considered as a 

collection of independent multiinput, single-output 

systems. A general model of a fuzzy inference system (FIS) 

is shown in Figure 6. The FLS maps crisp inputs into crisp 

outputs. It can be seen from the figure that the FIS contains 

four components: the fuzzifier, inference engine, rule base, 

and defuzzifier. The rule base contains linguistic rules that 

are provided by experts. It is also possible to extract rules 

from numeric data. Once the rules have been established, 

the FIS can be viewed as a system that maps an input 

vector to an output vector. The fuzzifier maps input 

numbers into corresponding fuzzy memberships. This is 

required in order to activate rules that are in terms of 

linguistic variables. The fuzzifier takes input values and 

determines the degree to which they belong to each of the 

fuzzy sets via membership functions. The inference engine 

defines mapping from input fuzzy sets into output fuzzy 

sets. It determines the degree to which the antecedent is 

satisfied for each rule. If the antecedent of a given rule has 

more than one clause, fuzzy operators are applied to obtain 

one number that represents the result of the antecedent for 

that rule. It is possible that one or more rules may fire at the 

same time. Outputs for all rules are then aggregated. 

During aggregation, fuzzy sets that represent the output of 

each rule are combined into a single fuzzy set. 

Fuzzy rules are fired in parallel, which is one of 

the important aspects of an FIS. In an FIS, the order in 

which rules are fired does not affect the output. The 

defuzzifier maps output fuzzy sets into a crisp number. 

Given a fuzzy set that encompasses a range of output 

values, the defuzzifier returns one number, thereby moving 

from a fuzzy set to a crisp number. Several methods for 

defuzzification are used in practice, including the centroid, 

maximum, mean of maxima, height, and modified height 

defuzzifier. The most popular defuzzification method is the 

centroid, which calculates and returns the centre of gravity 

of the aggregated fuzzy set. FISs employ rules. However, 

unlike rules in conventional expert systems, a fuzzy rule 

localizes a region of space along the function surface 

instead of isolating a point on the surface. For a given 

input, more than one rule may fire. Also, in an FIS, 

multiple regions are combined in the output space to 

produce a composite region. A general schematic of an FIS 

is shown in Figure 7. 

 The result of fuzzy logic or outputs from fuzzy 

logic has been tabulated in Table 2. Here input for fuzzy 

logic is different modes of natural frequencies and output 

will be relative crack depth and relative crack location. The 

natural frequency are obtained from finite element 

formulation are taken for developing fuzzy model. 

 

 

 

Figure 6 Block Diagram of Fuzzy Interface System 

 

Figure 7 Schematic Diagram of a Fuzzy Interface System 

 

TABLE 2 COMPARISON OF FUZZY LOGIC 

PARAMETERS WITH THEORETICAL PARAMETERS 

 

Beam 

model 

no. 

Relative Crack 

Depth 

Relative Crack 

Location 

Fuzzy 

Logic 
Theoretical 

Fuzzy 

Logic 
Theoretical 

1 0.052 0 0.065 0 

2 0.191 0.2 0.239 0.25 

3 0.34 0.4 0.25 0.25 

4 0.2 0.2 0.433 0.5 

5 0.212 0.4 0.424 0.5 

6 0.16 0 0.25 0 

7 0.167 0.2 0.25 0.25 

8 0.3388 0.4 0.25 0.25 

9 0.1608 0.2 0.348 0.5 

10 0.3416 0.4 0.427 0.5 

 

VI. CONCLUSIONS  

The present investigation based on the theoretical 

Analysis, FEA Analysis and experimental analysis draws 

the following conclusions. 

 

Inputs for FEA and FFT are crack location and 

crack depth and outputs are natural frequency for different 

modes of vibration. Significant changes in natural 

frequency observed at the vicinity of crack location. When 

the crack location is constant but the crack depth increases, 

the natural frequency of the beam decreases. When the 

crack depth is constant and crack location from the 
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cantilever end varied, natural frequencies of first, second 

and third modes are also decreased. The results show that 

the values of natural frequencies by theory, ANSYS and 

FFT are close to the agreement. 

The presence of crack in beam models reduces the 

natural frequency of all the beam models, but the beams 

with square cross section area have approximately same 

longitudinal as well as transverse frequencies so it become 

hard to select beams with square cross section. Thus it is 

better to use rectangular cross section beams for 

appliances, since they have larger transverse frequency 

than longitudinal.   

The fuzzy controller is developed with triangular 

membership function for inputs and output and results 

shows that the triangular MF predicts the output parameters 

of crack. Crack depth and crack location of a beam can be 

predicted by fuzzy controller is within nanoseconds. Hence 

it saves considerable amount of computation time. By 

Comparing the Fuzzy results with the theoretical results it 

is observed that the developed Fuzzy Controller can predict 

the relative crack depth and relative crack location in a very 

accurate manner. Certain precision and skilled operating is 

required to develop Fuzzy controller. Results based on 

fuzzy techniques are not much accurate as it depends on 

some training pattern of fuzzy controller, whereas in 

ANSYS, it is much accurate as it is based on finite 

elements. But it is practically suitable that natural 

frequency can be obtained but crack location and crack 

depth are not possible as they are very small values.  

Here an approach can be suggested which is based 

on the combination of both ANSYS and Fuzzy, in which 

natural frequency obtained in ANSYS can be used as input 

for fuzzy controller for determination of accurate value of 

crack depth and crack location. 
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