

Object Oriented Graphic Frameworks
Dr. Hari Ramakrishna, Professor

Department of Computer Science and Engineering

Chaitanya Bharathi Institute of Technology

Gandipet, Hyderabad, A.P, INDIA

Abstract

This Paper presents an object oriented graphic

framework architecture named as white box graphic

pattern-frame. Few applications of the model and

sample code segments along with few result screen

shots of applications are presented. Graphic object

basic functionality and domain specific graphic

component behavior management is demonstrated.

These frameworks uses several object oriented

primitive patterns such as dynamic polymorphism for

managing multiple behaviors. A method of packing

and exporting the framework to different clients using

Microsoft middle ware frameworks like Document view

architecture, ATL and ActiveX frameworks is

demonstrated. This paper presents applications of such

framework in building intelligent graphic simulation

application where graphic components implements

semantic behavior of domain specific objects.

Keywords- graphic frameworks, pattern-frames,

semantic graphic components, White box graphic

pattern frames.

I. INTRODUCTION

Object oriented application frameworks can

significantly increase software quality and reduce

development effort. However, a number of challenges

to be resolved in order to present the failure of such

frameworks. Some of the important aspects to be

considered in this regard are development effort,

learning curve, maintainability, validation and defect

removal, efficiency, and standards definitions. The

following issues should be considered carefully while

redesigning any object oriented graphic framework.

i) Development effort of the domain application

developer should be simplified

ii) Learning curve for understanding such

frameworks should be simplified

iii) Integrating the framework with different

application environment should be considered

iv) Framework maintenance activities include

modification and adaptation of the frameworks should

be carefully considered

v) Generalization of behavior graphical components

for abstraction should be handled carefully

vi) Framework exhibits Inversion of control

handling of such software need special efforts

vii) Efficiency of the code, dynamic binding nature

of frameworks should be carefully handled

viii) Standards should be well defined

Some of the expectations of such frameworks are

listed below:

i) Integration of design patterns and defining pattern

frames

ii) Defining pattern languages

iii) Defining procedures for integrating frameworks

with state of art middle ware development

environments like Microsoft development environment

such as Application Frameworks, ATL, Active X ,

.NET or WPF.

This paper presents a model lightweight computer

graphic framework which can be used for configuring

to build several domain specific graphic components.

These are useful for several software applications

developed user modern middleware development

frameworks for supporting simulation and graphic

requirement. These models use several primitive object

oriented patterns in addition to some domain specific

pattern-frames. [1-6].

II. TYPICAL FRAMEWORK SAMPLES

This section presents few Framework samples, starting

from a simple hello world application using java

frameworks. These are known as middleware

development frameworks. Figure 1 presents the UML

building block for representing a framework.

Consider a hello world program in Java. An example

can be implemented using java Applet. The Java Applet

is a part of Java Framework. This in turn depends on

AWT and Java language frameworks. The following

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 2 represents a hello world component structure

in UML using Java frameworks.

From this diagram, it can be observed that Hello- world

applet depends on Java Applet. The HTML client or

Java frame which includes the Hello-World Applet gets

Hello-World Interface through the Java Applet.

Message from client application will invoke the Java

Applet that in turn sends them to the Hello-world

Applet. For displaying the hello world message the

Hello-world applet implementation again depends on

graphic library, which is part of Java framework. The

class diagram of the hello world example is displayed

in the following Figure .3

Consider another sample of frameworks from

Microsoft Document View Architecture and MFC.

Microsoft provides Application Wizard for using the

framework and class wizard for managing the

applications. A simple MFC based application

structure in UML is presented in the following Figure

4.

This UML Diagram represents a logical structure of

Document View Architecture. The application class of

the client module is inherited from CWinApp, a class

of Microsoft MFC framework. In fact the Application

wizard decides from which class of CWinApp class

group the MyApplication class should be inherited,

depending on the requirement of the client specified

through application wizard. The user requirements are

collected in six steps at the time of creating an

application framework in VC++ through application

wizard. The type of project workspace also changes the

aggregation-combination, depending on how the user is

exporting functionality.

The ATL technology of Microsoft also provides similar

frameworks for supporting Automation layer;

component technology and web based computing.

Some of the frameworks presented in this thesis also

depend on these Microsoft frameworks. These

frameworks are reffered to as Middleware integration

frameworks.

The above application represented in Figure 2.4 has an

Application class aggregating Frame class. The frame

class inturn aggregates View and Document classes.

The Application, Frame, Document and View classes

are inherited from CWinApp, CMainFrame,

CDocument and CView classes as shown in Figure 2.4.

The CWinApp class manages the Windows application

functionality. The CMainFrame class aggregates a set

of view and document objects. The view manages

device context. It can also manage GUI required

functionality.

In addition to creating a Windows based Application

with automatic code generation and aggregation with

MFC framework, Microsoft frameworks also support

class wizard for managing client applications. The

message maps are managed through this class wizard.

The resource sub-system helps user in building Menu

items, Tool bars, Dialog boxes and Accelerator keys.

They also support simple graphic primitives through

CDC class, which is an abstract class. CClientDC is a

sub class of CDC that can be instantiated from any

class inherited from CWin class. This rule is

automatically imposed by making CWin pointer, which

is an argument for constructor of CClientDC class.

The OLE framework is also integrated to Visual studio

such that a simple object oriented programmer also can

use OLE features in these applications. The

requirements for such facilities are also collected

through the application wizard by asking the user,

whether the application is an OLE server or OLE

container etc.

At present versions of Visual studio DOT NET has

several additional features such as multiple language

support, Web based distributed and object management

facilities. WPF also presents a new model development

environment bringing revolution in the presentation

layer of windows and web applications.

III. ARCHITECTURE OF WHITE BOX

FRAMEWORKS

The intent of White box frameworks is to generate

object library for configurable generic domain specific

classes. All the framework patterns discussed in the

previous sections support required reusable-modules

and functions for managing graphic components. But

they do not manage any graphic components. White

box frameworks manage graphic components.

Name: White Box pattern-frame

Intent: Managing generic reusable and configurable

graphic component.

Motivation and Applicability: In general generic

modules are not efficient. But code reuse will be more.

This affects the cost of the application. But most of the

code for managing any graphic component irrespective

of the application is common. They change only in

Geometry and Behavior. It is observed that creating a

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

configurable class for graphic element can reuse the

common code for managing graphic components.

Structure: Figure 5 presents the Architecture of White

box pattern- frames.

Generic Interface: It defines generic behaviour of a

graphic component.

Generic graphic class: It implements the generic

behaviour of a graphic component.

Specific Interface: It defines specific interface of a

selected graphic component.

Specific Graphic class: It implements the specific

interface of a graphic component.

The generic behaviour of a graphic class is

implemented by the Generic graphic class. This in turn

depends on specific behaviour of selected graphic

element. This specific behaviour is implemented by the

specific graphic object. The client can reuse the

generic as well as specific behaviour of the graphic

object. This pattern-frame enables a generic graphic

class managing different types of graphic elements.

This supports generic behaviour and allows the specific

object to define specific behaviour.

IV. IMPLEMENTATION AND

SAMPLE CODE

The following graphic class namely CGraphicElement

implements a generic graphic framework, which can be

configured to graphic components of different domains.

This model will not affect the performance of the

element. This decreases cost and complexity of the

application.

Though this model is based on the Microsoft MFC

framework, it can be implemented using any object

oriented language with minimum graphic support. The

following are observations made on the above graphic

class.

i) The above Graphic class is an abstract class as it has

a pure virtual function. The clients need to implement

or attach geometry to the above graphic base class for

building full-fledged graphic component.

ii) The graphic class implements several common

graphic object management functions such as Show

Key points, Serialize, Locate etc. These functions are

used to make an object persistent and for locating and

editing the object. The client as per the requirement of

his/her graphic element can configure these functions.

For example, the key-point function by default shows

the range of the graphic element, and will display right

bottom, left top and center point of a rectangle, which

is range of the graphic element. User can Move the

element or scale the element as he likes irrespective of

the geometry of the graphic element. If user wants to

redefine this function, he can configure it as per his

requirement. For example locating a line of a line-

component is different from a Rectangle-component.

User can implement his own Locate algorithm for

locating his element as per his requirement. Without

implementing this algorithm, the framework itself will

support an algorithm for locating the element.

iii) This framework will decrease the cost of

implementation of a graphic-element. These

frameworks are more useful for the graphic

applications where the numbers of graphic-element

types to be managed are more.

iv) Other observation in this model is that the above

framework class uses Foundation class framework for

defining geometry.

The Line and Ellipse classes are typical simple graphic

elements created using the above framework class. The

two classes are using default implementation for

locating the elements and for editing the elements.

What all these classes require to implement is two

functions which are specific to application. The first

one is a unique Id of the element, which the user is

giving to the element in his application. This function is

suggested for referring the element. The next function

is Geometry of the element that is specific to that

element. The following element namely Rectangle

configures Locate function. The definition for

Rectangle class is presented in Table 2

The IsLocated function can be configured by the client

to attaching object specific behavior. For example, if

the user does not want to locate a rectangle with three

key points (which is a default procedure provided by

the framework), and he wants to implement procedure

for locating a rectangle with reference to its border, he

can adopt this method. Similarly for managing

complex graphic components one can change other

behavioral futures. The following Polygon definition

changes other behavior of framework class namely

CGraphElement, which is a generic graphic base-class.

The polygon in Table 2 manages a Point list with the

help of a Foundation class for managing Polygon

geometry. This will affect behavior of the element. For

making the geometry persistent, it implements Serialize

method. For supporting Translation operation it is

required to implement Move-method. In fact, this

function again directs the message to Foundation class,

which is supposed to manage the Graphics. Even

Serialize is directed to Foundation class. The

foundation class can support any number of operations

as discussed in function class frameworks. Domain

specific function classes can be built as separate tool

for managing geometry of different graphic elements

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

and aggregated with the above graphic class for

building domain specific applications. [7-12]

In the above Framework Graphic base class design is

visible to the client, and implementation alone is

encapsulated. These framework classes are named as

white box frameworks. These concepts can be

implemented in other languages, like Java that support

Object oriented primitive patterns.

This application uses the White-box frameworks for

managing the graphic elements, and Foundation class

framework for managing Line Attributes. Function-

class framework can be used for managing algorithms

for locating elements of different shapes. This allows

the client to configure the application with his own

locating algorithms.

Users: A model VC++ Application view using white

box frameworks is shown in Figure 6 and a PCB model

is shown in Figure 7

V. CONCLUSION
The object oriented graphic framework presented in

this application is implemented in Microsoft

development environment. It is tested with different

client applications. An Active X control can be built

over this framework to use it in web enabled

applications and to port the functionality through VB

Automation layer. These frameworks can be used for

simulation applications. It is tested for a PCB (printed

circuit board) testing application. Some more pattern-

frames are added to make the graphic components

mimic like original PCB components. Figure 7 presents

a PCB component designed using this framework while

integrating with other pattern frames using dynamic

display files. These components are called as semantic

graphic components as they implement semantic

behaviour of PCB components.

ACKNOWLEDGMENT

The author acknowledges all the professional advisors

who motivated for developing graphic frameworks

patterns.

REFERENCES

[1] Dr.Hari Ramakrishna, “Design Pattern for

Graphic/CAD Frameworks”, Ph.D thesis submitted to

Faculty of Engineering Osmania University March

2003,

 [2] Dr.Hari Ramakrishna and Dr.K.V Chalapathi Rao,

“Pattern Methodology of Documenting and

Communicating Domain Specific Knowledge”, CVR

Journal of Science and Technology Vol 2. June 2012

ISSN 2277-3916.

[3] Christopher Alexander, “An Introduction for

Object- oriented Design”, A lecture Note at Alexander

Personal web site www.patternlanguage.com

[4] Pattern Languages of Program Design. Edited by

James O. Coplien and Douglas C. Schmidt. Addison-

Wesley, 1995

[5] Erich Gamma, Richard Helm, Ralph Johnson, and

John Vlissides, "Design Patterns: Elements of Reusable

Software Architecture", Addison-Wesley, 1995

[6] LNCS Transactions on Pattern Languages of

Programming

http://www.springer.com/computer/lncs?SGWID=0-

164-2-470309-0

 [7] Hari Ramakrishna (1995). Three – dimensional

interactive computer graphics package for civil

engineering applications, Proceedings of the National

Conference on Civil Engineering Materials and

Structures, Hyderabad, India.

[8] Hari Ramakrishna (1996). "Applications of

Computer Graphics in flooring and wall paper

Patterns” First National Conference on Computer

Aided Structural Analysis and Design, Hyderabad, Jan’

1996.

[9] Hari Ramakrishna (1996). “Applications of

Computer Graphics in Interior Design”, Annual

proceedings of Institutes of Engineers at Hyderabad,

Nov’ 1996.

[10] Harrington, S. (1987), Computer graphics:

programming approach, McGraw-Hill International,

second edition.

[11] Hearn, d. and Baker, M.P (1992). Computer

graphics, Prentice Hall, second edition.

[12] Newman,W.S and Sproul, R.S (1981),Principles

of interactive computer graphics McGraw-Hill

International, second edition.

AUTHOR PROFILE

Dr.Hari Ramakrishna was awarded B.E in Computer

Science and Engineering in 1989 by Osmania

University, Hyderabad ,A.P INDIA, M.S in Computer

Science by BITS PILANI,INDIA and Ph.D. in

Computer Science and Engineering by the Faculty of

Engineering Osmania University in “Pattern

lanaguages for graphic /CAD frameworks”. He worked

in Software Industry for several years and developed

Graphic, CAD /GIS products using Microsoft

environment. He has about 15 years of teaching

experience . Presently he is working as a Professor for

last 7 years in the Department of Computer Science and

Engineering at Chaitanya Bharathi Institute of

Technology, Hyderabad INDIA.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure.1: Framework in UML

Framework Name

Figure 2: Structure of Hello-World Applet with Java Frameworks

Hello World

Applet

Java

Applet

AWT

Lang

Figure 3: Class diagram of Hello world class

Applet

Hello World

Paint () Graphic

g.drawString(Hello

World”,10,10)

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure .4: MFC based VC++ Windows’s application

Visual

Studio Microsoft Framework supporting

Document View

Windows Application in

VC++

MyApplication

MyFrame

MyView

MyDocument

CWinApp

CMainFrame

CView

CDocument

Figure .5: Structure of White box Framework

Generic Graphic class

Attributes

<Implementation of Generic Behavior

>

<Graphic Specific Behavior >

Specific Interfaces

< Object Specific Behaviors >

Client

Generic Interfaces

< Generic Graphic Object Behaviors >

Specific Graphic class

Specific Attributes

 Implementation of specific

behaviour

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 6 A VC++ client using white box graphic

frameworks for managing Graphic element.

Figure 7 A VC++ client using white box graphic
frameworks for PCB component design.

Table: 1 Graphic framework class definitions

class AbstractGraphic /* Defines generic Graphic behavior */

{

public:

 void virtual GetColor(void) = 0 ;

 void virtual SetColor(COLORREF Rgb) = 0;

 void virtual SetStyle(int i) = 0;

 void virtual SetWidth(int i) = 0;

 void virtual Set_Points(ULONG,ULONG,ULONG,ULONG) = 0;

 void virtual Mark(CDC*)= 0;

 void virtual Draw(CDC*)= 0;

 void virtual Paint(CDC*,COLORREF) = 0;

 void virtual ShowKeyPts(CDC*)= 0;

 void virtual Move(CDC*,CPoint) = 0;

 void virtual Serialize(CArchive& ar);

 BOOL virtual Locate(CDC*,CPoint,COLORREF) = 0;

 BOOL virtual IsLocated(CPoint) = 0;

 BOOL IsInRange(CRect) = 0;

}

class CGraphElement: public AbstractGraphic /* implements Generic graphic behavior */

{

public:

 CGraphElement(void);

 virtual ~CGraphElement(){};

protected:

 CPoint m_pPoint1, m_pPoint2;

 CLineAttribs m_cLineAttribs;

public:

 void virtual Show(CDC*) = 0;

 int virtual GetType(void) = 0;

 };

class CLine :public CGraphElement /* specific graphic element

{

public:

 void Show(CDC*) ;

 int GetType(void);

 BOOL virtual IsLocated(CPoint);

};

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

class CElle :public CGraphElement /* specific graphic element

{

public:

 void Show(CDC*) ;

 int GetType(void);

};

Table 2: Domain specific Element sample configuring Locate behavior

class CRectangle :public CGraphElement

{

public:

 void Show(CDC*) ;

 int GetType(void);

 BOOL virtual IsLocated(CPoint);

};

Table 2: Domain specific Element sample configuring domain specific behavior

class CPoly :public CGraphElement

{

public:

 CPointList m_pList;

 CPoly(CPoint point);

 ~CPoly();

 void Show(CDC*) ;

 int GetType(void);

 void virtual Move(CDC* dc,CPoint pt);

void virtual Serialize(CArchive& ar)

};

Table 3: Domain specific component class declaration using graphic framework

#include “GraphicFramework.h”

class CCmp :public Component

{

public:

 CCmp(void);

 CCmp(int i);

 bool markflag;

 void Show(CDC*) ;

 int GetType(void);

 BOOL virtual IsLocated(CPoint);

 void virtual Design(void);

};

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

IJ
E
R
T

