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Abstract-In this paper, for boundary representation of the image 

some invariable features are extracted using higher order 

moments. Moment based invariants, in various forms, have been 

widely used over the years as features for recognition in many 

areas of image analysis. Here the moment based method combines 

the original moment invariants and the contour moment invariant, 

which is called a relative contour moment invariant. This 

algorithm is discussed and tested with scaling, translation and 

rotation invariance. As all the possible views of an object caused 

by translation, scaling and rotation are represented as a single 

point here we also describe shape space method to represent 

objects as points on a high-dimensional surface for efficient 

recognition of object. Then we compare both the relative contour 

invariant method and shape space method.  

Keywords-complex hyper plane, landmarks, manifold, 

moment invariant, object recognition 

I. INTRODUCTION 

Object recognition is of considerable interest in the field 

of image analysis and computer vision. Object recognition is 

the process of matching a test image with the data base 

images irrespective of the translation, rotation, scaling and 

occlusion of the test image [4]. Because shape representation 

plays a very important role in the object recognition, a large 

number of shape description techniques have been studied. 

Generally speaking, these methods can be divided into two 

categories: 

A. Region based object recognition: 

The region-based techniques take into account the whole 

area of the object i.e. the region bounded by the boundary 

line. 

B. Boundary based object recognition:  

The boundary-based techniques concentrate merely on 

its boundary lines. The boundary-based methods are more 

popular than region-based methods, because the size of the 

boundary information is significantly smaller than the 

original 2-D object images [1].  

To adopt boundary-based techniques we have to go for 

Edge tracing process, which is one of the basic topics in 

image processing [4]. The aim of the process is to evaluate 

image information and reduce it to adequate contour line by 

eliminating the unnecessary information that takes time for 

recognition process. The task of edge tracing plays an 

important role in object recognition. We can explain it as 

follows: The human seeing system looks at any object firstly 

during the recognition period and runs an eye over the 

contour points of it. After tracing contour points, geometrical 

information of objects is obtained. This information is 

transformed to electrical signals and transmitted to brain and 

recognition process comes to an end. When we apply this 

approach to the artificial seeing systems, it is essential to 

trace edges of objects effectively to reach a successful 

recognition [2]. 

Many shape descriptors, including global features such as 

moment invariants ,Fourier descriptors autoregressive models 

and eigen values of Dirichlet Laplacian, as well as local 

features such as chain codes, shape context, curvature scale 

space (CSS) representation and wavelet descriptors have been 

developed to describe the boundaries of different patterns[2]. 

The advantages of methods using global features are that they 

usually require less computational effort and are invariant to 

size, translation, and orientation changes.  The boundary 

based methods are more popular than region-based method, 

because the size of the boundary information is significantly 

smaller than the original 2-D object images. One of the 

boundary based technique i.e Moment invariant technique 

which is discussed here. 

 
II. OBJECT RECOGNITION USING DISCRETE 

MOMENT INVARIANT 

Recognition is the basic capacity of human. Pattern 

recognition is the automatic recognition of the computer 

system. When the computer system recognizes the image, a 

value is invariable regardless of the image scaling, translation 

and rotation. The value is moment invariant. This method 

was brought forward by M.K.Hu in 1962. He gave the 

definition and the property of continuous function moment 

invariant. Moreover he proved the scaling, translation and 

rotation invariance and gave seven moment invariant 

functions for continuous function[1]. A recognizing test was 

done for two letters in computers. Moment invariant 

functions by Hu need computing all pixels in target area. 

Though much arithmetic was researched by some researchers, 
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they are fairly time-consuming. Target contour‟s pixels are 

generally much fewer than target area pixels. A researcher 

provided contour moment invariant which only needs 

computing the moment of contour. He also proved the 

scaling, translation and rotation invariance. Apparently this 

arithmetic has much advantage. We call this arithmetic 

contour moment invariant in order to distinguish Hu‟s 

moment invariant. The above contour moment invariant is 

continuous function‟s moment invariant. It has the scale, 

translation and rotating invariance for continuous function. 

But image is discrete. The above contour moment invariant 

for discrete function only has the translation and rotating 

invariance but not has the scale invariance [5]. For this case, 

a new contour moment invariant is provided in this paper. It 

has the scale, translation and rotating invariance. This 

arithmetic is used in the image‟s recognition and is validated 

effectively. It is called a relative contour moment invariant 

arithmetic 

A. The definition of contour moment invariant for discrete 

function: 

Above we discuss the contour moment for continuous 

function but in fact discrete function is usually used. So the 

research of contour moment invariant for discrete function is 

needed [5]. Moment invariant of order (p+q) for discrete 

function is defined as :- 

 

 

 

 

 

 
From the above the seven moment invariants are 

 

 

 

 
 

 

 

 

 

 

 

 

Here we will prove the translation and rotating invariance 

and discuss the change of moment if image magnifies and 

reduces in discrete case. 

1) The Translation Invariance: Δx is the translation 

quantity in x direction and Δy is the translation quantity in y 

direction. (x, y)is the coordinate before translation and (x‟, 

y‟)is the coordinate after translation. 

 

 
We can obtain m‟pq: 

 

 
 

The relation of f „(x‟, y‟)and f(x, y)is followed: 

 

 
Now we can obtain the followed equation: 
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Now ηpq can prove having the translation invariance. In 

terms of the above relation, the seven moments in Φ1~Φ7 

have the translation invariance. 

 

2) The Rotating Invariance: If θ is the image‟s rotating 

angle, (x, y) is the coordinate before rotating and (x‟, y‟) is the 

coordinate after rotating - 

 
From above, we can obtain the followed equation: 

 
 

 
 

 
 

 
 

Similarly, we can obtain the followed formula 

 

 
 

The relation among µ‟20, µ20 and θ is followed: 

 
 

 
 

 
 

 
 

Similarly, The relation among µ‟02, µ02 and θ isfollowed: 

 

 
 

Because 

 
 

 
So 

 
 

 
 

 
From above, the moment Φ1 has the rotating invariance in 

discrete situation. Similarly, the other moments has also the 

rotating invariance in discrete situation. 

 

3) The Scale Invariances: If ρ is the image‟s scale 

value, (x, y) is the coordinate before changing the image‟s 

scale and (x’, y’) is the coordinate after changing the image‟s 

scale. 

 
Now we can obtain: 

 
 

 
Similarly, we can obtain formula 

 

 
 

From these formulas we can obtain µ‟pq. 

 

 
 

 
 

 
 

Now we can obtain η’pq. 

 

 
 

From above, we can find that moment has not the scale 

invariance. The moment relates not only with ρ but also with 

p +q [5]. In theory, the seven moments has the scale 

invariance in continuous situation but not in discrete 
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situation. Therefore, a new contour moment is provided in 

this paper which is called a relative contour moment 

invariant. 

 

B. Relative contour moment invariant 

 

Aiming at the above, Φ1, Φ2,….Φ7 are combined again 

and then we can obtain six relative contour moments 

invariant. Relative contour moment invariants have the 

translation, rotating and scale invariance[9]. 

 
 

Ψ1,Ψ2 , ….Ψ6  have the translation , rotating and scale 

invariances. Here we only prove the scale invariance. If ρ is 

the image‟s scale value, Ψ‟1 is the relative contour moment 

invariant after scaling. 

 

 
 

 
 

 
 

Similarly, Ψ‟2= Ψ2,...., Ψ‟6= Ψ6Relative contour invariant 

moments have the translation , rotating and scale invariance. 

 

III. OBJECT RECOGNITION USING SHAPE SPACE 

 

Among the many cues proposed, such as color, texture, 

motion, context and function, shape is perhaps the most 

common and dominant. This work concerns shape 

representation and shape-based object recognition. Indeed, 

the recognition of many common objects in natural settings, 

such as cars and people in outdoor scenes, is still beyond the 

capability of current techniques and systems. The main 

difficulty, as pointed out by Ullman, lies in the tremendous 

view variability associated with the images of a given object. 

For example, depending on the viewing angle, the pictures of 

a car may look very different. As a result, an algorithm 

designed based on a single or a few views may not work on a 

picture of the object taken from a new view. So, the idea here 

is to represent objects as points on a high-dimensional surface 

(i.e., a manifold), called the shape space[7]. For example, in a 

shape space of 2D objects, all possible views of an object 

caused by translation, scaling and rotation are represented as 

a single point. 

Object recognition can then be achieved for invariant 

object recognition, the shape space approach has several 

advantages. First, it provides a complete, rather than a partial, 

object representation that is invariant to similarity 

transformations. It is also relatively insensitive to noise and 

occlusion. Second, through statistical shape analysis, classical 

statistical pattern recognition techniques can be extended to 

the non-Euclidean shape space[8].  

Nevertheless, we believe it represents a new approach to 

invariant object recognition and is worthy of further 

investigation. In this work, the shape space approach is 

studied in the context of 2D object recognition. Potentially, 

this approach can also be used for 3D object recognition 

Suppose a 2D object is represented as a set of pointson the 

plane, called landmarks[8]. For example, they may be 

perceptual salient points on the object boundary, such ashigh-

curvature and extreme points. Let the landmarks be 

represented by a vector, 

 where n is the total number of 

landmarks and xi is the position of the ith landmark, 

represented as a complex number. Then, x is a point in Cn, 

the n-dimensional complex space (Cn can be identified with 

R2n).  

According to Kendall, the shape of x is “what is left 

when the effects associated with translation, scaling and 

rotation are filtered away”. To remove the effect of 

translation we let 

 

 
 

Where 

 
is the centroid of x1,x2, …., xn. Now, x’ satisfies 

 
 

Hence, x’ is a point on a n − 1 dimensional complex 

hyperplane (isometric to C
n−1

) passing through the origin of 

C
n
, as illustrated in Fig. 2. Similarly, to remove the effect of 

rotation and scaling, we associate x’ with an equivalence 

class (a set) 
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where C is the set of complex numbers. As ג varies over C, 

x* covers all possible scaling and rotations of x‟. Now x* is 

the shape of x.  

Notice that x*, as illustrated in Fig. 1, represents a 

complex line passing through origin and on the n − 1 

dimensional complex hyper plane.  Therefore, x* is a point in 

a space isometric to CP
n-2

 , the n − 2 dimensional complex 

projective space.  This is a smooth and curved non-Euclidean 

space (i.e., a differentiable manifold) which we will now call 

the shape space. Its most important geometric property, for 

the purpose of object recognition, is perhaps the geodesic 

distance between two points. As shown by Kendall 

 

 
 

 

 

 

 
 

Fig. 1 Illustration of geometric aspect of definition of shape 

IV. RESULT ANALYSIS: 

The six moment invariant or the 10 different classes are 

given in table-1.  

 

 

 

TABLE-1 

For the object of class-1 the relative contour moment 

invariants are calculate for different scale, translation and 

rotation value which is given in table-2 

 

Table-2 

 

Through the experiment result we can see that the 

relative contour moment invariants basically keep the same 

value, so the relative contour moment invariants suit with 

pattern recognition. 

 

 

 

 𝜑1 𝜑2 𝜑3 𝜑4 𝜑5 𝜑6 

Class-1 0.1951 1.6348 0.0184 2.3413 2.1546 1.1203 

Class-2 0.0507 13.913 0.4069 6.1413 5.0957 -10.115 

Class-3 0.0001 -7.5468 0.1389 4.4436 28.1239 6.81047 

Class-4 0.0248 81.775 0.1044 7.3248 12.82734 21.4518 

Class-5 0.0321 -11.91 0.8233 11.0342 9.02333 -14.2478 

Class-6 0.0991 -2.7907 0.3954 8.93140 3.66775 -1.1112 

Class-7 0.0361 -24.139 0.07449 5.86676 -0.12407 -

46.32458 

Class-8 0.2002 0.3537 0.0058 3.31841 -7.0378 -0.63679 

Class-9 0.3382 0.7245 0.9845 13.6685 28.12403 -33.0391 

Class-

10 

0.0143 -265.0 0.0646 1.9761 26.0168 0.1188 

Δx Δy ρ ѳ 𝜑1 𝜑2 𝜑3 𝜑4 𝜑5 𝜑6 

0 0 1 0 0.19

51 

1.63

48 

0.01

84 

2.3413 0.1546 1.1203 

30 0 1 0 0.19

51 

1.63

48 

0.01

84 

2.3413 0.1546 1.1203 

0 50 1 0 0.19

51 

1.63

48 

0.01

84 

2.3413 0.1546 1.1203 

10 10 1 0 0.19

51 

1.63

48 

0.01

84 

2.3413 0.1546 1.1203 

0 0 2 0 0.18

88 

1.64

65 

0.01

73 

2.3417 0.1669 1.0074 

0 0 1 3

0 

0.19

88 

1.54

65 

0.02

73 

2.5117 0.2869 1.1174 

8 15 0.

5 

3

5 

0.23

91 

1.56

48 

0.09

87 

2.2413 0.2346 1.1763 

10 20 1.

4 

1

5 

0.17

45 

1.69

50 

0.01

40 

2.3117 0.9023 1.2176 

5 2 3 4

0 

0.17

88 

1.64

65 

0.00

73 

2.3117 0.1869 1.3074 

45 15 1 1

0 

0.19

51 

1.63

48 

0.01

84 

2.3413 0.1546 1.1203 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 
Fig.2 (a) and (b) Comparison between shape space and moment 

invariant method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 

 

The image‟s discrete contour moment is analyzed and 

proved in theory. The result is the image‟s discrete contour 

moment without the scale invariance. In terms of this 

situation, the arithmetic of the relative contour moment 

invariants is brought forward. This arithmetic is based on the 

original seven contour moments. The original seven contour 

moments are combined into the six relative contour moment 

invariants.  six relative contour moment invariants have the 

translation, rotating and scale invariance, so the veracity of 

pattern recognition improves. Though need some quantity of 

computing moment invariants in the whole object area. So the 

quantity of computing reduces much and the speed of pattern 

recognition improves much. 
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