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Abstract:- In this paper we have introduced a subclass 

 ,,,qnA  of meromorphic univalent functions with 

positive coefficients in the punctured unit disk 

 10:  zCzU . Coefficient estimate, distortion 

theorem, radii of starlikeness and convexity, closure theorems 

and Hadamard product of functions belonging to this class are 

obtained. Further properties using integral operators are also 

obtained for the same class. 

 

Let   denote the class of meromorphic functions in the punctured 

unit disk *U  :Cz 10  z  of the form 
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 For each  zf    we define the following differential 

operator 
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 0, Nnq   where  
  zf q

 is the 
thq derivative of  zf  

defined in  (5.1.1) and  
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 With help of the differential operator 
nD , we say that a 

function  zf  belongs to   is in the class  ,,,qnA  if and 

only if  
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where 
*Uz ; 0 ; q 10  ; 0, Nqn   and 

nD  

is defined in (5.1.2). 

   

  

MAIN RESULTS 

We establish the following ten properties for a function  zf  

belonging to   in the class  ,,,qnA  defined under 

condition given in (5.1.4)   

 

Coefficient Estimate 

Theorem-1 : Let the function  zf  defined by (5.1.1) be in the 

class  . Then the function  zf  belong to the class 

 ,,,qnA  if and only if 
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  ( q 10  ; 0 ; 0, Nqn  ) 

 

Proof: Let us suppose that the inequality (5.2.1) hold true. Then in 

view of condition given in  (5.1.4) and 1z we have 
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Therefore the values of the functions 
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 lie in a circle which is a centered at  q 1  and 

whose radius is   q1 .  

 Hence the function satisfies the condition given in  (5.1.4). 
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Now conversely, assume that the function  zf  is in the class 

 ,,,qnA . Then, we have 
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…(5.2.3)         

  

 for some  ( q 10  ; 0 ; 0, Nqn  ) and 

*Uz  choose value of z  on the real axis so that  z  given 

by (5.2.2) is real. Upon clearing the denominator in (5.2.3) and 

letting 
1z through the real values we can see that inequality in 

(5.2.3)  lead to inequality (5.2.1). It completes the proof of 

Theorem–1. 

 

Theorem –2 : Let the function  zf  defined by (5.1.1) be in the 

class  ,,,qnA . Then  
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( 1k ; 0, Nnq  ; 0 ) 

The result is sharp for the function  zf  given by 
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  ;1k 0;, 0  Nnq  

  

Proof: As  zf    ,,,qnA  therefore in (5.2.1) 
thk  term 

will be less then equal to the sum on L.H.S. of  (5.2.1). Therefore 

(5.2.5) is true for the function defined in (5.2.6). 

 

Distortion Theorem 

Theorem-3 : If the function  zf  defined by (5.1.1) is in the class 

 ,,,qnA  then 
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 The result is sharp for the function  zf  given by  
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Proof: The function  zf  is in the class  ,,,qnA  then in 

view of the assertion (5.2.1) of Theorem-1 we can see that  
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Now on differentiating both sides of (5.2.1) m times , we have 

    )()( zf m
= 

1

!
)1(




m

m

z

m
mk

k

k za
qk

k 








1 )!(

!    

                                                                                     …(5.2.11) 

                                            

 Now taking the modulus of both sides of (5.2.11) and 

using (5.2.10) we at once arrive at the desired results in (5.2.7) and 

(5.2.8).  

 This completes the proof of Theorem-3. 

 

Radii of Starlikeness and Convexity 

Theorem – 4: Let the function defined by (5.1.1) be in the class 

 ,,,qnA . Then 

 (i)  zf  is meromoriphically starlike of order  10   in 

1rz  , where 
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1k
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  ( 1k ; 0, Nnq  ; 0 ) 

      

(ii)  zf  is meromoriphically convex of order  10   in 

2rz  , where 
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      ( 1k ; 0, Nnq  ; 0 ) 

      Each of these results is sharp for the function  zf  given 

by (5.2.6)  

   

Proof:  Let  zf   ,,,qnA . Then by Theorem-2 we have 
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To obtain the radius of starlike function (5.1.1) given in (5.2.12) it is 

sufficient to show that 
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The L.H.S. of (5.2.15): 
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Then in view of (5.2.15) this will be bounded by ( 1 ) therefore 
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        In view of (5.2.14) it follows that the inequality in (5.2.16) 

is true if 

 
1

)1(

)2( 



 k
z

k
    

   
     







qqqqk

qkqkk
nq

n

1!11)!(

!
           …(5.2.17)                                               

   

Setting 1rz   in (5.2.17) we get desired result in (5.2.12). 

 Similarly, to prove that  zf  is meromorphically convex of  

order  it is sufficient to show that  
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for radius 2rz  given in (5.2.13). 

              

Closure Theorems 

Theorem – 5 :  Let the function )(zf j  ,....)2,1( j  defined 

by  

       zf j  =  
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 + 



1

,

k

k

jk za       for Uz         …(5.2.18)

  

 be  in  the  class  ,,,qnA  for every mj ,...,2,1 . 

Then the function  zF  defined by 
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       for every mj ,..,2,1 . Hence  
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 By Theorem – 1, it follows that  zF   ,,,qnA . 

   

  Theorem –6:  The class  ,,,qnA  is closed under 

convex linear combination. 

       

 Proof: Let the functions )(zf j   2,1j  defined by 

(5.2.18) be in the class  ,,,qnA . It is sufficient to show that 

the function 

  zH  = t  zf1  +    zft 21                          10  t  
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  By Theorem –1, it follows that  zH   ,,,qnA . 
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Therefore from equation (5.2.20) we conclude in view of  

Theorem–1 that  zf   ,,,qnA . 

   

Conversely : As  zf   ,,,qnA then in view of Theorem–2 

we have 
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This completes the proof of Theorem–7. 

 

  Integral Operator for function 

  Theorem – 8:  Let the function  zf  given by (5.1.1) be in 

 ,,,qnA . Then the integral operator 
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The result is sharp for the function  zf  given by 

      

   
z

qq
q

qqq

z
zf

n

nq











11
)!1(

1

1!111
)(

       …(5.2.23)                            

   

Proof : Let  zf   ,,,qnA . Then for  
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  Therefore, the value of  satisfies the range 
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for each Nk . From (5.2.25), we obtain 
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    We see that  kH  is increasing therefore   )1(HkH   

it means  kHH  )1( . 

  Now the result in (5.2.21) follows immediately. 

   

 Modified Hadamard Product 

Theorem-9: Let the function   2,1jzf j defined by (5.2.18) 

be in the class  ,,,qnA . Then the modified Hadamard 

product (or convolution) of  zf1  and  zf2  by 
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  The result is sharp for the functions  zf j  2,1j  

given by 
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Proof: In order to prove Theorem –9, we have to find the largest   

in view of Theorem –2 and (5.2.26) i.e. 
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Since  zf1  and  zf2  are in  ,,,qnA  then for  zf1  

and  zf2  we have the following inequalities 
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 Now by Cauchy – Schwartz inequality and then in view of 

Theorem - 2, we have 
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Then for the convolution  zf1  and  zf2  in class 

 ,,,qnA  in view of (5.2.29) and (5.2.30) we have 
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        On simplifying the inequality (5.2.31) we obtain 
  )(kG           

              where the function    kG is  
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We see that )(kG is an increasing function of k , 

therefore     G(k)1G   

 i.e. )1(  G   

            which means in view of (5.2.32) at  1k  gives (5.2.27).        

          

5.3      APPLICATIONS 

 

As application of the theorems established in this section contain 

certain known and new results for the known class )(*  of 

univalent meromorphic functions with positive coefficients. 

We illustrate some results deduced from our main theorems as 

follows: 

(i) For the choice of 0 qn  in Theorem-1, we get 

known corollary due to Kavitha et al [3, p.111]. 

 

(ii) If in Theorem-2 we put 0 qn  then it reduces to the 

known corollary due to Kavitha et al [3, p.111]. 

   

(iii) For 0 qn  and 0m in Theorem-3, we get the 

following corollary: 
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 The result is sharp for the function  zf  given in 

(5.4.5). 

(iv) At 0 qn  in Theorem–4 provides the 

following corollary: 

 

Corollary-2. Let the function  zf  defined by (5.2.1) 

be in the class  * .  

Then  zf  is meromorphically starlike of order 
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The result in (5.4.7) is sharp for the function  zf  given 

by (5.4.3). 

(v)  If in Theorem-8 we take 0 qn  then it 

reduces to the know corollary due to Uralegaddi and 

Ganigi [6]. 

  

(vi)  For 0 qn  in Theorem-9 we have the 

following corollary:  
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