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ON EXISTENCE OF SOLUTIONS FOR η− GENERALIZED IMPLICIT
VECTOR VARIATIONAL- LIKE INEQUALITIES

TIRTH RAM

Abstract. In this work, we intend to introduce and study a class of η generalized im-
plicit vector variational- like inequalities and a class of η generalized implicit strong vec-
tor variational -like inequalities in the setting of Hausdorff topological vector spaces.An
equivalence result concerned with two classes of η− generalized implicit vector variational-
like inequalities is proved under the suitable conditions.By using FKKM theorem, some
new existence results of solutions for the η generalized implicit vector variational-like
inequalities and η− generalized strong implicit vector variational-like inequalities are
obtained under some suitable conditions.

Key Words : Generalized parametric quasi-variational inclusions, sensitivity analy-
sis, resolvent operator, Hausdorff metric.

1. Introduction

Vector variational inequality was first introduced and studied by Giannessi [1] in the

setting of finite dimensional Eucledean spaces. since then,the theory with applications

for vector variational like inequalities, vector problems, vector equilibrium problems, and

vector optimization problems, have been studied and generalized by many authors(see,

e.g.,[2-14] and refernces therein). Recently Yu et al [15] considered a more general form

of weak vector variational inequalities and proved some new results on the existence of

solutions of the new class of weak vector variational inequalities in the setting of Haus-

dorff topological vector spaces and Ahmed and Khan [16] introduced and considered weak

vector variational like inequalities with η− generally convex mapping and gave some ex-

istence results.

On the other hand, Fang and Huang [17] studied some existence results of solutions for

a class of strong vector variational inequalities in Banach spaces which give a positive

answer to an open problem proposed by Chen and Hou [18].

In 2008, Lee et al.[19] introduced a new class of strong vector variational type inequalities

in Banach spaces. They obtained the existence theorems of solutions for the inequalities

without monotonicity in Banach spaces by using Broweder Fixed point Theorem. Moti-

vated and inspired by the work mentioned above , in this paper we introduce and study

a class of η− generalized implicit vector variational- like inequalities and a class of η−
generalized strong implicit vector variational -like inequalities in the setting of Haudorff

toplogical vector spaces. We first show an equivalence theorem concerned with the two

classes of η− generalized implicit vector variational -like inequalities under suitable con-

ditions. By ussing FKKM theorem, we prove some new existence results of solutions for
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the η− generalized implicit vector variational like inequalities and η− generalized strong

implicit vector variational-like inequalities under some suitable conditions.The results pre-

sented in this paper improve and generalize some known results due to Ahmed and khan

[16], Lee et al. [19], and Yu et al. [15].

2. Preliminaries

Let X and Y be two real Hausdorff topological vector spaces, K ⊂ X a nonempty,

closed, and convex subset, and C ⊂ Y a closed, convex, and pointed cone with apex at

the origin. Recall that the Hausdorff topological vector space Y is said to be an ordered

Hausdorff toplogical vector space by (Y,C) if ordering relations are defined in Y as follows:

∀x, y ∈ Y, x ≤ y ⇐⇒ y − x ∈ C,

∀x, y ∈ Y, x � y ⇐⇒ y − x /∈ C,

If the intC 6= φ, then the weak ordering relations in Y is defined as follows:

∀x, y ∈ Y, x < y ⇐⇒ y − x ∈ intC,

∀x, y ∈ Y, x 6< y ⇐⇒ y − x /∈ intC,

Let L(X, Y ) be the space of all continuous linear maps from X toY and‘T : X →
L(X, Y ). We denote the value of l ∈ L(X, Y ) on x ∈ Xby(l, x). throughout this paper,

we assume that C(x) : x ∈ K is a family of closed, convex, and pointed cones of Y such

that intC 6= φ for allx ∈ K, η is a mapping from K ×K into Y .

In this paper, we consider the following two kinds of vector variational inequalities:- η−
Generalized Implicit Vector Variational-Like Inequality (in short,η− GIVVLI): for each

z ∈ K and λ ∈ (0, 1], findx ∈ K such that

〈T (λx+ (1− λ)z), η(y, x)〉+ f(y, g(x)) /∈ −intC(x), ∀y ∈ K,

η−Generalized Strong Implicit Vector Variational-Like Inequality(in short,η−GSIVVLI):

for each z ∈ K and λ ∈ (0, 1], findx ∈ K such that

〈x+ (1− λ)z), η(y, x)〉+ f(y, g(x)) /∈ −C(x) \ {0}, ∀y ∈ K,

Definition 2.1 Let T : K → L(X, Y ) and η : K × K → K be two mappings and

C =
⋂

x∈K C(x) 6= φ. T is said to be η− monotone in C if and only if

〈T (x)− T (y), η(x, y)〉 ∈ C,∀x, y ∈ K.(2.1)

Definition 2.2 Let T : K → L(X, Y ) and η : K × K → K be two mappings. We say

that T is η− hemicontinuous if, for given any x, y, z ∈ K and λ ∈ (0, 1], the mapping

t 7→ 〈T (λ(x+ (1− t)(y − x)) + (1− λ)z), η(x, y)〉 is continuous at 0+.
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Definition 2.3 A multivalued mapping Let A : X → XY is said to be upper semicontin-

uous on X if, for all x ∈ X and for each open set G in Y with A(x) ⊂ G, there exist an

open neighbourhood O(x) of x ∈ X such that A(x
′
) ⊂ G for all x

′ ∈ O(x).

Lemma 2.4([21]).Let (Y,C) be an ordered topological vector space with a closed, pointed

convex cone C with intC(x) 6= Φ. Then for any y, z ∈ Y, we have

(i) y − z ∈ intC and y /∈ intC imply z /∈ intC;

(ii) y − z ∈ C and y /∈ intC imply z /∈ intC;

(iii) y − z ∈ −intC and y /∈ −intC imply z /∈ −intC;

(iv) y − z ∈ −C and y /∈ −intC imply z /∈ −intC.

Lemma 2.5([22]).Let M be a nonempty closed , and convex subset of a Hausdorff

topological space, and G : M → 2M is a multivalued map.Suppose that for any finite

x1, x2, · · ·xn ⊂
⋃n

i=1G(xi) (i.e F is a KKM mapping) G(x) is closed for each x ∈ M

and compact for some x ∈M, where we have conv deotes the convex hull operator.Then⋂
x∈M G(x) 6= Φ.

Lemma 2.6([23]).Let X Hausdorff topological linear space, A1, A2, · · ·An be nonempty,

closed compact and convex subsets of X. Then conv(
⋃n

i=1Ai) is compact.

Lemma 2.7([24]).Let X and Y be two topological spaces.If A : X → 2Y is upper semi-

continuous with closed values, then A is closed.

3. Main Results

Theorem 3.1. Let K be nonempty set, closed and convex subset of Hausdorff topological

vector space X , and (Y,C(x)) an ordered topological vector space with intC(x) 6= φ for

all x ∈ K. Let g : K → K,and let η : K × K → X and f : K × K → X be affine

mappings such that η(x, x) = f(x, g(x)) = 0 for each x ∈ K. Let T : K → L(X, Y ) be an

η− hemicontinuos mapping. If C =
⋂

x∈K C(x) 6= φ. and T is η monotone in C, then for

each z ∈ K,λ ∈ (0, 1], the following statements are equivalent

(i) find x0 ∈ K such that 〈Tz(x0), η(y, x0)〉+ f(y, g(x0)) /∈ −intC(x0), for all y ∈ K;

(ii) find x0 ∈ K such that 〈Tz(y), η(y, x0)〉+ f(y, g(x0)) /∈ −intC(x0), for all y ∈ K;

where T(z) is defined by Tz(x) = T (λx+ (1− λ)z for all x ∈ K.

Proof. Suppose that (i) holds. We can find x0 ∈ K, such that

〈Tz(x0), η(y, x0)〉+ f(y, g(x0)) /∈ −intC(x0), ∀ y ∈ K(3.1)

Since T is η− monotone, for each x, y ∈ K, we have

〈T (λy + (1− λ)z)− T (λx+ (1− λ)z), η(λy + (1− λ)z, λx+ (1− λ)z)〉 ∈ C(3.2)
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On the other hand, we know η is affine and η(x, x) = 0. It follows that

〈Tz(y)− Tz(x), η(y, x)〉

=
1

λ
〈T (λy + (1− λ)z)− T (λx

+ (1− λ)z), η(λy + (1− λ)z, λx+ (1− λ)z)〉 ∈ C(3.3)

Hence Tz is also η− monotone. That is

〈Tz(x0), η(y, x0)〉 − 〈Tz(y), η(y, x0)〉 ∈ −C∀y ∈ K.(3.4)

since C =
⋂

x∈K C(x), for all y ∈ K

〈Tz(x0), η(y, x0) + f(y, g(x0))〉 − 〈Tz(y), η(y, x0)〉 − f(y, g(x0)) ∈ −C ⊂ −C(x0).(3.5)

By Lemma 2.4,

〈Tz(x0), η(y, x0)〉+ f(y, g(x0)) /∈ −intC(x0),∀y ∈ K,(3.6)

and so x0 is a solution of (ii). Conversly suppose that (ii) holds. Then there exists x0 ∈ K
such that

〈Tz(y), η(y, x0) + f(y, g(x0))〉 /∈ −intC(x0),∀y ∈ K.(3.7)

For each y ∈ K, t ∈ (0, 1), we let yt = ty + (1− t)x0. Obviously, yt ∈ K

〈Tz(yt), η(yt, x0) + f(yt, g(x0))〉 /∈ −intC(x0),(3.8)

Since f and η are affine and η(x0, x0) = f(x0, g(x0)) = 0, we have

〈T (λ(ty + (1− t)x0) + (1− λ)z), tη(y, x0)〉+ tf(y, g(x0)) /∈ −intC(x0),(3.9)

That is

〈T (λ(x0 + t(y − x0)) + (1− λ)z), η(y, x0)〉+ f(y, g(x0)) /∈ −intC(x0).(3.10)

Considering the η− hemicontinuity of T and letting t→ 0+, we have

〈Tz(x0), η(y, x0) + f(y, g(x0))〉 /∈ −intC(x0),∀y ∈ K.(3.11)

This completes the proof.

Remark If C(x) = C and f(y, g(x)) = 0 for all x, y ∈ K, then Theorem 3.1 is reduced to

Lemma 5 of [17].

Let K be a closed convex subset of a toppological linear space X, and {C(x) : x ∈ K} a

family of closed, convex and a pointed cones of a topological space Y such that intC(x)φ

for all x ∈ K. Throught this paper, we define set- valued mapping C : K → L(X, Y ) as

follows:

C = Y \ {−intC(x)},∀x ∈ K.(3.12)
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Theorem 3.2. Let K be nonempty, closed and convex subset of Hausdorff topological

vector space X , and (Y,C(x)) an ordered topological vector space with intC(x) 6= φ for

all x ∈ K. Let g : K → K,and let η : K × K → X and f : K × K → X be affine

mappings such that η(x, x) = f(x, g(x)) = 0 for each x ∈ K. Let T : K → L(X, Y ) be an

η− hemicontinuos mapping. Assume the following conditions are satisfied

(i) If C =
⋂

x∈K C(x) 6= φ. and T is η monotone in C,

(ii) C : K → 2Y is upper semicontinuous set- valued mapping.

Then for each z ∈ K,λ ∈ (0, 1], there exists x0 ∈ K such that

〈T (λx0 + (1− λ)z), η(y, x0)〉+ f(y, g(x0)) /∈ −intC(x0), for all y ∈ K.(3.13)

Proof. For each y ∈ K, we denote Tz(x) = T (λx+ (1− λ)z), and define

F1(y) = {x ∈ K : 〈Tz(x), η(y, x)〉+ f(y, g(x))},

F2(y) = {x ∈ K : 〈Tz(y), η(y, x)〉+ f(y, g(x))}
Then F1(y) and F2(y) are nonempty since y ∈ F1(y) and y ∈ F2(y). The proof is divided

into the following three steps.

(I) First, we prove the following conclusion: F1 is a KKM mapping. Indeed, assume that

F1 is not a KKM mapping; then there exist u1, u2, · · ·um ∈ K, t1 ≥ 0, t2 ≥ 0, · · · tm ≥ 0

with Σm
i=1ti = 1 and w = Σm

i=1tiui such that

w /∈
m⋃

i=1

F1(ui), i = 1, 2, · · ·m(3.14)

That is,

∀i = 1, 2, · · ·m, 〈Tz(w), η(ui, w)〉+ f(ui, g(w)) ∈ −intC(w).(3.15)

since η and f are affine, we have

〈Tz(w), η(ui, w)〉+ f(w, g(w)) = 〈Tz(w), η(Σm
i=1tiui, w)〉+ f(Σm

i=1tiui, g(w))

= Σm
i=1ti(〈Tz(w), η(ui, w)〉+ f(ui, g(w)) ∈ −intC(w).(3.16)

On the other hand,we know η(w,w) = f(w, g(w)) = 0 then we have

0 = 〈Tz(w), η(w,w)〉+ f(w, g(w)) ∈ −intC(w).

It is impossible and so F1 = K → 2K is a KKM mapping.

(II) Further, we prove that ⋂
y∈K

F1(y) =
⋂
y∈K

F2(y)(3.17)

Infact, if x ∈ F1(y), then〈Tz(x), η(y, x)〉 + f(y, g(x))) /∈ −intC(x) from the proof of

theorem 3.1, we know that Tz is η− monotone in C(z). it follows that

〈Tz(y)− Tz(x), η(y, x)〉 ∈ C,(3.18)
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and so

〈Tz(x), η(y, x)〉+ f(y, g(x))− 〈Tz(y), η(y, x)〉 − f(y, g(x)) ∈ −C ⊂ −C(x)(3.19)

By Lemma 2.4, we have

〈Tz(y), η(y, x)〉+ f(y, g(x)) /∈ −intC(x)(3.20)

and so x ∈ F2(y) for each y ∈ K. That is, F1(y) ⊂ F2(y) and so⋂
y∈K

F1(y) ⊂
⋂
y∈K

F2(y)(3.21)

Conversely suppose that x ∈
⋂

y∈K F2(y). Then

〈Tz(y), η(y, x)〉+ f(y, g(x)) /∈ −intC(x)∀y ∈ K.(3.22)

it follows from Theorem 3.1 that

〈Tz(x), η(y, x)〉+ f(y, g(x)) /∈ −intC(x)∀y ∈ K.(3.23)

That is, x ∈
⋂

y∈K F1(y). and so⋂
y∈K

F2(y) ⊂
⋂
y∈K

F1(y),(3.24)

which implies that ⋂
y∈K

F1(y) =
⋂
y∈K

F2(y)(3.25)

(III) We prove that
⋂

y∈K F2(y) 6= Φ Indeed, since F1 is a KKM mapping, we know that,

for any finite set {y1, y2, · · · yn} ⊂ K, one has

conv{y1, y2, · · · yn} ⊂
n⋃

i=1

F1(yi) ⊂
n⋃

i=1

F2(yi))(3.26)

This shows that F2 is also a KKM mapping.

Now we prove that F2(y) is closed for all y ∈ K. Assume that there exists a net {xα} ⊂
F2(y) with xα → x ∈ K. Then

〈Tz(y), η(y, xα)〉+ f(y, g(xα)) /∈ −intC(xα)(3.27)

Using the definition of C, we have

〈Tz(y), η(y, xα)〉+ f(y, g(xα)) /∈ −intC(xα)(3.28)

Since η and f are continuous, it follows that

〈Tz(y), η(y, xα)〉+ f(y, g(xα)) → 〈Tz(y), η(y, x)〉+ f(y, g(x))(3.29)

Since C is upper semicontinuous mapping with close values, by Lemma 2.7, we know that

C is closed, and so

〈Tz(y), η(y, x)〉+ f(y, g(x)) ∈ C(x).(3.30)

This implies that

〈Tz(y), η(y, x)〉+ f(y, g(x)) /∈ −intC(x)(3.31)
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, and so F2(y) is closed.Considering the compactness of K and closedness of F2(y) ⊂ K

we know that F2(y) is compact. By Lemma 2.5, we have
⋂

y∈K F2(y) 6= Φ, and it follows

that
⋂

y∈K F1(y) 6= Φ, that is, for each z ∈ K and λ ∈ (0, 1],there exists x0 ∈ K such that

〈T (αx0 + (1− α)z), η(y, x0)〉+ f(y, g(x0)) /∈ −intC(x0)∀y ∈ K.(3.32)

, Thus, η −GIV V LI is solvable. This complete the proof.

Remark If C(x) = C and f(y, g(x)) = 0 for all x, y ∈ K in theorem 3.3., the condition

(ii) holds and condition (i)is equivalent to the η− monotonicity of T . Thus, it is easy to

see that Theorem 3.3 is a generalization of [17, Theorem 6].

In the above theorem, K is compact. In the following theorem, under some suitable

conditions, we prove a new existence result of solutions for η − GIV V LI without the

conditions of compactness of K.

Theorem 3.3. Let K be nonempty, closed and convex subset of Hausdorff topological

vector space X , and (Y,C(x)) an ordered topological vector space with intC(x) 6= φ for

all x ∈ K. Let g : K → K,and let η : K × K → X and f : K × K → X be affine

mappings such that η(x, x) = f(x, g(x)) = 0 for each x ∈ K. Let T : K → L(X, Y ) be an

η− hemicontinuos mapping. Assume the following conditions are satisfied

(i) If C =
⋂

x∈K C(x) 6= φ. and T is η monotone in C,

(ii) C : K → 2Y is upper semicontinuous set- valued mapping.

(iii) there exists a nonempty compact and convex subset D of K and for each z ∈
K,λ ∈ (0, 1], x ∈ K \D, there exist y0 ∈ D such that

〈T (λy0 + (1− λ)z), η(y0, x)〉+ f(y0, g(x)) ∈ −intC(y0).(3.33)

Then for each z ∈ K,λ ∈ (0, 1], there exists x0 ∈ D such that

〈T (λx0 + (1− λ)z), η(y, x0)〉+ f(y, g(x0)) /∈ −intC(x0), for all y ∈ K.(3.34)

Proof. By Theorem 3.1, we know that the solution set of the problem (ii) in Theorem 3.1

is equivalent to the solution set of the following variational inequality: find x ∈ K,such

that

〈T (λy + (1− λ)z), η(y, x)〉+ f(y, g(x)) /∈ −intC(x),∀y ∈ K.(3.35)

For each z ∈ K and λ ∈ (0, 1], we denote Tz(x) = T (λx+ (1− λ)z). Let G : K → 2D be

defined as follows:

G(y) = {x ∈ D : 〈Tz(y), η(y, x)〉+ f(y, g(x)) /∈ −intC(x),∀y ∈ K.}(3.36)

Obviously , for each y ∈ K,

G(y) = {x ∈ D : 〈Tz(y), η(y, x)〉+ f(y, g(x)) /∈ −intC(x)} ∩D.(3.37)

Using the proof of Theorem 3.3, we obtain that G(y) is a closed subset of D. Considering

the compactness of D and closedness of G(y), we know that G(y) is compact.

Now we prove that for any finite set {y1, y2, · · · yn} ⊂ K, one has
⋂n

i=1G(yi) 6= ψ Let
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Yn =
⋃n

i=1{yi}. Since Y is a real Hausdorrf topological vector space, for each yi ∈
{y1, y2, · · · yn}, {yi} is compact and convex. Let N = conv(D ∪ Yn). By Lemma 2.6,

we know that N is a compact and convex subset of K.

Let F1, F2 : N → 2N be defined as follows:

F1(y) = {x ∈ N : 〈Tz(x), η(y, x)〉+ f(y, g(x)) /∈ −intC(x),∀y ∈ N ; }(3.38)

F2(y) = {x ∈ N : 〈Tz(y), η(y, x)〉+ f(y, g(x)) /∈ −intC(x),∀y ∈ N.}(3.39)

Using the proof of Theorem 3.3, we obtain⋂
y∈N

F1(y) =
⋂
y∈N

F2(y) 6= Φ,(3.40)

and so there exists y0 ∈
⋂

y∈N F2(y).

Next we prove that y0 ∈ D. In fact, if y ∈ K \D, then the assumption implies that there

exists u ∈ Dsuch that have

〈T (λu+ (1− λ)z), η(u, y0)〉+ f(u, g(y0)) ∈ −intC(u),(3.41)

Which contradicts y0 ∈ F2(u) and so y0 ∈ D.
Since {y1, y2, · · · yn} ⊂ N and G(yi) = F2(yi) ∩ D for each yi ∈ {y1, y2, · · · yn} it follows

that y0 ∈
⋂n

i=1G(yi). Thus for any finite set {y1, y2, · · · yn} ⊂ K , we have
⋂n

i=1G(yi) 6= φ.

Considering the compactness of G(y) for each y ∈ K, we know that there exists x0 ∈ D

such that x0 ∈
⋂

y∈K G(y)φ. Therefore, the solution set of η − GIV V LI is nonempty.

This completes the proof.

In the following, we prove the solavability of η−GSIV V LI under some suitable ondi-

tions by using FKKM theorem.

Theorem 3.4. Let Xbe a Hausdorff topological linear space, K ⊂ X a nonempty, closed,

and convex set, and (Y,C(x)) an ordered Hausdorff topological vector space with intC(x) 6=
φ for all x ∈ K. Assume that for each y ∈ K, x → η(x, y) and x → f(g(x)) are affine,

η(x, y) + η(y, x) = 0, and f(g(x), y) + f(y, g(x)) = 0 for all x ∈ K, where g : K → K. Let

T : K → L(X, Y ) be mapping such that

(i) for each z, y ∈ K,λ ∈ (0, 1], the set {x ∈ K : 〈T (λx + (1 − λ)z), η(y, x)〉 +

f(y, g(x)) ∈ −C(x) \ {0}} is open in K;

(ii) there exists a nonempty compact and convex subset D of K and for each z ∈
K,λ ∈ (0, 1], x ∈ K \D, there exists u ∈ D such that

〈T (λx+ (1− λ)z), η(y, x)〉+ f(y, g(x)) ∈ −C(x) \ {0}(3.42)

Then for each z ∈ K,λ ∈ (0, 1], there exists x0 ∈ K such that

〈T (λx0 + (1− λ)z), η(y, x0)〉+ f(y, g(x)) /∈ −C(x0) \ {0}∀y ∈ K.(3.43)

Proof. For each z ∈ K and λ ∈ (0, 1], we denote Tz(x) = T (λx+(1−λ)z). Let G : K → 2D

be defined as follows:

G(y) = {x ∈ K : 〈Tz(x), η(y, x)〉+ f(y, g(x)) /∈ −C(x) \ {0}}∀y ∈ K.(3.44)
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Obviously, for each y ∈ K,

G(y) = {x ∈ D : 〈Tz(x), η(y, x)〉+ f(y, g(x)) /∈ −C(x) \ {0}} ∩D.(3.45)

Since G(y) is closed subset of D, considering the compactness of D and closedness of G(y)

is compact.

Now we prove that for any finite set {y1, y2, · · · yn} ⊂ K, one has
⋂n

i=1G(yi) 6= Φ.

Let Yn =
⋃n

i=1{yi}. Since Y is real Hausdorff topological vector space, for each yi ∈
{y1, y2, · · · yn}, {yi} is compact and convex. Let N = conv(D ∪ Yn). By Lemma2.6, we

know that N is compact and convex subset of K. Let F : N to2N be defined as folows:

F (y) = {x ∈ N : 〈Tz(x), η(y, x)〉+ f(y, g(x)) /∈ −C(x) \ {0}},∀y ∈ N.(3.46)

We claim that F is KKM mapping.Indeed, assume that F is not a KKM mapping. Then

there exist u1, u2, · · ·um ∈ K, t1 ≥ 0, t2 ≥ 0, · · · tm ≥ 0 with
∑m

i=1 ti = 1 and w =
∑m

i=1 tiui

such that

w /∈
m⋃

i=1

F (ui), i = 1, 2, · · ·m(3.47)

That is,

∀i = 1, 2, · · ·m 〈Tz(w), η(ui, w)〉+ f(ui, g(w)) ∈ −C(w) \ {0}.(3.48)

Since η and f are affine, we have

〈Tz(w), η(w,w)〉+ f(w, g(w)) = 〈Tz(w), η(
m∑

i=1

tiui, w)〉+ f(
m∑

i=1

tiui, g(w))

=
m∑

i=1

ti〈Tz(w), ηui, w)〉+ f(ui, g(w)) ∈ −C(w) \ {0}.(3.49)

On the other hand, we know that η(w,w) = f(w, g(w)) = 0, and so

0 = 〈Tz(w), η(w,w)〉+ f(w, g(w)) ∈ −C(w) \ {0}.(3.50)

which is impossible. Therefore, F : N → 2N is a KKM mapping. Since F (y) is a closed

subset of N , it follows that F (y) is compact. By Lemma 2.5, we have⋂
y∈N

F (y) 6= Φ.(3.51)

Thus, there exists y0 ∈
⋂

y∈N F (y). Next we prove that y0 ∈ D. In fact, if y ∈ N \ D,
then the condition (ii) implies that there exists u ∈ D such that

〈T (λy0 + (1− λ)z), η(u, y0)〉+ f(u, g(y0)) ∈ −C(y0) \ {0},(3.52)

which contradicts y0 ∈ F (u) and so y0 ∈ D. Since {y1, y2, · · · yn} ⊂ N and G(yi) =

F (yi) ∩ D for each yi ∈ {y1, y2, · · · yn}. Thus, for any finite set {y1, y2, · · · yn} ⊂ K, we

have ∩n
i=1G(yi) 6= Φ. Considering the compactness of G(y) for each y ∈ K, it is easy
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to know that there exists x0 ∈ D such that x0 ∈ ∩y∈KG(y) 6= Φ. Therefore, for each

z ∈ K,λ ∈ (0, 1], there exists x0 ∈ K such that

〈T (λx0 + (1− λ)z), η(y, x0)〉+ f(y, g(x0)) ∈ −C(x0) \ {0},∀y ∈ K.(3.53)

Thus, η− GSIVVI is solvable. This completes the proof. Remark 3.8. If K is compact,

C(x) = C, g = I and λ = 1, then Theorem 3.7 is reduced to Theorem 2.1 in [20].
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