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Abstract 

 
 The aim of this paper is to introduce the concept of 

(i, j) - δg*-closed sets in bitopological spaces and 

study their properties. We prove that this class lies 

between the class of (i, j) - δ-closed sets and the 

class of (i, j) - δg-closed sets. Also we discuss some 

basic properties and applications of (i, j)- δg*-

closed sets, which defines a new class of spaces 

namely (i, j)- g* 1
2

T -spaces, (i, j)- *
g* 1

2
T -spaces,               

(i, j)-
1

2
g*T  -spaces and (i, j)- g 1

2
T -spaces. 

Keywords: (1, 2)- δg-closed set, (1, 2)- δ-closed set, 

(1, 2)- δg*-closed set. 

Ams subject classification: 54E55, 54C55. 

 

1. Introduction 
 

 A triple  1 2X, ,   where X is a non-

empty set and 1  and 2  are topologies on X is 

called a bitopological space and Kelly [8] initiated 

the study of such spaces. Njastad[12], Velicko [20] 

introduced the concept of α-open sets and δ-closed 

sets respectively. Dontchev and Ganster [4] studied 

δ-generalized closed set in topological spaces. 

Levine [10] introduced generalization of closed sets 

and discussed their properties. In 1985, Fukutake [5] 

introduced the concepts of g-closed sets in 

bitopological spaces and after that several authors 

turned their attention towards generalizations of 

various concepts of topology by considering 

bitopological spaces. Also M. E. Abd El-Monsef [1] 

et al investigated α-closed sets in topological spaces. 

Sheik John et al [14] introduced g*-closed sets in 

bitopological spaces. Sudha et al. [16] introduced 

the concept of δg*-closed sets in topological spaces 

and investigated its relationship with the other types 

of closed sets.  The purpose of the present paper is 

to define a new class of closed sets called (i, j) - 

δg*-closed sets and we discuss some basic 

properties of (i, j)-δg*-closed sets in bitopological 

spaces.  Applying these sets, we obtain the new 

spaces called (i, j)- g* 1
2

T - space, (i, j)- *
g* 1

2
T -space, 

(i, j)-
1

2
g*T  - space and (i, j)- g 1

2
T - space. 

 

2. Preliminaries 

 
If A is a subset of X with the topology, 

then the closure of A is denoted by -cl(A) or cl(A), 

the interior of A is denoted by -int(A) or int(A) and 

the complement of A in X is denoted by cA .    

 

2.1. Definition  
 

A subset A of a topological space (X, ) is 

called a 

(i) semi-open set [9] if A  cl(int(A)). 

(ii) α-open set [12] if A  int(cl(int(A))). 

(iii) regular open set [16] if A = int (cl(A)). 

(iv) Pre-open set [11] if A  int(cl(A)). 

The complement of a semi open (resp. α-open, 

regular open, pre-open) set is called semi-closed                      

(resp. α-closed, regular closed, pre-closed).  

The semi-closure [3] (resp. -closure [12], pre-

closure [11]) of a subset A of (X, ), denoted by 

scl(A) (resp. cl (A)  , pcl(A)) is defined to be the 

intersection of all semi-closed (resp.-closed, pre-

closed) sets containing A. It is known that scl(A) 

(resp. cl (A) , pcl(A)) is a semi-closed  (resp.-

closed, pre-closed) set. 

 

2.2. Definition  
  

 The δ-interior [20] of a subset A of X is the 

union of all regular open sets of X contained in A 

and is denoted by int (A) .The subset  A is called    
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δ-open [20] if A = )A(int . i.e., a set is δ-open if it 

is the union of regular open sets, the complement of 

a δ-open is called δ-closed. Alternatively, a set A  

X is called δ-closed [20] if A = cl (A) , where 

 cl (A) x X; int (cl( )) A , U and x U .       U

Every δ-closed set is closed [20].  

 

2.3. Definition   
 

 A subset A of (X,) is called   

1) δ-generalized closed (briefly δg-closed) [4]                 

if cl (A)   U whenever A  U and U is open                  

in (X, ). 

2) generalized closed (briefly g-closed) [10] if                

cl(A)  U whenever A  U and U is open in 

(X, ). 

3) g
*
- closed [19] if cl(A)  U whenever A  U 

and U is g-open in (X, ). 

Throughout this paper by the spaces X and Y 

represent non-empty bitopological spaces on which 

no separation axioms are assumed, unless otherwise 

mentioned and the integers i, j {1, 2}.  

For a subset A of X, i cl(A)  (resp. 

i int(A)  , i pcl(A)  ) denote the closure (resp. 

interior, pre closure) of A with respect to the 

topology .i  We denote the family of all g-open 

subsets of X with respect to the topology i  by 

GO(X, i ) and the family of all j -closed sets is 

denoted by the symbol jF . By (i, j) we mean the pair 

of topologies  i j, .    

 

2.4. Definition  
 

A subset A of a bitopological space  21,,X   

is called  

1) (i, j) g-closed [5] if j -cl(A)  U whenever              

A  U and U is open in i . 

2) (i, j) g*-closed [14] if j -cl(A)  U whenever           

A  U and U is g-open in i . 

3) (i, j) rg-closed [2] if j -cl(A)  U whenever            

A  U and U is regular open in i . 

4) (i, j) wg-closed [6] if j -cl( i -int(A))  U 

whenever A  U and U is open in i . 

5) (i, j) gpr-closed [6] if j -pcl(A)  U whenever 

A  U and U is regular open in i . 

6) (i, j) αg*-closed [18] if j -cl(A)  U whenever 

A  U and U is α-open in i . 

7) (i, j) g*p-closed [17] if j -pcl(A)  U 

whenever A  U and U is g-open in i . 

8) (i, j) w-closed [7] if j -cl(A)  U whenever            

A  U and U is semi-open in i . 

9) (i, j) sαg*-closed [13] if j -αcl(A)  U 

whenever A  U and U is g*-open in i . 

 

2.5. Definition  
 

A bitopological space  21 ,,X   is called   

1) (i, j)- 1
2

T -space [5] if every (i, j)-g-closed set is 

j -closed.  

2) (i, j)- *

2
1T -space [14] if every (i, j)-g*-closed set 

is j -closed. 

3) (i, j)-
2

1
* T -space [14] if every (i, j)-g-closed set 

is (i, j)-g*-closed. 

 

3. (i, j) - δg*-closed sets in bitopological 

spaces 

 
In this section we introduce the concept of 

(i, j) - δg*-closed sets in bitopological spaces and 

discuss the related properties.  

 

3.1. Definition  

 

A subset A of a bitopological space 

 21,,X   is said to be an (i, j) - δg*-closed                       

set if j cl (A) U,   whenever A ⊆ U and 

UGO  i,X   

We denote the family of all (i, j) - δg*-

closed sets in  21,,X  by  ).j,i(D*
  

 

3.2. Remark  
 

By setting 21   in Definition 3.1., a                

(i, j) - δg*-closed set is δg*-closed.  

 

3.3. Proposition  
 

If A is j -δ-closed subset of  21 ,,X  , 

then A is (i, j)-δg*-closed. 
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Proof: Let A be a j -δ-closed subset of  21 ,,X  . 

Then j cl (A) A.    Let UGO  i,X   such that 

A ⊆ U, then UA)A(clj   which implies A 

is (i, j) - δg*-closed. 

The converse of the above proposition is 

not true as seen from the following example. 

 

3.4. Example  
 

 Let X = {a, b, c}, 1 = {X, , {a}},                

2 = {X,  ,{b}, {c},{a, b},{b, c}}. Then the subset 

{b, c} is (1, 2) - δg*-closed but not 2 - δ-closed set. 

 

3.5. Proposition  
 

If A is both i -g-open and (i, j) - δg*-

closed, then A is j -δ-closed. 

Proof: Let A be both i -g-open and (i, j)-δg*-

closed. Since A is (i, j)-δg*-closed, we have                      

A ⊆ U and U  GO  i,X   which implies 

U)A(clj   and since A is i -g-open. Put              

A = U, then we have A)A(clj   , implies A is 

a j -δ-closed set. 

 

3.6. Proposition  
 

If A is both i -g-open and (i, j)- δg*-

closed, then A is j -closed.  

Proof: Since δ – closedness ⇒ closedness, the result 

follows the above Proposition 3.5. 

 

3.7. Proposition  
 

If A, B ),j,i(D*
  then A  B  ).j,i(D*

  

Proof: Let A and B be (i,j)-δg*-                               

closed.  Let   A  B ⊆ U where U  GO  .,X i  

Now A  B ⊆ U implies A ⊆ U and B ⊆ U.                    

Since A, B ),j,i(D*
  implies j cl (A) U                           

and j cl (B) U.    Then ( j cl (A)    

j cl (B)) U.    That is .U)BA(clj    

Hence A  B  ),j,i(D*
   

 

 

 

 

 

3.8. Remark  
 

The intersection of two (i, j)-δg*-closed 

need not be (i, j)-δg*-closed as seen from the 

following example. 

 

3.9. Example  

 

Let X = {a, b, c}, 1 = {X, , {a}},                  

2 = {X, , { b}, {c},{a, b},{b, c}}. Then {a, b} & 

{b, c} are (1, 2) - δg*-closed sets but {a, b} ∩ {b, c} 

= {b} is not (1, 2) - δg*-closed. 

 

3.10. Proposition  
 

For each element x of  ,,,X 21   x  is 

i -g-closed or  c
x  

is (i, j)- δg*-closed. 

Proof: If  x  is i -g-closed, then the proof is over. 

Assume  x  is not i -g-closed. Then  c
x  is not  

i -g-open. So the only i -g-open containing  c
x  

in X. Hence  c
x  is (i, j) - δg*-closed. 

 

3.11. Proposition  
 

If A is (i, j) - δg*-closed, then 

A/)A(clj   contains no non-empty i -g-closed 

set. 

Proof: Let A be (i, j)-δg*-closed and F be a non 

empty i -g-closed subset of A/)A(clj  .               

Now 
c

jj A)A(clA/)A(clF    

which implies )A(clF j   and .AF c  

Therefore .FA c   Since cF  is i -g-open                   

and A is (i, j)-δg*-closed in X, we 

have
c

j F)A(cl    which implies that 

   
c

j jF cl (A) cl (A) .        Therefore            

F = .  Hence A/)A(clj   contains no non-

empty i -g-closed set. 

The following example shows that the 

reverse implication of the above theorem is not true. 

 

3.12. Example  

 

Let X = {a, b, c}, 1 = {X, , {a}, {a, c}}, 

2 = {X, , {a, b}}.  If A = {a}, then 

A/)A(clj  = {b, c} does not contain any non-
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empty 1 -g-closed set. But A is not (1, 2) - δg*-

closed. 

 

3.13. Corollary  
 

If A is (i, j)-δg*-closed in  ,,,X 21  then 

A is j -δ-closed if and only if A/)A(clj  is i -

g-closed. 

Proof: (Necessity) Let A  *D (i, j)  and let A be 

j -δ-closed.  

Then j cl (A) A.   i.e., A/)A(clj  =  and 

hence A/)A(clj  is i -g-closed. 

(Sufficiency) If A/)A(clj  is i -g-closed, then 

by Proposition 3.11, A/)A(clj  = , since A is   

(i, j)-δg*-closed. Hence .A)A(clj    Therefore 

A is j -δ-closed. 

 

3.14. Proposition   
 

If A is an (i, j)-δg*-closed set, then 

  A)x(cli  holds for each x )A(clj   

Proof:  Let A be (i, j)- δg*-closed and we know    

i   GO(X, i ). Suppose   A)x(cli  for 

some x )A(clj  , then ,B)x(clXA j    

say.   Then B is a i -δ-open set.  Since a δ-open set                      

is an open set and a open set is g-open, B is                    

g-open in i .  Since A is (i, j)- δg*-closed, we get 

).x(clXB)A(cl jj   Then

  )x(cl)A(cl jj  which implies that  

.)x()A(clj    Hence x )A(clj  ,  

which is a contradiction. 

 The converse of the above proposition is 

not true as seen in the following example. 

 

3.15. Example  
 

Let X = {a, b, c}, 1 = {X, , {a}}, 2 = 

{X, , {a}, {b, c}}. The subset   A = {b} in 

 21,,X   is not (1, 2) - δg*-closed. However 

  A)x(cl1  holds for each x ).A(cl2   

 

 

 

 

 

 

3.16. Proposition  

 

If A is an (i, j)-δg*-closed set of  ji ,,X   

such that A  B  )A(clj  , then B is also an               

(i, j)- δg*-closed set of  .,,X ji   

Proof: Let U be a  i  -g-open set in  ji ,,X   such 

that B  U and hence A  U.  Since A is (i, j)-δg*-

closed, )A(clj     U.  Since A  B  

)A(clj  ,   )B(clj  

.U)A(cl))A(cl(cl jjj    Hence 

U)B(clj   which implies that  B is a                        

(i, j)- δg*-closed set of  .,,X ji   

 

3.17. Proposition  
 

Let A  Y  X and suppose that A is (i, j)- 

δg*-closed in X. Then A is (i, j)- δg*-closed relative 

to Y. 

Proof: Let A  )j,i(D*
 & A  Y ∩ U, U is g-open 

in X. A ⊆ Y ∩ U implies A ⊆ U and since A 

 )j,i(D*
 , )A(clj  ⊆ U. That is )A(clj    

Y  U  Y. Hence )A(cl
Y

j    U  Y.  

Therefore A is (i, j) - δg*-closed relative to Y. 

 

3.18. Theorem  
 

In a bitopological space  21,,X  , 

GO(X, i )  
j

F if and only if every subset of X is 

an (i, j) - δg*-closed set, where 
j

F  is the collection 

of δ-closed sets with respect to j .  

Proof: Suppose that GO(X, i )  .F
j

 Let A be a 

subset of  21,,X  such that A  U where 

UGO(X, i ). Then )A(clj   )U(clj  = U. 

Therefore A is (i, j)-δg*-closed set. 

Conversely, suppose that every subset of             

X is (i, j)- δg*-closed. Let U  GO(X, i ). Since              

U is (i, j) - δg*-closed, we have )U(clj    U. 

Therefore U  
j

F  and hence GO(X, i ) ⊆ 
j

F .  

 

3.19. Proposition  
 

Every (i, j)- δg*-closed set is (i, j)-g-closed. 

Proof: Let A be (i, j) - δg*-closed.  Let A  U              

and U be a open set in i . Since every open set is g-
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open, U is a g-open set. Then )A(clj    U, we 

know that  )U(clj   )U(clj  ⊆ U. Hence A 

is (i, j)- g-closed. 

 

3.20. Remark   

 

A (i, j)-g-closed need not be (i, j)- δg*-

closed as shown in the following example. 

 

3.21. Example  
 

Let X = {a, b, c}, 1 = {X, , {a}}, 2 = 

{X, , {a, b}}. Then the set {b} is (1, 2)-g-closed 

but not (1, 2) - δg*-closed. 

 

3.22. Proposition  
 

Every (i, j) - δg*-closed set is (i, j) - g*-

closed. 

Proof: Let A be (i, j) - δg*-closed. Let A  U and U 

be a g-open set in i  Then )A(clj    U, we 

know that  )U(clj   )U(clj  ⊆ U. Hence A 

is (i, j)- g*-closed. 

 

3.23. Remark  
 

A (i, j)-g*-closed need not be (i, j) - δg*-

closed as shown in the following example. 

 

3.24. Example  
 

Let X = {a, b, c}, 1 ={X, ϕ, {a, b}}, 

2 ={X, ϕ, {b, c}}. Then the set {a} is (1, 2)-g*-

closed but not (1, 2) - δg*-closed. 

 

3.25. Proposition  
 

Every (i, j)- δg*-closed set is (i, j)-rg-

closed. 

Proof: The proof follows from every regular open 

set is g-open.  

 

3.26. Remark  
 

A (i, j)-rg-closed need not be (i, j)- δg*-

closed as shown in the following example.  

 

3.27. Example  
 

Let X = {a, b, c}, 1 = {X, , {a}, {a, b}}, 

2 = {X, , {a, b}}. Then the set {a, b} is (1, 2)-rg-

closed but not (1, 2)- δg*-closed. 

3.28. Proposition  
 

Every (i, j)- δg*-closed set is (i, j)-wg-

closed. 

Proof: Let A be (i, j) - δg*-closed. Let A  U and U 

be a open set in i Since every open set is g-open, U 

is g-open in i  Now i int(A) A,    implies 

j i j jcl( int(A)) cl(A) cl (A)        . Since 

A is (i, j) - δg*-closed, j cl (A) U   . Therefore  

j icl( int(A)) U.      Hence A is (i, j)-wg-closed. 

 

3.29. Remark  
 

A (i, j)-wg-closed need not be (i, j) - δg*-

closed as shown in the following example. 

 

3.30. Example  
 

Let X = {a, b, c}, 1 = {X, , {a}},                   

2 = {X, , {b, c}}. Then the set {b} is (1, 2)-wg-

closed but not (1, 2)- δg*-closed. 

 

3.31. Proposition  
 

Every (i,j)- δg*-closed set is                           

(i, j)-αg*-closed. 

Proof: Let A be (i, j)- δg*-closed. Let A  U  

GO(X, i ), since i   GO(X, i ).Then )A(clj   

 U. We know j -αcl(A)  )A(clj  which 

implies U)A(clj   Therefore A is (i, j)-αg*-

closed. 

 

3.32. Remark  
 

A (i, j)-αg*-closed need not be (i, j) - δg*-

closed as shown in the following example. 

 

3.33. Example  
 

Let X = {a, b, c}, 1 = {X, , {a, b}},              

2 = {X, , {a},{b},{a, b}}. Then the set {a} is                 

(1, 2)-αg*-closed but not (1, 2)- δg*-closed. 

 

3.34. Proposition  
 

Every (i,j)-δg*-closed set is(i,j)-gpr-closed. 

Proof: Let A be (i, j)- δg*-closed. Let A  U                  

and U be regular open. Since every regular              

open set is g-open, U is g-open. Since A is                   

(i, j)- δg*-closed, j cl (A)    U, We                       
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know that  j jpcl(A) cl (A).      That is, 

U)A(cl)A(pcl jj    Therefore  A is      

(i, j)-gpr-closed. 

 

3.35. Remark   

 

A (i, j)-gpr-closed need not be (i, j)- δg*-

closed as shown in the following example. 

 

3.36. Example  
 

Let X = {a, b, c}, 1 = {X, , {a, b}},  2 = 

{X, , {a},{b, c}}. Then the set {b} is (1, 2)-gpr-

closed but not (1, 2)- δg*-closed. 

 

3.37. Proposition  
 

Every (i, j)- δg*-closed set is (i, j)-g*p-

closed. 

Proof: Let A be (i, j)- δg*-closed. Let                             

A  U and U is g-open in .i  Then )A(clj    

U.  We know ).A(cl)A(pcl jj   Therefore 

j pcl(A) U.    Hence A is (i, j)- g*p-closed. 

 

3.38. Remark   

 

A (i, j)-g*p-closed need not be (i, j) - δg*-

closed as shown in the following example. 

 

3.39. Example  
 

Let X = {a, b, c}, 1 = {X, , {a, b}},             

2 = {X, , {a},{b, c}}. Then the set {b} is (1, 2)-

g*p-closed but not (1, 2)- δg*-closed. 

 

3.40. Proposition  
 

Every (i, j)- δg*-closed set is (i, j)-sαg*-

closed. 

Proof: Let A be (i, j) - δg*-closed. Let A  U and U 

is g*-open set in  .i  Since every g*-open set is g-

open, U is g-open. Then )A(clj    U. We know 

j jcl(A) cl (A),      which implies 

.U)A(clj   Therefore A is (i, j)-sαg*-closed. 

 

3.41. Remark  

 
 A (i, j)-sαg*-closed need not be (i, j)- δg*-

closed as shown in the following example. 

 

3.42. Example  

 

Let X = {a, b, c}, 1 = {X, , {a, b}},     

2 = {X, , {a},{b},{a, b}}. Then the set {b} is               

(1, 2)-sαg*-closed but not (1, 2)- δg*-closed. 

 

3.43. Proposition  

 
Every (i, j)- δg*-closed set is (i, j)-δg-

closed. 

Proof: The proof follows from the fact that every 

open set is g-open. 

 

3.44. Remark  

 
A (i, j)- δg -closed need not be (i, j)- δg*-

closed as shown in the following example. 

 

3.45. Example  

 

Let X  = {a, b, c},  1 = {X, , {a}},               

2 = {X, , {a, b}}. Then the set {b} is (1, 2)- δg -

closed but not (1,2)- δg*-closed. 

 

3.46. Remark  

 
The following examples show that (i, j)- w-

closed and  (i, j)- δg*-closed are independent to each 

other. 

 

3.47. Example  

 

Let X = {a, b, c},  1 = {X, , {a}},                      

2 = {X, , {a},{a, b}}. Then the set {a} is (1, 2)- 

w-closed but not (1,2)- δg*-closed. 

 

3.48. Example  

 

Let X = {a, b, c},  1 = {X, , {a}, {a, b}},  

2 = {X, , {a, b}}. Then the set {a} is (1, 2) - δg*-

closed but not (1,2)- w-closed. 

 

3.49. Remark  
 

The following diagram has shown the 

relationship of (i, j)- δg*-closed sets with other 

known existing sets. A        B represents A implies 

B but not conversely and   A          B represents A 

and B are independent to each other. 
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Figure 1 

1. (i, j)- δg*-closed set, 2. (i, j)- wg-closed set,           

3. (i, j)- g*-closed set, 4. (i, j)- w-closed set, 5. (i, j)- 

g-closed set, 6. (i, j)- sg*-closed set, 7. (i, j)- rg-

closed set, 8. (i, j)- g*p-closed set, 9. (i, j)- gpr-

closed set, 10. (i, j)- δg-closed set, 11. (i, j)- g*-

closed set, 

 

4. Applications 
 

In this section we introduce the new closed 

spaces namely (i, j)-
2

1*g T -space, (i, j)- *

2
1*g T -

space, (i, j)-
2

1
T*g  -space and (i, j)-

2
1gT -space in 

bitopological spaces.  

 

4.1. Definition   
 

A bitopological space  21,,X   is said to be a 

1) (i, j)- 
2

1gT - space if every (i, j)- g-closed set is 

(i, j)-δg-closed. 

2)  (i, j)-
2

1*g T -space if every (i, j)-g-closed set is 

(i, j)- δg*-closed. 

3)  (i, j)- *

2
1*g T -space if every (i, j)-g*-closed set 

is (i, j)- δg*-closed. 

4) (i, j)- 
2

1
T*g  -space if every (i, j)- δg-closed set 

is (i, j)- δg*-closed. 

 

4.2. Proposition  
 

Every (i, j)-
2

1*g T -space is a (i, j) - *

2
1*g T -

space. 

Proof: Let X be a (i, j) - 
2

1*g T -space and A be      

(i, j)- g*-closed. Since every (i, j)- g*-closed set is  

(i, j)- g-closed. Then A is (i, j)- g-closed. By 

assumption, we get A is (i, j)- δg*-closed. Hence X 

is a (i, j) - *

2
1*g T -space. 

 The converse of the above proposition is 

not true as seen by the following example. 

 

4.3. Example   
 

Let X = {a, b, c}, 1 = {X, , {a, b}},               

2 = {X, , {b}, {a, b}}. Then  21,,X   is (i, j)-

*

2
1*g T -space. But {a, b} is (i, j)- g-closed but not   

(i, j)-δg*-closed. Hence  21,,X   is not 
2

1*g T -

space. 

 

4.4. Proposition   

 

Every (i, j) - 
2

1*g T -space is a (i, j) - 

2
1

T*g  -space. 

Proof: Let X be a (i, j) - 
2

1*g T -space and A be               

(i, j)- δg-closed. Since every (i, j)- δg -closed set is  

(i, j)- g-closed. Then A is (i, j)- g-closed. By 

assumption, we get A is (i, j)- δg*-closed. Hence X 

is a (i, j)- 
2

1
Tg  * -space.  

The converse of the above proposition is 

not true as seen by the following example. 

 

4.5. Example   
 

 Let X = {a, b, c},  1 = {X, , {b}, {c}, {b, 

c}, {a, b}},  2 = {X, , {a}}.  Then  21,,X   is   

(i, j)- 
2

1
T*g  - space not (i, j)- 

2
1*g T -space. Since 

{b, c} is (i, j)- g-closed but not (i, j)-δg*-closed. 

Hence  21,,X   is not 
2

1*g T -space. 

 

4.6. Proposition  
 

Every (i, j)- 
2

1*g T - space is (i, j)- 
2

1gT -

space. 

Proof: Let X be a (i, j)- 
2

1*g T - space and A be                

(i, j)- g-closed. Then A is (i, j)- δg*-closed. Since 

every (i, j)-δg*-closed set is (i, j)- δg-closed. We get 

A is (i, j)- δg-closed. Hence X is a (i, j)- 
2

1gT -

space. 

The converse of the above proposition is 

not true as seen by the following example. 

 

1 

2 3 4 5 

6 7 

8 9 10 11 
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4.7. Example     
 

Let X = {a, b, c},  1 = {X, , {a}},                 

2 = {X, , {a, b}}.  Then   21,,X   is (i, j)- 

2
1gT -space not (i, j)- 

2
1*g T - space. Since {b} is 

(i, j)- g-closed but not (i, j)–δg*–closed.   

 

4.8. Proposition  
 

 21,,X   is both (i, j)- 
2

1gT -space and   

(i, j)- 
2

1
T*g  -space if and only if it is a (i, j)- 

2
1*g T - space. 

Proof : (Necessity): Let  21,,X   be (i, j)- 
2

1gT -

space and (i, j)- 
2

1
T*g  -space. Consider   A is        

(i, j)-g*-closed. Then A is (i, j)-g-closed. Since 

 21,,X   be (i, j)- 
2

1gT -space, A is (i, j)- δg-

closed. Since  21,,X   be a (i, j)- 
2

1
T*g  -space, A 

is (i, j)- δg*-closed.  Therefore  21,,X   is a (i, j)- 

2
1*g T - space. 

(Sufficiency): It satisfies by Proposition 4.4 and 

Proposition 4.6.  

 

4.9. Remark  
 

The following examples show that (i, j)- 

2
1

T*g   and  (i, j)- *

2
1*g T  are independent to each 

other. 

 

4.10. Example     
 

Let X = {a, b, c}, 1 = {X, , {b}, {c}, {b, 

c}, {a, b}},  2 = {X, , {a}}.  Then  21,,X   is          

(i, j)- 
2

1
T*g  -space. But {b, c} is (i, j)- g*-closed 

but not (i, j)–δg*–closed. 

 

4.11. Example   
 

Let X = {a, b, c}, 1 = {X, , {a}, {b, c}},  

2 = {X, }. Then  21,,X   is (i, j)- *

2
1*g T -space. 

But {b} is (i, j)- δg-closed but not (i, j)–δg*–closed. 

  

 

 

4.12. Remark  

 

The following examples show that (i, j)- 

2
1

T*g   and  (i, j)- 
2

1gT  are independent to each 

other. 

 

4.13. Example     
 

Let X = {a, b, c},  1 = {X, , {a}},                 

2 = {X, , {a, b}}.  Then  21,,X   is (i, j)- 

2
1gT -space. But {b} is (i, j)- δg-closed but not            

(i, j)–δg*–closed.  

 

4.14. Example   
 

Let X = {a, b, c}, 1 = {X, , {a, b}},                

2 = {X, , {a}, {b}, {a, b}}.  Then  21,,X   is                  

(i, j)- 
2

1
T*g  -space. But {a, b} is (i, j)- g-closed but 

not (i, j)–δg–closed.  

 

4.15. Remark  

 

The following examples shows that (i, j)- 
*

g* 1
2

T  and  (i, j)- 
2

1gT  are independent to each 

other. 

 

4.16. Example   
 

Let X = {a, b, c}, 1 = {X, , {a}},                  

2 = {X, , {a, b}}.  Then  21,,X   is (i, j)- 

2
1gT -space. But {c} is (i, j)- g*-closed but not               

(i, j)-δg*-closed.  

 

4.17. Example     
 

Let X = {a, b, c}, 1 = {X, , {a, b}},                

2 = {X, , {a}, {b}, {a, b}}.  Then  21,,X   is                

(i, j)- *
g* 1

2
T -space. But {a, b} is (i, j)- g-closed but 

not (i, j)–δg–closed.   

 

4.18. Remark  
 

The following diagram has shown the 

relationship of (i, j)–δg*–closed spaces with other 

known existing space.   A        B represents A 

implies B but not conversely and A        B represents 

A and B are independent to each other.  
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Figure 2 
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