
On-Line Scheduling Algorithm for Real-Time

Multiprocessor Systems with ACO and EDF

Cheng Zhao, Myungryun Yoo, Takanori Yokoyama
Department of computer science, Tokyo City University

1-28-1 Tamazutsumi, Setagaya-ku

Tokyo, Japan

Abstract—Preemptive Earliest Deadline First (EDF) has

been proved to be optimal scheduling algorithm for single-

processor systems. The Ant Colony Optimization algorithms

(ACO) are computational models inspired by the collective

foraging behavior of ants. By looking at the strengths of ACO,

they are the most appropriate for scheduling of tasks in soft

real-time systems. In this paper, ACO based scheduling

algorithm for real-time operating systems (RTOS) has been

proposed. During simulation, results are obtained with periodic

tasks, measured in terms of Success Ratio & context switch and

compared with Kotecha’s algorithm in the same environment. It

has been observed that the proposed algorithm is equally

optimal during underload conditions and it performs better

during overloaded conditions.

Keywords— Real-time system; sceduling; ACO; EDF

I. INTRODUCTION

In recent year, the applications of real-time systems have

attracted attention. For example, the automotive, mobile

phone, plant monitoring systems and air traffic control

systems.

There are two types of real-time systems: Hard real-time

systems and Soft real-time systems. Hard real-time systems

are defined as those systems in which the correctness of the

system depends not only on the logical result of computation,

but also on the time at which the results are produced [1]. Soft

real-time systems are missing an occasional deadline is

undesirable, but nevertheless tolerable. Our interest in this

question stems from the increasing prevalence of applications

such as networking, multimedia, and immersive graphics

systems that have only Soft real-time systems.

The objective of real-time task scheduler is to reduce the

deadline miss of tasks in the system as much as possible when

we consider soft real time system. To achieve this goal, vast

researches on real-time task scheduling have been conducted.

Mostly all the real time systems in existence use preemption

and multitasking.

 Real time scheduling techniques can be broadly divided

into two categories: Off-line and On-line. Off-line algorithms

assign all priorities at design time, and it remains constant for

the lifetime of a task. On-line algorithms assign priority at

runtime, based on execution parameters of tasks. On-line

scheduling can be either with static priority or dynamic

priority. Rate Monotonic (RM) and Deadline Monotonic

(DM) are examples of On-line scheduling with static priority

[2]. Earliest Deadline First (EDF) and Least Slack Time First

(LST) are examples of On-line scheduling with dynamic

priority. EDF and LST algorithms are optimal under the

condition that the jobs are preemptable, there is only one

processor and the processor is not overloaded [3,4]. But the

limitation of these algorithms is, their performance decreases

exponentially if system becomes slightly overloaded [5].

Several characteristics make ACO a unique approach: it is

constructive, population-based meta-heuristic which exploits

an indirect form of memory of previous performance [6,7].

Therefore in this paper, the same approach has been applied

for real-time operating systems.

The rest of this paper is organized as follows. In section 2,

our system model is presented. In section 3 related work is

described. In section 4 our proposed algorithm is described

and discussed. In section 5 a simulation-based evaluation of

proposed algorithm and kotecha’s algorithm [8]. Section 6 is

conclusions.

II. SYSTEM MODEL

The system knows about the deadline and required

computation time of the task when the task is released. The

task set is assumed to be preemptive. We have assumed that

the system is not having resource contention problem.

In soft real-time systems, each task has a positive value.

The goal of the system is to obtain as much value as possible.

If a task succeeds, then the system acquires its value. If a task

fails, then the system gains less value from the task [8]. Here,

we propose an algorithm that applies to soft real-time system.

The value of the task has been taken same as its computation

time required [9].

III. RELATED WORK

We will discus about ACO and EDF. Kotecha’s algorithm

is combination of two scheduling algorithms: EDF algorithm

and ACO based Scheduling algorithm.

A. Ant colony optimization

Social insects that live in colonies, such as ants, termites,

wasps, and bees, develop specific tasks according to their role

in the colony. One of the main tasks is the search for food.

Real ants, when searching for food, can find such resources

without visual feedback, and they can adapt to changes in the

environment, optimizing the path between the nest and the

food source. This fact is the result involves positive feedback,

given

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIDB - 2015 Conference Proceedings

Volume 4, Issue 01

Special Issue - 2016

1

Fig.1. Ant colony optimization

by the continuous deposit of a chemical substance, known as

pheromone.

A classic example of the construction of a pheromone trail

in the search for a shorter path is shown in Fig. 1 and was first

presented by Colorni [11]. In Fig. 1A there is a path between

food and nest established by the ants. In Fig. 1B an obstacle is

inserted in the path. Soon, ants spread to both sides of the

obstacle, since there is no clear trail to follow (Fig. 1C). As

the ants go around the obstacle and find the previous

pheromone trail again, a new pheromone trail will be formed

around the obstacle. This trail will be stronger in the shortest

path than in the longest path, as shown in Fig. 1D.

B. EDF algorithm

The priority of each task is decided based on value of

its deadline. The task with the nearest deadlines has the

highest priority. Number of tasks equivalent to number of
processors is selected for execution on different processors by

centralized scheduler.

C. ACO Based scheduling Algorithm

The scheduling algorithm is required to execute when a

new task arrives or presently running task completes. The

main steps of the proposed algorithm are given as following

and the flowchart of the algorithm has been shown in Fig.2:

１) Construct tour of different ants and produce the

task execution sequence

２) Analyze the task execution sequences generated

for available number of processor

３) Update the value of pheromone

４) Decide probability of each task and select the task

for execution

The detailed description of four main steps is as follows:

１) Tour construction

First find probability of each node using (1). Each

schedulable task is considered as a node and probability of

each node to be selected for execution is decided using

pheromone τ and heuristic value η.

𝑝𝑖(𝑡) =
(τ𝑖 (t))α∗(η𝑖(t))β

∑ (τ𝑖 (t))α∗(η𝑖(t))β
𝑙∈𝑅1

 (1)

Where,

pi(t) is the probability of ith node at time t; i∈ 𝑁1 and

N1 is set of schedulable tasks at time t.

τi(t) is pheromone on ith node at time t.

ηi is heuristic value of ith node at t, which can be

determined by (2).

𝜂𝑖 =
𝐾

𝐷𝑖−𝑡
 (2)

 Here, t is current time, K is constant and Di is absolute

deadline of ith node.α and β are constants which decide

importance of τ and η.

 Ants construct their tour based on the value of p of each

node as per following:

Ant1. Highest p > second highest p > third highest p >….

Ant2. Second highest p > highest p > third highest p >….

Ant3. Third highest p > second highest p > highest p >….

Suppose at time t, there are 4 schedulable tasks. As shown

in Figure 1, each task will be considered as a node and from

each node; one ant will start its journey. If we consider the

priorities of all the nodes are in decreasing order of A, B, C,

D; ants will traverse different nodes as per following:

Ant1. A > B > C > D

Ant2. B > A > C > D

Ant3. C > A > B > D

Ant4. D > A > B > C

２) Analyze the Journey

 After all ants have completed their tour, evaluate the

performance of different ants’ travel. We have analyzed this

based on ratio of number of success tasks and number of

missed tasks. Find out maximum two best journeys of ants

and update the value of pheromone accordingly.

３) Pheromone Update

Pheromone updating on each node is done in two steps:

a) Pheromone Evaporation: Pheromone evaporation is

required to forget bad travel of ants and to encourage new

paths. Value of τ is updated using (3) .

τ𝑖(𝑡 + 1) = (1 − 𝜌)τ𝑖(𝑡) (3)

Where,

𝜌 is a constant.

𝑖 ∈ 𝑅𝑙; 𝑅𝑙 is set of all tasks.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIDB - 2015 Conference Proceedings

Volume 4, Issue 01

Special Issue - 2016

2

b) Pheromone Laying: Pheromone will be laid only for

two best journeys of ants. Select the best journey and put

pheromone depending on their order of visited node.

Amount of pheromone (Δτ) laid will be different at each

node i.e. the nearest node will get highest amount of

pheromone and far most node will get least.

𝜏𝑖(𝑡 + 1) = 𝜏𝑖(𝑡) + Δ𝜏𝑖 (4)

Where,

𝑖 ∈ 𝑁2 ; 𝑁2 is set of tasks executed by

the ant.

Δ𝜏＝
𝑝ℎ

𝑠
 (5)

Here,

𝑝ℎ = 𝐶 ∗
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑑 𝐽𝑜𝑏𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑠𝑠𝑒𝑑 𝐽𝑜𝑏𝑠+1
 (6)

s is sequence number of node visited by

the ant during the best travel.

Value of C is constant (preferably 0.1)

３) Selection of Task for Execution

After updating pheromone, again find out probability of

each node using (1) and select the task for execution having

the highest probability value

４) Important Points about the Algorithm

Each schedulable task is considered as a node, and it

stores the value of τ i.e. pheromone. Initial value of τ is

taken as one for all nodes.

Value of α and β decide importance of τ and η. During

simulation, both values are taken as one.

The number of ants which construct the tour is important

design criterion. During simulation, number of ants

taken is same as number of executable tasks the system

is having at that time.

D. Kotecha’s algorithm

Kotecha’s algorithm is combination of both of these

algorithms and it works as per following:

a) During underload condition, the algorithm uses EDF

algorithm and priority of jobs will be decided dynamically

depending on its deadline.

b) During overloaded condition, it use ACO based

algorithm, priority of jobs will be decided depending on

pheromone value laid on each schedulable task and heuristic

function.

 Switching Criterion:

Initially the proposed algorithm uses EDF algorithm

considering that the condition is not overloaded. But when

two consecutive jobs miss the deadline, it will be identified,

as overloaded condition and the algorithm will switch to

ACO based algorithm. After 10 jobs have continuously

achieved the deadline, again the algorithm will shift to EDF

algorithm considering that overload condition that overloaded

condition had been disappeared.

During underload condition, EDF algorithm is used for

reducing execution time and during overloaded condition

ACO based scheduling algorithm is used for achieving better

performance. By this way, adaptive algorithm has taken

advantage of both algorithms and overcome their limitations.

IV. PROPOSE ALGORITHM

In Kotecha’s algorithm, the switching criterion is depend

on the result of executed jobs, in this theory during underload

condition, EDF algorithm is used for reducing execution time

and during overloaded condition ACO based scheduling

algorithm is used for achieving better performance. However,

the switching criterion is not clear and it is difficult to

identify system’s condition. Moreover, when a task-set has a

large numbers of tasks, the switching criterion will occur

frequent switching bring unnecessary overhead of

computation.

Therefore, we need more general switching criterion. We

purpose two switching criterion depend on task schedulability

analysis: Utilization Analysis and Response Time Analysis.

A. Utilization Base Analysis

We assume a task set τ of n periodic tasks to be scheduled

on m identical processors. Each task τi =(Ci, Di) is

characterized by a worst-case computation time Ci, a relative

deadline Di. We will assume every task having constrained

deadline, ie. Every deadline is equal to the corresponding

period. The utilization of a task is defined as 𝑈𝑖 =
𝐶𝑖

𝐷𝑖
 , Let

Umax be the largest utilization among all tasks. J. Goossens, S.

Funk, and S. Baruah [11] examined that a system of

independent periodic tasks can be scheduled successfully on

m processors by EDF scheduling if it satisfies the formula as

follows:

 ∑ 𝑈𝑖 ≤ 𝑚(1 − 𝑈𝑚𝑎𝑥) + 𝑈𝑚𝑎𝑥𝜏𝑖∈𝜏 (7)

We purpose a new switching criterion depend on (7),

when scheduler star up we use (7), if it satisfied considering

that the condition is not overloaded, the algorithm use EDF

algorithm. Otherwise, it will be identified as overloaded

condition and the algorithm will switch to ACO based

algorithm. The scheduler will star-up when a task arrival or

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIDB - 2015 Conference Proceedings

Volume 4, Issue 01

Special Issue - 2016

3

completed. By this way before a new task arrival, the total

utilization is relative fixed. Therefore, algorithm will not

frequent switching.

B. Response Base Time Analysis

Response Time Analysis (RTA) is an effective technique that

has been widely used to derive schedulability tests and

properties for various different models of task systems. M.

Bertogna and M. Cirinei [12] examined that An upper bound

on the response time of a task τk in an EDF-scheduled

multiprocessor system can be derived by the fixed point

iteration on the value 𝑅𝑘 of the following expression,

starting with 𝑅𝑘 = 𝐶𝑘:

 𝑅𝑘 ← 𝐶𝑘 + ⌊
1

𝑚
∑ 𝐼𝑘

𝑖 (𝑅𝑘)𝑖≠𝑘 ⌋ (8)

Where,

 𝐼𝑘
𝑖 is interference of task τi on task τk

 𝑅𝑘 is response time of task τk

 𝐶𝑘 is Worst-case computation time of task τk

M. Bertogna and M. Cirinei [12] also examined A task set

τ is schedulable with EDF on a system with m identical

processors if, for all tasks are satisfies the formula as follows

 𝐷𝑘 − 𝑅𝑘 ≥ 0 （9）

We purpose a new switching criterion depend on (9),

when scheduler star up we use (9), if it satisfied considering

that the condition is not overloaded, the algorithm use EDF

algorithm. Otherwise, it will be identified as overloaded

condition and the algorithm will switch to ACO based

algorithm. The scheduler will star-up when a task arrival or

completed. By this way before a new task arrival, the value of

each task’s response time is relative fixed. Therefore,

algorithm will not frequent switching.

V. SIMULATION AND RESULT

We have implemented our algorithm & Kotecha’s

algorithm and have run simulations to accumulate empirical

data. We have considered periodic tasks for taking the results.

For periodic tasks, load of the system can be defined as

summation of ratio of executable time and period of each

task. For taking result at each load value, we have generated

200 task sets each one containing 3 to 9 tasks. The results for

7 different values of load are taken (0.8 ≤ load ≤ 2.0) and

tested on more than 35,000 tasks.

The system is said to be overloaded when even a

clairvoyant scheduler cannot feasibly schedule the tasks

offered to the scheduler. A reasonable way to measure the

performance of a scheduling algorithm during an overload is

by the amount of work the scheduler can feasibly schedule

according to the algorithm. The larger this amount the better

the algorithm. Because of this, we have considered following

two as our main performance criterion:

A. In real-time systems, deadline meeting is most

important and we are interested in finding whether the

task is meeting the deadline. Therefore the most

appropriate performance metric is the Success Ratio

and defined as [5],

 𝑆𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐽𝑜𝑏𝑠 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑓𝑢𝑙𝑙𝑦 𝑠𝑐ℎ𝑒𝑑𝑙𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐽𝑜𝑏𝑠 𝑎𝑟𝑟𝑖𝑣𝑒𝑑
 (10)

B. In real-time systems, new task will occur any time. We

count the “context switch” (i.e., the time need to save

the status of the task being preempted and to load the

preempting task) as overhead of each algorithm.

 Finally, the results are obtained, compared with Kotecha’s

algorithm in the same environment and shown in Fig.3 and

Fig.4.

 Fig. 2 and fig. 3 shown the results obtained in terms

of %SR and context switch by each algorithm when number

of processors are 2.The results are taken from underload

condition(load ≥ 0.8) to highly overloaded condition(load ≤

2). Fig. 2 shows the results of success ratio achieved by the

two proposed algorithms and Kotecha’s algorithm. We can

observe that the proposed Algorithm have a same

performance with Kotecha’s algorithm. However, we find

that proposed algorithm is definitely more than 3% and8%

when load values are 1.0 and 1.8. Fig. 3 shows the results of

context switch achieved by the two proposed algorithm and

Kotecha’s algorithm. It observed that switching criterion

depends on utilization analysis algorithm is occurred context

switch fewer than Kotecha’s algorithm during overloaded

condition. Moreover, we find that switching criterion depend

on response time analysis algorithm is occurred context

switch fewer than Kotecha’s algorithm when load from 1.0 to

1.6. The results remain consistent when we increase the

number of the processors. Fig. 4 to fig. 7 demonstrates the

same when numbers of processors are 4 and 8.

Fig. 2. Success ratio of jobs, when Number of Processors =2

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIDB - 2015 Conference Proceedings

Volume 4, Issue 01

Special Issue - 2016

4

Fig. 3. Context Switch, when Number of Processors =2

Fig. 4. Success ratio of jobs, when Number of Processors =4

Fig. 5. Context Switch, when Number of Processors = 4

Fig. 6. Success ratio of jobs, when Number of Processors =8

Fig. 7. Context Switch, when Number of Processors =8

VI. CONCLUSIONS

The algorithm discussed in this paper is for scheduling of

soft real-time system with multiprocessor environment and

preemptive task sets. The algorithm is simulated with

periodic task sets; results are obtained and compared with

Kotecha’s algorithm.

The proposed algorithm works well in underload or

overloaded condition. During underload condition, the

success ratio and context switch of proposed algorithm is

almost same as Kotecha’s algorithm and during overloaded

condition; it performance better than Kotecha’s algorithm.

Especially, the switching criterion depends on utilization

analysis algorithm.

The algorithm can switch automatically between EDF

algorithm and ACO based scheduling algorithm depend on

utilization analysis or response time analysis. Therefore, the

proposed algorithm is dynamic, during simulation only

periodic tasks are considered but it can schedule aperiodic

tasks also. The algorithm can work with available number of

processors.

ACKNOWLEDGMENT

The authors would like to thank the developers of TOP-

PERS/ATK1. This work supported in part by

JSPSKAKENHI Grant Number 15K00084.

REFERENCES

[1] K. Ramamritham and J. A. Stankovik, “Scheduling algorithms and

operating support for real-time systems,” Proceedings of the IEEE., vol.

82, pp. 56-76, January 1994.
[2] C. L. Liu and L. Layland, “Scheduling algorithms for multiprogramming

in a hard-real-time environment,” Journal of ACM, vol. 20, pp. 46-61,

January 1973.
[3] M. Dertouzos and K. Ogata, “Control robotics: The procedural control of

physical process,” Proc. IFIP Congress, pp. 807-813, 1974.

[4] A. Mok, “Fundamental Design Problems of Distributed Systems for the
Hard-Real-Time Environment,” Ph.d.thesis, MIT, Cambridge,

Massachusetts, May 1983.

[5] G. Saini, “Application of Fuzzy logic to Real-time scheduling,” Real-
Time Conference, 14th IEEE-NPSS., pp. 113-116, 2005.

[6] M. Dorigo and G. Caro, “The Ant Colony Optimization Metaheuristic in

D. Corne, M. Dorigo and F. Glover(eds),” New Ideas in Optimization,
McGraw Hill, 1999.

[7] V. Ramos, F. Muge, and P. Pina, “Self-organized data and image retrieval
as a consequence of inter-dynamic synergistic relationships in artificial

ant colonies,” In Second International Conference on Hybrid Intelligent

System, IOS Press, pp. 1-10, Santiago, 2002.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIDB - 2015 Conference Proceedings

Volume 4, Issue 01

Special Issue - 2016

5

[8] K. Kotecha and A. Shah, “Scheduling Algorithm for Real-Time Opeating

Systems using ACO,” 2010 Intelligence and Communication Networks,
pp. 617–621, Nov 2010.

[9] G. Koren and D. Shasha, “Dover: An optimal on-line scheduling

algorithm for overloaded real-time systems,” SIAM Journal of
Computing, vol. 24, no. 2, pp. 318-339 April 1995.

[10] J. Goossens, S. Funk and S. Baruah, “Priority-Driven Scheduling of

Periodic Task Systems on Multiprocessors,” Real Time Systems, vol.
25, nos. 2/3, pp. 187-205, 2003.

[11] M. Bertogna and M. Cirinei, “Response-time analysis for globally

scheduled symmetric multiprocessor platforms,” 28th IEEE
International Real-Time Systems Symposium, pp.149-160, 2007.

[12] A. Shah, K. Kotecha and D. Shah, “Adaptive scheduling algorithm for

real-time distributed systems,” in Biologically-Inspired Techniques for
Knowledge Discovery and Data Mining, pp. 236-248, IGI global, 2014.

[13] A. Colorni, M. Dorigo and V. Maniezzo, “Distributed optimization by

ant colonies,” Proceedings of European Conf. on Artificial Life.
Elsevier, Amsterdam, pp. 134-142, 1991.

[14] K. Ramamritham, J. A. Stankovik and P. F. Shiah, “Efficient scheduling

algorithms for real-time multiprocessor systems,” IEEE Transaction on
Parallel and Distributed Systems, vol. 1, no. 2, pp. 184-194, April 1990.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIDB - 2015 Conference Proceedings

Volume 4, Issue 01

Special Issue - 2016

6

