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ABSTRACT:

In this work, we will show several improvements of Hermite-
Hadamard inequalities for convex functions using the concept of
post-quantum calculus. We will also demonstrate how the recent
discoveries relate to the previous findings. Furthermore, we will
present some applications of recently discovered inequalities
along with several mathematical illustrations.
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INTRODUCTION:

The field of g-analysis, which Euler introduced in response to
the increasing need for mathematical models that may explain
quantum computing, has been the subject of several
contemporary investigations. Due to its versatility, Q-
calculus has become a key tool in the domains of quantum
theory, mechanics, relativity, and number theory and also in
combinatorics, fundamental hypergeometric functions, and
orthogonal polynomials[1], [2].

Early scholars were the first to recognize the importance of
convexity in a number of areas, therefore the idea of
convexity has a long history. Overall, g-calculus is a powerful
tool that has found applications in a wide range of fields. Its
ability to describe non-commuting operators and its
development of g-analogues of mathematical tools have made
it a useful tool in quantum mechanics, computer science, and
statistics, among other fields. As research into quantum
computing continues to grow, it is likely that q-calculus will
play an increasingly important role in the development of new
algorithms and computational techniques|[3].

One of the benefits of postquantum calculus is that it can be
used to address issues that g-calculus cannot. In specific
quantum systems, for instance, the behavior of a system
may be affected by both the location and momentum of a
particle. These systems may be modelled using the (p, q)-
calculus.[4]

Post quantum calculus is an extension of g-calculus, which
is a generalization of the traditional calculus that
allows for calculations with g-numbers.
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Q-numbers are a mathematical construct that generalizes the
concept of integers and can be used to represent quantum
systems[5]. Q-calculus has been applied to problems in physics,
finance, and computer science, among other fields. Inequalities
are crucial for addressing mathematical issues, but they also
have useful uses in a variety of real-world contexts, including
data analysis, function optimization, and setting conditions
for certain outcomes. They are a crucial subject in any
mathematics curriculum because they provide a basis for more
complex mathematical ideas and concepts.
A mathematical function that meets the convexity property is
said to be a convex function[6]. In plain English, a function is
said to be convex if the line segment joining any two points on
its graph sits wholly above the graph. In other words, the function
seems "bowl-shaped" or "curves upward" when viewed from
above.
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If function u(x) is convex on interval I, if any two points x; and x, in I and any y where 0 <y<lI
ulyx; + (1 = y)x,] < vule) + (1 = y)ulxy).

The Hermite-Hadamard inequality is an important finding in mathematical analysis that shows a strong correlation among the
average values of convex functions. This discrepancy was first studied in the late 19th century and is named after Charles Hermite
and Jacques Hadamard[7][8]. By history, construction and uses of the Hermite-Hadamard inequality emphasizing its importance
across a range of mathematical specialties and related disciplines. The Hermite Hadamard inequality of (p, q) — Calculus is that:

Let u: [a4, ;] — R be a convex differentiable function on [a4, @,] and 0 < q <p < 1. Then we have

a; + pa 1 paz+(1-p)ay u(qay) + u(pa
u (q 1tp 2) < W), dy g < (qa) +ulpay) @
p+q p(az —ay) Jg, p+q
Similarly, the utilizing the right (p, q)-integral, demonstrated Hermite-Hadamard inequality for convex mappings, then
a, +qa 1 @z u(pa,) + u(qa
u (p 1T 2) < UG dy g < (pay) (q 2)' (5)
p+q p(a2 — @1) Jpa, +(1-p)ay p+q

The main objectives of research is that the use (p, q)-calculus approaches, establish various extensions of Hermite-Hadamard for q
and (p, q) function. The establish connection between the new result and the previous finding results.

PRELIMINARIES
In this section we discuss some definition of quantum calculus and also implement on it.

Definition no 1: The g-number, which is represented by the quantum number notation [n], is defined for any positive integer n.

n

qq =1+qg+q*+q*+-+q"", (2.1)

[nlq = 1—

Where the degree of the polynomial is n-1 in relation to the deformation component g, which can take on either real or complex
numbers.

Definition no 2: The (p, q) numbers is introduced by

[nlpq = P—— (2.2)

Where [n], 4 is symmetric then [n],, = [n],, and if p = 1then the (p, q) numbers are reduced into g-numbers and if g = 1 then
reduced back into ordinary numbers n[9].

It means that the (p, q) numbers of Post Quantum calculus are performing same role as g-numbers of Quantum calculus.
Definition no 3:[10], [11] Let u:[;, @;]—R be continuous. The left g-derivative of u at x €[ay, a,] is

_ul) —ulgx+ (1 - q)ay)

D = , 2.3
e e [ B @)
If a; = 0 and,, Dyu(x) = Dyu(x)then (1) become
u(x) —u(qx)
D =—, 0. 2.4
qu(x) a=ox X # (2.4)
This equation is Similar to g- Jackson derivative formula.
And the right g-derivative is
u(gx + (1 - q)ay) —ulx
“Du(x) = (gx + (1 = ) ~ux) X #a, (2.5)

(1 -q@)(a; —x) '
Definition no 4: [12] Let u:[a,, ;] —R and it is continuous on[a4, a,]. The g-integral of u at x €[a,, a,]is
as had
[ Cutoeapn = - 0@ -a) Y aulwat + 0 - gay 26)
a1 n=o

If ;=0 then equation (2) becomes
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[ ueoedn = - 0@ Y g, @7)

The equation (4) is similar to q-Jackson Integral.
And the right g-integral is
a had
[ uedgr = - )@ - @) Y au@a + (1 - 4ay). 29
a1 n=o

Definition no 5: [13] Let u: [ay, @, ] = R is continuous function, and (p, q),-derivative of u at x € [ay, @,]is define as:

u(px+ (1 —play) —ulgx + (1 — @)ay)

D, u(x) = 2.9),
“mpa - —a) @9
With0<g<p<1.
Definition no 6: Similarly, (p, q)*2-derivative of u at x € [a;, @;] = R is define as:
u(gx+ (1 —q)ay) —ulpx+ (1 —pa
@D, ) = (gx + (1 — g)az) —u(px + (1 — p)ay) 2.10)

- —-a)
Definition no 7: Let u: [a;, a; ] = R is continuous function, and (p, q) «, -integral of u at x € [a;, @, ]is define as:

qn n

X had n
q q
f U(t)q,dpgt = (0 — P(x — ay) Z ﬁu( —TX+ (1 — W) al), (2.11)
a1 n=0p P p

With0<g<p<1.

Definition no 8: [14] Similarly, (p, q)*2-Integral of u at x € [@,, a;]is define as:

%2 - q" q
f u(t)“qut=(p—q)(az—x)Z—nHu( n+1x+(1——n+1)a2), (212)
x ~ip p p

With0 < g <p < 1.

Lemma 1: If a function u: [, @,] —R is Convex a;<a,, then the following inequality hold for (p, q)*2-Integral:

(paEZ;r q“z) = p(a 1 ) N u(x)*2d, gx < putey) + qu(aZ), (2.13)
p.q 27 U

p.q” —
PAi+(1-p)ay [Z]Z"q

Where 0 < g<p <1

Lemma 2: If a function u: [@4, ;] —R is Convex a;< @, then following inequality satisfied for (p, )4, -Integral:

(qal + pa2> < 1 pay+(1-p)a; qu(a,) + pu(a,) (2.14)
" pla, '

UX) g, dygx < )
[Z]p,q _al) a; ( )a1 pa [Z]p,q

Where0 < g<p<1
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3. New Trapezoidal type inequalities for (p, q)-integrals

Lemma 3: If u: [a;,a,] » R is p, g-differentiable function that way[,, D, qu] and [*2D,, ;u] are continuous and integrable
on [a;, a,], then

az

U(X) g, dpgx +f

pai+(1-p)az

u(ay) + u(ay) 1 fpaz+(1—p)a1
2 2(ay, — aq)

u (x)*2 dp‘qx}

ay

a; —aq !

1
=— U qte,Dpqu(tay + (1 —t)a)d, 4t +f
0 0

qt*2 D, qu(ta; + (1 — )ay)dy 4 t]

Proof:

1
L = f qta, Dpqu(ta; + (1 —t)ay)d, 4t
0

1
q
(@, — a)(p — Q)Jo u(pta, + (1 — pt)ay) —ulqta, + (1 — qt)a)dy 4t
q 0 qn qn qn «® qn qn+1 qn+1
:(az_al)[rzzopn+1u(p_na2+<1_E)a1)_zpn+1u pn+1a2+ 1_W al
q 1 © qn qn qn ® qn+1 qn+1 qn+1
:—(az_al)[gzﬁu(ﬁaz‘l'(l_ﬁ)al)__ pn+1u pn+1 a2+ 1_W al

it q qn qn 1 i qn+1 qn+1 qn+1 1
Zﬁu(ﬁa2+(1—ﬁ)al)—azpn+lu W(ZZ'F 1—pn+1 a, +au(a2)

1 -1 paz+(1-p)ay
T (@ -a) [P(az - al)f u(x)a, dp,gx + u(“z)]
a

-1 J-p(l2+(1—p)a1

(a —a))l = [m .

u(x)aldp,qx + u(“z)] (1)

Similarly,
1
I, = j qt*2D, qu(ta; + (1 — t)ay)d, 4t
0

(g - qu)(P - q)f u(ptay + (1 —pt)az) —u(qtay + (1 - qt)az)dpqt
1 0

q had qn qn+1 qn+1 had qn qn qn
= (ay — ay) [Z pn+1 u (pn+1 at{1- pntl @z |~ Z pn+1 u <p_n a; + <1 - p_n> a2>
n=0

n=0
q [12 qn+1 <qn+1 qn+1 1 © qn qn qn
st (s (1T Y (e (1- D))
(a2 —a)) [a&p p P pLip™ \p P
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L1630 D S (et (1-R)a) 4
=—7||-—= —ul—a+|(l——]a, ) +- u(a
(az—a)|\q p pm  \pn ? p) ) q (a2)
n=0

az

1 [ 1 f
(a; —ay) |p(a, — ay) pay(1-p)asy

u(x)®d, ,x + u(al)]

1 paz+(1-p)a;

(a, — ap)l =[7 u(x),.d x+u(a)] 2

T @ —a )y, aapg + e @

By equation 1 and 2 we get
u(ay) +u(ay) 1 { fpa2+(1_p)a1 .
h u(x) g, dp, x+f u (x)%2d,, ,x
2 2(a; — ay) a1 a%p,q e (1pras p.q
az - 0(1

1 1
= U qte, Dy qulta, + (1 —t)ay)d, 4t +f qt*2Dy qu(ta; + (1 — t)az)dp_qt]
0 0

Hence proved.
Theorem 1: If |, D,u| and |*2Dgu|are convex, then the following inequality holds according to Lemma (3) hypotheses:

az

U(X) g, dp gx +f

pai+(1-plaz

@) ful@) 1 fp“ﬁ(l-p)“l
2 2(a; —ay)

u (x)%*2 dp,qx}

ay

< q(a; — ay)
2[3lp,q

([B]p,q - [Z]p,q)(lale,qu(al)l + |a2Dp,qu(a2)|)]

[lale,qu(az)l + |a2Dp,qu(a1)| + [2]pq

Proof: we know by lemma 3 and Taking mode both sides

CCORSTCONME SN |t
2 2(a; —ay)

_ 0y aq
2

By using convexity of |, Dp qu| and [*2Dy, ju|

az

U(X) g, dp gx +f

pai+(1-plaz

u (x)%*2 dp,qx}

ay

+

|

1 1
[f qt{tlale,qu(az)I + (1 - t)lale,qu(al)Idp,qt} +j qt{tlasz,qu(al)l + (1 - t)lasz,qu(QZ)l}dp,qt]
0 0

1
J qt®Dy qu(ta; + (1 — t)ay)dy, 4t
0

1
f qte, Dpqu(ta, + (1 —t)ay)d, 4t
0

o —a;
- 2

oy —a;

1 1 1
== [|0(1Dp,qu(ozz)|j0 qtid, t+ |a1Dp‘qu(a1)|]0 qt(1 — t)qtd, t + |0‘2DZD‘qu(ozl)|f0 qtid, t

1
+ |“2Dp_qu(a2)|f qt(1 — t)qtdp,qt]
0

[Z]p,q_B]p,q

q
+ |*2D, ju(ay)| ——+ |%2D,, ;u(a,)
EEAE DR

2]pq — I3
+ |a1Dp.qu(0-’1)| 3] M]
p.q

[2]p,4[3]p.q

q ([Z]p,q - [3]p,q)]
[2]p,4[3]pq

_Tn 1
- 2 |:|a1Dp,qu((Z2)| [3]p'q

= 2B Dy cu(@n)] + 192D, (@) |} + {la, Dyqu(as)] + 192D, qu(ay)])
- 2 a1-p.q 2 p.q 1 [3]pq a1-p.q 2 .9 1
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q(ay — ay)
T 2Bl

([3]p,q - [Z]p,q)(lale,qu(al)l + |a2Dp,qu(a2)|)]

[lale,qu(az)l + |a2Dp,qu(a1)| + [z]pq

Hence proved.
Theorem 2: If,|, D, qul|?,|*2D, qu|Yand y = 1land it is convex function, then inequality holds according to Lemma (3)

hypotheses:

az

u(al) + u(az) 1 j‘pa2+(1_p)a1
2 2(ay — ay)

U(X) g, dpgx +f

pai+(1-p)az

u (x)% dp‘qx}

ay

1
‘I(a’z - al) <[2]p,q|a1Dp,qu(a2)|y + ([3]p,q - [z]p,q)|011Dp,qu(a:2)|y>7

T 22 [31p.4

1
([Z]p,qI“ZDp,qu(al)ly + (Blpg — [2]p,q)|“2Dp,qu(a1)Iy)?
+
[3]p.q

Proof: We know by lemma 3 and theorem 1 give

@) ful@) 1 fp“ﬁ(l-p)“l
2 2(a; —ay)

_ 0Ty
2

By using power mean inequality

az

U(X) g, dp gx +f

pai+(1-plaz

u (x)%*2 dp,qx}

ay

+

|

1
f qt®Dy qu(ta; + (1 — t)az)dy, 4t
0

1
f qte, Dpqu(ta, + (1 —t)ay)d, 4t
0

1 1

0(2 - 0(1 1 1_)_/ 1 1_/
< > f qtdy 4t J qtle, Dpqulta; + (1 —t)ay)|dy 4t
0 0

1 1‘% 1 %
+ (f qtdp_qt> <j qt|*2D, qu(ta; + (1 — t)a2)|dp_qt>
0 0

By the convexity of |4, Dp qu|? and [*2D,, qu[¥, we have

1
az_a

1
1 1 Tyt iz
< > f qtd, 4t f qt{tlale‘qu(az)l +(1- t)|a1Dp,qu(a1)|}dp,qt
0 0

1

1
1 Yy iz
+ (f qtdp,qt) <f qt{tl“ZDp‘qu(al)l +(1- t)|“2Dp,qu(a2)|}dp,qt>
0 0

By taking integration we get

q(a; — ay) <[2]p,q|a1Dp,qu(a2)|y + ([3]p,q - [Z]p,q)|z7lep,qu(az)|y>V

T 22, [315.4

<[2]p,q|a2Dp,qu(a1)|y + ([3]p,q - [Z]p,q)lasz,qu(al)ly)}_/
+
[Blpq

Hence proved.
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Theorem 3: If |, D, ul”|*2D,u|"and y > 1and it is convex, then inequality holds according to Lemma (3) hypotheses:

az

U(X) g, dpgx + f u (x)“zdp‘qx}

pai+(1-pla;

u(ay) + u(ay) B 1 {

paz+(1-plag
2 2(a; —ay) f

ay
1

1 =
_ ‘I(az - 0!1) ( 1 )1_/ (lale,qu(a2)|5 + (p +q - 1)|a1Dp,qu(a1)|5)S
- ]P:q

2

[]/ +1 [Z]p,q

1
+ <|a2Dp,qu(a1)|5 + (p +q-— l)lasz,qu(az)l)S
[2]p,q

Wherey 1 +671=1

Proof: The lemma 1 and theorem 1 give

u(ay) +u(ay) 1 paz+(1-p)ay ay
L > 2 2@ —a) J U(X) g, dp gx +j u (x)*2dy gx
a2 — @ ay pai+(1-pla,
— 1 1
=— qte, Dpqu(ta; + (1 —t)a))dyqat + | qt*?D, qu(ta; + (1 —t)az)d, 4t
0 0

1

qt|*2D, qu(ta; + (1 — t)a2)|dp,qt]

_ 1
a; —
< > U qtlg, Dpqulta, + (1 —t)ay)|d, 4t +f

0 0

By Holder inequality and lemma 1, we get

a, —ay 1 )l/ 1
S—— (fo (qt)qut) (fo o, Dguta, + (1 — t)a1)|5dqt>

Sl

1 > 3
+ (fo (qt)ydqt)y (JO |“2Du(ta; + (1 — t)a2)|5dqt)6

By the convexity of |4, Dp qu|? and [*2D,, qu[¥, we have

az

U(X) g, dp gx + j u (x)“zdp‘qx}

pai+(1-pla,

u(ay) +u(ay) 1 {

paz+(1-play
2 B 2(ay — ay) j

ay

Sl

< == (f (qt)ydp.qt>y <J {tla, Dp,qu(a)| + (1 - t)|a1DP.qu(a1)|}dp'qt)
2 0 0

1 1
6

1 v/l
+<f0 (qt)?’dp,qt> <jo {t|“2Dp_qu(a1)|+(1—t)|“ZDp,qu(a2)|}dp_qt)

By taking integration we get

_ q(a, — ay)

2

( 1 ))l/ (lale,qu(a2)|6 + (p + q - 1)|a1Dp,qu(a1)|6)§
[)/ + 1]p,q [Z]P-q

1
+ <|a2Dp,qu(a1)|6 + (p + q-— 1)|a2Dp,qu(a2)|)6
[2],4
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Thus, the proof is completed.
4. New Midpoint type inequalities for (p, q)-integrals

Lemma 4: If u: [[a;,a;]c R is p, g-differentiable function that way[q, Dpqu] and [*2D, qu] are continuous and integrable
on[a,, a,], then

a, +a, 1 paz+(1-p)a; az
u( ) — {f U(X) g, dp gx + f u (x)“zdp‘qx}
ay p

2 2(az —a1) a1 +(1-p)az

ay

1
pqu(tay + (1 —tay)d, , +f1 (qt — Vg, Dpqu(ta + (1 — t)ay)dy 4t
2

1

= 1
2

+f —qt®Dy qu(ta; + (1 —t)ay)d,qt + f1 (1 —qt)*2D, qu(ta; + (1 — t)az)d, 4t
0

2
Proof: It is simple to demonstrate by following the technique described in Lemma 3

Theorem 4: If |, Dy, jul and |*2D, qu|are convex, then the following inequality holds according to Lemma (4) hypotheses:

a, +a; 1 paz+(1-p)ag as
‘u ( ) — U U(X) g, dp gx + j u (x)“zdp‘qx]
aq 14

2 2(ay —ay) a;+(1-p)az

4p*q —3p* —3pq —3¢° o D u(a) 2(2q° — 2p® + 2p*q + 2pq” + 3p*
WBlpal2lpe) 8(B8lpgl2pa)

4p°q —3p” —3pq —3q + 192D, u(a )|2(2q —2p° +2p°q +2pq” + 3p ]
4([3]13&1 [z]p.Q) P4 ? 8([3]p,q [Z]p,q)

Proof: It is simple to demonstrate by following the technique described in theorem 1

az_
-2

a;
|a1Dp,qu(a2) |

+1%2Dp,qu(as)|

Theorem 5: If], Dy, qul", |“2D, qu|Yand y = 1and it is convex function, then the inequality holds according to Lemma (4)
hypotheses:

<a2 +a1) 1 UW2+(1 p)ay 0. d +ja2 (0eed ]
u - u(x x u(x x
2 2(“2 - al) aq P pai+(1-p)a, .

[y

oy —a; q 1_? q [S]pq + q )]_/
< 2 (4[2]p,q> X (lale,qu(aZ)I 8[3] + |a1 D,q ( 1)| 8( 3]p'q 2]p'q)

1 1
2—q\'77 < 6 —ql2],4 5q—2q2—2)?
+ | X D, u(a)|y ——————+ D, u(a)|y ———

(4’[2]p,q> |a1 D9 ( 2)| 8([3]p,q [Z]p,q) |a1 D.9 ( 1)| 8[3]p,q

1
q \'7 s az [3]pq + a4 )7
+ <—4[2]p,q> X <| Dp.qu(“1)| [S]p +%2Dp qu(az)[¥ 8([4]p_q T q[z]p'q)

2—q 1_% o 6 —ql2],,4 ay 5q —2q° — 2>%
+ <4[Z]M> X <| Dp’qu(afl)P’—8([3]p’q[2]p’q) + 92D, qu(ay)|¥ —EEL

Proof: It is simple to demonstrate by following the technique described in theorem 2.

Theorem 6: If], Dy, qu|" |*2D,, qu|"and y > land it is convex function, then the inequality holds by using Lemma (4) hypotheses:

IJERTV 131 S060055
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

| SSN: 2278-0181
Vol. 13 Issue 06, June - 2024

(az +a1) 1 fzmz+(1—p)a1 0. d +fa2 ()92
u 2 2(a; —ay) ay Hia Tpa p e pa¥

a1 +(1-p)az

Published by :
http://lwww.ijert.org

| =

a; —ay +2q

1 11’ 1
= 2 q<2y+1[y+ l]q) (lalD u(a2)|4[2] + |a1D u(“l)l [z]pq>

ol =

+ f1|t—1|ydt_ e Dy (@)] o + | Dyu(ay)| L
%q q ag 2 4[2] a; 1 4[2]

1 11/ 1 @ 1+ 2q
+<m) <| 2D u(a1)|4[2] + 12D u(“z)|4[2] )

1 y % a 3 o q-— 1 %
+<f% |1_qt| dqt> <| 2D u(al)l [2]p +| 2D u(a2)| [2]pq>

Wherey 1 +671=1
Proof: It is simple to demonstrate by following the technique described in theorem 3
5. Examples of (P, Q)-Hermite-Hadamard inequality

This section Discuss the effectiveness of the newly build inequalities by giving examples and discuss these it useful like basic
Hermite-Hadamard inequality.

Example 1: let u = x2 + 2 is convex function on [0, 1] withp = q = %then the L.H.S of inequality is that

u(a ) + u(a ) 1 paz+(1-p)ay az
L > 2 —2( — ){J u(x)aldp_qx+j u (x)*2dy gx
Ay — A1) (g, pai+(1-plaz
1
_|2+3 1 z 4 o, a2
== —72(1_0) | (x* +2)q, p_qx+jl(x + 2)%2d, qx
2
= 0.63
The right side of inequality is
q(a; —ay) (3] q (2] , )(| Dy, u(ay)| + |*2D , u(a2)|)
_T |a1Dp,qu(a2)|+ |a2Dp.qu(a1)|+ b.4q p.q ay PZCI p.q
[ ]p,q [ ]P‘CI
=0.74
So, it’s clear
0.63 < 0.74

Hence proved.

Example 2: let u = x? + 2 is convex function on [0, 1] - R with p:q:% and y = 2 then L.H.S of inequality is following

u(ay) +u(a 1 paz+(1-p)ag ar
( 1) ( 2) _ {f u(x)aldp'qx + f u (x)azdp‘qx}
aq D

z 2(az —a1) a1 +(1-p)az

IJERTV 131 S060055
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Published by :
http://www.ijert.org I SSN: 2278-0181
Vol. 13 I'ssue 06, June - 2024

1
2+3 1 z v, "
= = T2a-0 J;(x +2)a1dp,qx+f1 (x* +2)*%2d, 4x
2
= 0.63

The R.H.S of inequality is become

1
‘I(a’z - al) <[2]p,q|a1Dp,qu(a2)|y + ([3]p,q - [z]p,q)|011Dp,qu(a:2)|y>7
T 22 3154

1
([Z]p,qI“ZDp,qu(al)ly + (Blpg — [2]p,q)|“2Dp,qu(a1)Iy)?
+
[3lp,q

=0.81

So, it’s clear
0.63 < 0.81

Hence proved.

Example 3: let u = x? + 2 is convex function on [0, 1] > R Withp=q=% and y = § = 2 then the L.H.S of the inequality is

u(al) + u(a’z) 1 {fpa2+(1_p)0l1 ( ) 4 N f
- ux X
2 2(“2 - al) ay Gopa pai+(1-pla;

az

u (x)%*2 dp,qx}

1
2+3 1 2
2 20-0))),

1
(x® +2)g,dpgx + _[1 (x* +2)%2d, ox
2

= 0.63

The R.H.S of inequality is become
1

RO )3 (|alz>,,,qu<ozz>|5+(p+q—1)|o,lz>,,,qu(oc1>|5)g
2 \ir+ 1, 2T,q

1
+ <|a2Dp,qu(a1)|5 + (p + q - 1)|a2Dp,qu(a2)|)6
[2]pq

leerey_l +671 =

=0.94

So, it’s clear
0.63 < 0.94

Hence proved.

Example 4: let u = x2 + 2 is convex function on [0, 1] > R withp = q = %then the L.H.S of inequality is that

<a2 + al) 1 |:jpa2+(1_p)a1 ( ) d + jaz ( )aZd ]
u - ux X ux X
2 2(az —ay) ay ar pai+(1-p)a; -
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5 1 2 S
= 2720-0 J;(x +2)a1dp,qx+f%(x + 2)%2dy 4 x
=0.27
The right side of inequality is
a, —a 4p%q — 3p? — 3pq — 3q* 2(2q® — 2p3 + 2p%q + 2pq? + 3p?
. _ 1 e, Dy qu(z))] P q p pq q + oy D gu(ay)| (2q p p q + 4pq p
(Bl [2lp) 2 BGh2)
4 —3p*—3pq —3 2(2q° —2p° + 2 +2 +3
+ 1D, Ju(ay)| p q —5p pq q + 1D, Ju(ay)| (2q p p q + 4pq p
4(131p.4[2p.0) 8([31p.4[2p.q)
=0.44
So, it’s clear
0.27 < 0.44

Hence proved.

Example 5: let u = x? + 2 is convex function on [0, 1]- R with p=q=§ and y = 2 then L.H.S of inequality is following

‘ (0!2+0!1> 1 Upa2+(1_p)al x),. d +fa2 (x)%2d ]
u _ ulx X ux X
2 2(ay — aq) a, G pai+(1-p)az P
1
5 1 2z, ! 2 a
2

=0.27

The R.H.S of inequality is become

1

[Blpq +a° )7

1__
<Z2 2NN T (1 Dy qu(@)] e + 1o, Dy quay)]”
— 2 4[2]p,q a1 ~p.q 8[3]p,q a1~p.q 8

(131p4l21pq)
2—q\'77 6 —ql2],4 5q — 2q% — 2)%
(i) < (ldnater B(Bhal2lpg) N

1

[B8lpq + ¢ )V
8([4]11,11 + q[z]p,q)

1__
q Y q
+ x| 1%2D, qu(ay)|’ + %2D, qu(ay)|”
(4[2]p,q> <| p.q9 ( 1)| 8[3]p‘q | ».9 ( 2)|

1 1

2—q\' 77 ( 6—ql2l,, 5q—2q2—2>7

+ x| 192Dy qu(a)|Y —————< + 2D, qu(a )| —55—
(4[21p.q> Dot (@)l gy oy T Pratt @l =g

=0.48
So, it’s clear
0.27 < 0.48

Hence proved.
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Example 6: let u = x2 + 2 is convex function on [0, 1] with p:q:% and y = § = 2 then the L.H.S of the inequality is

‘ <a2 + a1> 1 Uwﬁ(l—p)al (O d fllz (e ]
u — ux X ux X
2 2(az —aq) ay o pai+(1-pla; .
1
5 1 z v, "
= E - m J(-) (.X' + 2)a1dp,qx + J.l (X + 2) de,qx
2

=0.27

The R.H.S of inequality is become
1

Y 1
) (lalD u(a2)|4[2] + |a1D u(“l)l [

(,!2 - (,!1 1
< q
2 241y + 1],

l

+ fllt—llydt e Dy (@) —m— + . Dyuay)| oL
%q q a, 2 4[2] ay 1 4[2]pq

1

1 11/ 1 . + 2q
+<m) <| 2D u(a1)|4[2] + 2D u(a2)|4[2] )

1
" f1|1—qt|Yd ) <|“D ()| g+ 1D u(a)] g 1)%
A a iz, i,

2

wherey "L + 671 =
= 0.56
So, it’s clear
0.27 < 0.56

Hence proved.

6. CONCLUSIONS

In the (p, q)-calculus framework, we prove new versions of
the trapezoidal and midpoint inequalities for differentiable
convex functions. Additionally, we use famous Holder and
power mean inequality for (p, q)-differentiable functions to
construct (p, q)-midpoint and (p, q)-type trapezoidal
inequalities. These novel results have applications in
determining certain error boundaries for the trapezoidal and
midpoint principles in p, g-integration formulae, which are
crucial in numerical analysis. The possibility that post-
quantum coordinated convex mappings might lead to new
inequality formulations by mathematicians working in this
area is an interesting one.
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