On Products of Polynomial Conjugate EPr Matrices

S. Krishnamoorthy
Head of the Department of Mathematics, Ramanujam Research Centre, Department of Mathematics, Government Arts College(Autonomous), Kumbakonam-612 001, Tamil nadu(India).

G. Manikandan, Lecturer in Mathematics, Ramanujam Research Centre, Department of Mathematics, Government Arts College(Autonomous), Kumbakonam-612 001, Tamil nadu(India).

Abstract

In this paper we disscuss the product of polynomial conjugate EP_{r} (con $-\mathrm{EP}_{\mathrm{r}}$) matrices is polynomial con $-\mathrm{EP}_{\mathrm{r}}$.

Keywords: EP matrix, polynomial matrix, Generalized inverse.
AMS classification:15A09, 15A15, 15A57.

1.Introduction

Throughout this paper we deal with complex polynomial square matrices. An $\mathrm{n} \times \mathrm{n}$ square matrix $\mathrm{A}(\lambda)$ which is a polynomial in the scalar variable $\quad \lambda$ from a field C represented by $\mathrm{A}(\lambda)=\mathrm{A}_{\mathrm{m}} \mathrm{m}^{\mathrm{m}}+\mathrm{A}_{\mathrm{m}-1} 1^{\mathrm{m}-1}+\ldots \ldots . .+\mathrm{A}_{1} \lambda+\mathrm{A}_{0} \quad$ where the leading coefficient $A_{m} \neq 0, A_{i}$'s are square matrices in $\mathrm{V}_{\mathrm{nxn}}$ is defined a polynomial matrix. Any matrix A is said to be polynomial con- EP_{r} if $R(A)=R\left(A^{T}\right)$ or equivalently $N(A)=N\left(A^{T}\right)$ or equivalently $\mathrm{AA}^{+}=\mathrm{A}^{+} \mathrm{A}$ and is said to be polynomial con- EP_{r} if A is polynomial con- EP_{r} and $\rho(A)=r$, where $R(A), N(A), \bar{A}, A^{T}$ and $\rho(A)$ denote the range space, null space, conjugate, transpose and rank of A respectively. A^{\dagger} denotes the MoorePenrose
inverse of A satisfying the following four equation:(1) $\mathrm{AXA}=\mathrm{A}$, (2) $\mathrm{XAX}=\mathrm{X}$,
(3) $(A X)^{*}=A X$, (4) $(X A)^{*}=X A[2] . A^{*}$ is the conjugate transpose of A . In general product of two polynomial con- EP_{r} matrices need not be polynomial con- EP_{r}. For instance, $\left[\begin{array}{cc}\lambda_{\mathrm{i}} & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{cc}0 & 0 \\ 0 & \lambda_{\mathrm{i}}\end{array}\right]$ are polynomial con- EP_{1} matrices, but the product is not polynomial con- EP_{1} matrix. The purpose of this paper is to answer the question of when the product of polynomial con- EP_{r} matrices is polynomial con- EP_{r}, analogous to that of EP_{r} matrices studied by [1]. We shall make use of the following results on range space, rank and generalized inverse of a matrix.
(1) $\mathrm{R}(\mathrm{A})=\mathrm{R}(\mathrm{B}) \Leftrightarrow \mathrm{AA}^{\dagger}=\mathrm{BB}^{\dagger}$
(2) $R\left(A^{\dagger}\right)=R\left(A^{*}\right)$
(3) $\rho(A)=\rho\left(A^{\dagger}\right)$ $\Rightarrow \rho\left(\mathrm{A}^{\mathrm{T}}\right)=\rho(\overline{\mathrm{A}})$
(4) $\left(\mathrm{A}^{\dagger}\right)^{\dagger}=\mathrm{A}$.

2.0N PRODUCTS OF POLYNOMIAL CONJUGATE EP ${ }_{r}$ MATRICES

In this section, Explain the product of polynomial conjugate $E P_{r}$ (con- EP_{r}) matrices is polynomial con- EP_{r}

Theorem 2.1

Let A_{1} and $A_{n}(n>1)$ be polynomial con- $E P_{r}$ matrices and let $A=A_{1} A_{2} A_{3} \ldots . . . A_{n}$. Then the following statements are equivalent.
(i) A is polynomial con- $E P_{r}$.
(ii) $\quad \mathrm{R}\left(\mathrm{A}_{1}\right)=\mathrm{R}\left(\mathrm{A}_{\mathrm{n}}\right)$ and $\rho(\mathrm{A})=\mathrm{r}$
(iii) $\quad \mathrm{R}\left(\mathrm{A}_{1}^{*}\right)=\mathrm{R}\left(\mathrm{A}_{\mathrm{n}}^{*}\right)$ and $\rho(\mathrm{A})=\mathrm{r}$
(iv) A^{\dagger} polynomial con- EP_{r}.

Proof:
(i) $\Leftrightarrow \quad$ (ii): Since $R(A) \subseteq R\left(A_{1}\right) \quad$ and $\operatorname{rk}(\mathrm{A})=\operatorname{rk}\left(\mathrm{A}_{1}\right)$ we get $\mathrm{R}(\mathrm{A})=\mathrm{R}\left(\mathrm{A}_{1}\right)$. Similarly $R\left(A^{T}\right)=R\left(A_{n}^{T}\right)$.
Now, A is polynomial con- $E P_{r} \Leftrightarrow R(A)=R\left(A^{T}\right)$ and $\rho(A)=r \quad$ (by definition of polynomial con- $E P_{r}$)
$\Leftrightarrow R\left(A_{1}\right)=R\left(A_{n}^{T}\right)$ and $\rho(A)=r$
$\Leftrightarrow R\left(A_{1}\right)=R\left(A_{n}\right)$ and $\rho(A)=r$
(since A_{n} is polynomial con- $E P_{r}$)
(ii) \Leftrightarrow (iii)

$$
\begin{aligned}
R\left(A_{1}\right)=R\left(A_{n}\right) & \Leftrightarrow A_{1} A_{1}^{\dagger}=A_{n} A_{n}^{\dagger} \quad(\text { by result }(1)) \\
& \Leftrightarrow \overline{A_{1} A_{1}^{\dagger}}=\overline{A_{n} A_{n}^{\dagger}} \\
& \Leftrightarrow A_{1}^{\dagger} A_{1}=A_{n}^{\dagger} A_{n}\left(\text { since } A_{1}, A_{n}\right.
\end{aligned}
$$

are polynomial con- EP_{r})

$$
\Leftrightarrow \mathrm{R}\left(\mathrm{~A}_{1}^{\dagger}\right)=\mathrm{R}\left(\mathrm{~A}_{\mathrm{n}}^{\dagger}\right) \text { (by results }
$$

(1)and (4))

$$
\Leftrightarrow \mathrm{R}\left(\mathrm{~A}_{1}^{*}\right)=\mathrm{R}\left(\mathrm{~A}_{\mathrm{n}}^{*}\right)(\text { by results }(2))
$$

Therefore,
$R\left(A_{1}\right)=R\left(A_{n}\right)$ and $\rho(A)=r \Leftrightarrow R\left(A_{1}^{*}\right)=R\left(A_{n}^{*}\right)$ and $\rho(\mathrm{A})=\mathrm{r}$.
(iv) \Leftrightarrow (i):
A^{\dagger} is polynomial con- $E P_{r} \Leftrightarrow R\left(A^{\dagger}\right)=R\left(\mathrm{~A}^{\dagger}\right)^{T}$ and $\rho\left(\mathrm{A}^{\dagger}\right)=r\left(\right.$ by definition of polynomial con- $\left.E P_{r}\right)$

$$
\begin{aligned}
& \Leftrightarrow R\left(A^{\dagger}\right)=R(\bar{A}) \text { and } \rho\left(A^{\dagger}\right)=r \\
& \Leftrightarrow R\left(A^{T}\right)=R(A) \text { and } \rho(A)=r
\end{aligned}
$$

(by results (2)and (3))
$\Leftrightarrow A$ is polynomial con $-E P_{r}$.
Hence the theorem.

Corollary 2.2

Let A and B be polynomial con- EP_{r} matrices.
Then AB is a polynomial con- EP_{r} matrices \Leftrightarrow $\rho(A B)=r$ and $R(A)=R(B)$.
Proof:
Proof follows from Theorem 1 for the product of two matrices A,B .

Remark 2.3

In the above corollary both the conditions that $\rho(A B)=r$ and $R(A)=R(B)$ are essential for a product of two polynomial con- EP_{r} matrices to be polynomial con- EP_{r}. This can be seen in the following:

Example 2.4

Let $A=\left[\begin{array}{cc}1 & \lambda i \\ \lambda i & -1\end{array}\right], B=\left[\begin{array}{cc}-\lambda i & 1 \\ 1 & \lambda i\end{array}\right]$ be polynomial con- EP_{r} matrices. Here $\mathrm{R}(\mathrm{A})=\mathrm{R}(\mathrm{B}), \rho(\mathrm{AB}) \neq 1$ and AB is not polynomial con- EP_{1}.

Example 2.5

Let $A=\left[\begin{array}{cc}\lambda i & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}\lambda i & \lambda i \\ \lambda i & \lambda i\end{array}\right]$ by
polynomial con- EP_{r} matrices. Here $\mathrm{R}(\mathrm{A}) \neq \mathrm{R}(\mathrm{B})$, $\rho(\mathrm{AB})=1$ and AB is not polynomial con- EP_{1}.

Remark 2.6

In particular for $\mathrm{A}=\mathrm{B}$, corollary 1 reduces to the following.

Corollary 2.7

Let A be polynomial con- $E P_{r}$. Then A^{k} is polynomial con- $E P_{r} \Leftrightarrow \rho\left(A^{k}\right)=r$.

Theorem 2.8

Let $\rho(A B)=\rho(B)=r_{1}$ and $\rho(B A)=\rho(A)=r_{2}$. If
$A B, B$ are con $-E P_{r 1}$ and A is con $-E P_{r 2}$, then $B A$ is con $-E P_{r 2}$.

Proof

Since $\rho(B A)=\rho(A)=r_{2}$, it is enough to show that $N(B A)=N(B A)^{T} . N(A) \subseteq N(B A)$ and $\rho(B A)=\rho(A)$ implies $N(B A)=N(A)$. Similarly $N(A B)=N(B)$. Now,

$$
\begin{aligned}
\mathrm{N}(\mathrm{BA}) & =\mathrm{N}(\mathrm{~A}) \\
& =\mathrm{N}\left(\mathrm{~A}^{T}\right) \quad \text { Since } \mathrm{A} \text { is polynomial }
\end{aligned}
$$

con- $\mathrm{EP}_{\mathrm{r}_{2}}$)

$$
\begin{aligned}
& \subseteq \mathrm{N}\left(\mathrm{~B}^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}}\right) \\
& =\mathrm{N}\left((A B)^{\mathrm{T}}\right) \\
& =\mathrm{N}(\mathrm{AB}) \quad \text { (Since } A B \text { is polynomial }
\end{aligned}
$$

con- $\left.E P_{r_{1}}\right)$

$$
\begin{aligned}
& =N(B) \quad(\text { Since } N(A B)=N(B)) \\
& =N\left(B^{T}\right) \quad(\text { Since } B \text { is polynomial }
\end{aligned}
$$

con- EP_{r})

$$
\subseteq \mathrm{N}\left(\mathrm{~A}^{\mathrm{T}} \mathrm{~B}^{\mathrm{T}}\right)=\mathrm{N}\left(\mathrm{BA}^{\mathrm{T}}\right)
$$

Further, $\rho(B A)=\rho(B A)^{T}$ implies $N(B A)=N(B A)^{T}$. Hence the Theorem.

Lemma 2.9

If A, B are polynomial con- EP_{r} matrices and AB has rankr, then BA has rankr.
Proof:

$$
\rho(\mathrm{AB})=\rho(\mathrm{B})-\operatorname{dim}\left(\mathrm{N}(\mathrm{~A}) \cap \mathrm{N}\left(\mathrm{~B}^{*}\right)^{\perp}\right)
$$

Since $\rho(A B)=\rho(B)=r, N(A) \cap N\left(B^{*}\right)^{\perp}=0$
$N(A) \cap N\left(B^{*}\right)^{\perp}=0 \Rightarrow N(A) \cap N(\bar{B})^{\perp}=0$ (Since
B is polynomial con- $E P_{r}$)

$$
\begin{aligned}
& \Rightarrow \mathrm{N}(\overline{\mathrm{~A}})^{\perp} \cap \mathrm{N}(\mathrm{~B})=0 \\
& \Rightarrow \mathrm{~N}\left(\mathrm{~A}^{*}\right)^{\perp} \cap \mathrm{N}(\mathrm{~B})=0 \quad(\text { Since }
\end{aligned}
$$

A is polynomial con- $E P_{r}$).Now,
$\rho(B A)=\rho(A)-\operatorname{dim}\left(N(B) \cap N\left(A^{*}\right)^{\perp}\right)=r-0=r$
Hence the Lemma.

Theorem 2.10

If A, B and $A B A B$ are polynomial con- $E P_{r}$ matrices, then BA is polynomial con- EP_{r}. Proof:

Since A, B are polynomial con- EP_{r} matrices and $\rho(A B)=r$, by Lemma $1, \rho(A B)=r$. Now the result follows from Theorem 2, for $r_{1}=r_{2}=r$.

Remark 2.11

For any two polynomial con- EP_{r} matrices A and B, since $A B, \overline{A B}, \overline{A^{\dagger}} B, A \overline{B^{\dagger}}, A^{\dagger} B^{\dagger}$, $\mathrm{B}^{\dagger} \mathrm{A}^{\dagger}$ all have the same rank, the property of a matrix being polynomial con- EP_{r} is preserved for its conjugate and Moore-Penrose inverse, by applying Corollary 1 for a pair of polynomial con- EP_{r} matrices among $\mathrm{A}, \mathrm{B}, \mathrm{A}^{\dagger}, \mathrm{B}^{\dagger}, \overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{A}^{\dagger}}, \overline{\mathrm{B}^{\dagger}}$ and using the result 2 , we can deduce the following.

Corollary 2.12

Let A, B be polynomial con- EP_{r} matrices. Then the following statements are equivalent.
(i) AB is polynomial con- EP_{r} matrices.
(ii) $\overline{\mathrm{AB}}$ is polynomial con- EP_{r} matrices.
(iii) $\overline{\mathrm{A}^{\dagger}} \mathrm{B}$ is polynomial con- EP_{r} matrices.
(iv) $\mathrm{A} \overline{\mathrm{B}^{\dagger}}$ is polynomial con- EP_{r} matrices
(v) $\quad \mathrm{A}^{\dagger} \mathrm{B}^{\dagger}$ is polynomial con- EP_{r} matrices
(vi) $\quad \mathrm{B}^{\dagger} \mathrm{A}^{\dagger}$ is polynomial con- EP_{r} matrices

Theorem 2.13

If A, B are polynomial con- EP_{r} matrices. $\mathrm{R}(\overline{\mathrm{A}})=\mathrm{R}(\mathrm{B})$ then $(\mathrm{AB})^{\dagger}=\mathrm{B}^{\dagger} \mathrm{A}^{\dagger}$.
Proof:
Since A is polynomial con- $E P_{r}$ and $R(\bar{A})=R(B)$, we have $R\left(A^{\dagger}\right)=R(B)$. That is given $x \in C_{n}$ (the set of all $n \times 1$ complex matrices) there exists a $y \in C_{n}$ such that $B x=A^{\dagger} y$. Now,
$B x=A^{\dagger} y \Rightarrow B^{\dagger} A^{\dagger} A B x=B^{\dagger} A^{\dagger} A A^{\dagger} y=B^{\dagger} A^{\dagger} y$ $\Rightarrow \mathrm{B}^{\dagger} \mathrm{Bx}$
Since $B^{\dagger} B$ is hermitian, it follows that $B^{\dagger} A^{\dagger} A B$ is hermitian. Similarly, $\quad R\left(A^{\dagger}\right)=R(B)$ implies $\mathrm{ABB}^{\dagger} \mathrm{A}^{\dagger}$ is hermitian. Further by result (1), $\mathrm{A}^{\dagger} \mathrm{A}=\mathrm{BB}^{\dagger}$. Hence,

$$
\begin{aligned}
\mathrm{AB}\left(\mathrm{~B}^{\dagger} \mathrm{A}^{\dagger}\right) \mathrm{AB} & =\mathrm{ABB}^{\dagger}\left(\mathrm{BB}^{\dagger}\right) \mathrm{B} \\
& =\mathrm{AB} \\
\left(\mathrm{~B}^{\dagger} \mathrm{A}^{\dagger}\right) \mathrm{AB}\left(\mathrm{~B}^{\dagger} \mathrm{A}^{\dagger}\right) & =\mathrm{B}^{\dagger}\left(\mathrm{BB}^{\dagger}\right) \mathrm{BB}^{\dagger} \mathrm{A}^{\dagger} \\
& =\mathrm{B}^{\dagger} \mathrm{A}^{\dagger}
\end{aligned}
$$

Thus $\mathrm{B}^{\dagger} \mathrm{A}^{\dagger}$ satisfies the defining equations of the Moore-Penrose inverse, that is, $(A B)^{\dagger}=B^{\dagger} \mathrm{A}^{\dagger}$. Hence the theorem.

Remark 2.14

In the above Theorem, the condition that $R(\overline{\mathrm{~A}})=\mathrm{R}(\mathrm{B})$ is essential.

Example 2.15

Let $A=\left[\begin{array}{cc}\lambda i & \lambda i \\ \lambda i & \lambda i\end{array}\right]$ and $B=\left[\begin{array}{cc}\lambda i & 0 \\ 0 & 0\end{array}\right]$ Here A and B are polynomial con- EP_{1} matrices, $\rho(\mathrm{AB})=1$, $R(\overline{\mathrm{~A}}) \neq \mathrm{R}(\mathrm{B})$ and $(\mathrm{AB})^{\dagger} \neq \mathrm{B}^{\dagger} \mathrm{A}^{\dagger}$

Remark 2.16

The converse of Theorem 4, need not be true in general. For,
Let $A=\left[\begin{array}{cc}\lambda \mathrm{i} & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 0 \\ 0 & \lambda \mathrm{i}\end{array}\right] . \quad A$ and B are polynomial con- EP_{r} matrices, such that $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$, but $R(\bar{A}) \neq R(B)$.
Next to establish the validity of the converse of the Theorem 4, under certain condition, first let us prove a Lemma.

Lemma 2.17

Let $A=\left[\begin{array}{ll}E & F \\ G & H\end{array}\right]$ be an $n \times n$ polynomial conEP_{r} matrix where E is an $\mathrm{r} \times \mathrm{r}$ matrix and if $[\mathrm{EF}]$ has rankr then E is nonsingular. Moreover there is an $(\mathrm{n}-\mathrm{r}) \times \mathrm{r}$ matrix K such that $\mathrm{A}=\left[\begin{array}{cc}\mathrm{E} & \mathrm{EK}^{\mathrm{T}} \\ \mathrm{KE} & \mathrm{KEK}^{\mathrm{T}}\end{array}\right]$. Proof:

Since A is polynomial con- $E P_{r},\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$ is polynomial con- EP_{r} and $[\mathrm{EF}]$ has rankr, the product $\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}\mathrm{E} & \mathrm{F} \\ \mathrm{G} & \mathrm{H}\end{array}\right]=\left[\begin{array}{cc}\mathrm{E} & \mathrm{F} \\ 0 & 0\end{array}\right]$ is a product of polynomial con- EP_{r} matrices which has rankr. Therefore by Lemma 1 the product $\left[\begin{array}{cc}E & F \\ G & H\end{array}\right]\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}E & 0 \\ G & 0\end{array}\right]$ has rankr. Hence there is an $(\mathrm{n}-\mathrm{r}) \times \mathrm{r}$ matrix K and an $\mathrm{r} \times(\mathrm{n}-\mathrm{r})$ matrix L such that $G=K E, F=E L$, and E is nonsingular.

$$
\text { Therefore, } \mathrm{A}=\left[\begin{array}{cc}
\mathrm{E} & \mathrm{EL} \\
\mathrm{KE} & \mathrm{KEL}
\end{array}\right]
$$

Now, set $C=\left[\begin{array}{cc}I_{r} & 0 \\ -K & I_{n-r}\end{array}\right]$ and consider $C A C^{T}=\left[\begin{array}{cc}I_{r} & 0 \\ -K & I_{n-r}\end{array}\right]\left[\begin{array}{cc}E & E L \\ K E & K E L\end{array}\right]\left[\begin{array}{cc}I_{r} & -K^{T} \\ 0 & I_{n-r}\end{array}\right]$

$$
=\left[\begin{array}{cc}
\mathrm{E} & \mathrm{EL} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\mathrm{I}_{\mathrm{r}} & -\mathrm{K}^{\mathrm{T}} \\
0 & \mathrm{I}_{\mathrm{n}-\mathrm{r}}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{E} & -\mathrm{EK}^{\mathrm{T}}+\mathrm{EL} \\
0 & 0
\end{array}\right]
$$

$\mathrm{CAC}^{\mathrm{T}}$ is polynomial con- EP_{r} From
$N(A)=N\left(C A C^{T}\right)$ it follows that $E L-E K^{T}=0$, and so $\mathrm{L}=\mathrm{K}^{\mathrm{T}}$,completing the proof.

Theorem 2.18

If A, B are polynomial con- EP_{r} matrices, $\rho(\mathrm{AB})=r$ and $(\mathrm{AB})^{\dagger}=\mathrm{B}^{\dagger} \mathrm{A}^{\dagger}$, then $\mathrm{R}(\overline{\mathrm{A}})=\mathrm{R}(\mathrm{B})$. Proof:

Since A is polynomial con- EP_{r}, by Theorem 3 in [3], there is a unitary matrix U such that, $\mathrm{U}^{\mathrm{T}} \mathrm{AU}=\left[\begin{array}{ll}\mathrm{D} & 0 \\ 0 & 0\end{array}\right]$, where D is $\mathrm{r} \times \mathrm{r}$ nonsingular matrix.
Set $U^{*} B \bar{U}=\left[\begin{array}{ll}B_{1} & B_{2} \\ B_{3} & B_{4}\end{array}\right]$

$$
\begin{aligned}
\mathrm{U}^{\mathrm{T}} \mathrm{AB} \overline{\mathrm{U}}=\mathrm{U}^{\mathrm{T}} \mathrm{AUU}^{*} \mathrm{~B} \overline{\mathrm{U}} & =\left[\begin{array}{ll}
\mathrm{D} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
\mathrm{B}_{1} & \mathrm{~B}_{2} \\
\mathrm{~B}_{3} & \mathrm{~B}_{4}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{DB}_{1} & \mathrm{DB}_{2} \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
D & 0 \\
0 & I_{n-r}
\end{array}\right]\left[\begin{array}{cc}
\mathrm{B}_{1} & \mathrm{~B}_{2} \\
0 & 0
\end{array}\right] \text { has }
\end{aligned}
$$

rankr and thus.

$$
\begin{aligned}
& U^{*} B A U=U^{*} B \bar{U} U^{T} A U=\left[\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right]\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right] \\
&=\left[\begin{array}{ll}
B_{1} D & 0 \\
B_{3} D & 0
\end{array}\right] \\
&=\left[\begin{array}{ll}
B_{1} & 0 \\
B_{3} & 0
\end{array}\right]\left[\begin{array}{cc}
D & 0 \\
0 & I_{n-r}
\end{array}\right] \text { has } \\
& \text { rankr . It follows that }\left[\begin{array}{cc}
B_{1} & B_{2} \\
0 & 0
\end{array}\right] \text { and }\left[\begin{array}{cc}
B_{1} & 0 \\
B_{3} & 0
\end{array}\right] \text { have }
\end{aligned}
$$ rankr, so that B_{1} is nonsingular.

By Lemma 2, $\quad U^{*} B \bar{U}=\left[\begin{array}{cc}B_{1} & B_{1} K^{T} \\ K B_{1} & K_{1} K^{T}\end{array}\right]$, with $\rho\left(U^{*} B \bar{U}\right)=\rho\left(B_{1}\right)=r . \quad$ By using Penrose representation for the generalized inverse [4], we get

$$
\begin{gathered}
\left(\mathrm{U}^{*} \mathrm{~B} \overline{\mathrm{U}}\right)^{\dagger}=\left[\begin{array}{cc}
\mathrm{B}_{1}^{*} \mathrm{~PB}_{1}^{*} & \mathrm{~B}_{1}^{*} \mathrm{~PB}_{1}^{*} \mathrm{~K}^{*} \\
\overline{\mathrm{~K}} \mathrm{~B}_{1}^{*} \mathrm{~PB}_{1}^{*} & \overline{\mathrm{~K}} \mathrm{~B}_{1}^{*} \mathrm{~PB}_{1}^{*} \mathrm{~K}^{*}
\end{array}\right] \text { where } \\
\mathrm{P}=\left(\mathrm{B}_{1} \mathrm{~B}_{1}^{*}+\mathrm{B}_{1} \mathrm{~K}^{\mathrm{T}} \overline{\mathrm{~K}} \mathrm{~B}_{1}^{*}\right)^{-1} \mathrm{~B}_{1}\left(\mathrm{~B}_{1}^{*} \mathrm{~B}_{1}+\mathrm{B}_{1}^{*} \mathrm{~K}^{*} \mathrm{~KB}_{1}\right)^{-1} \\
\mathrm{U}^{\mathrm{T}} \mathrm{~B}^{\dagger} \mathrm{U}=\left(\mathrm{U}^{*} \mathrm{~B} \overline{\mathrm{U}}\right)^{\dagger}=\left[\begin{array}{cc}
\mathrm{Q} & \mathrm{Q} \mathrm{~K}^{*} \\
\overline{\mathrm{~K} Q} & \overline{\mathrm{~K}} \mathrm{QK}^{*}
\end{array}\right] \text { where } \\
\mathrm{Q}=\left(\mathrm{I}+\mathrm{K}^{\mathrm{T}} \overline{\mathrm{~K}}\right)^{-1} \mathrm{~B}_{1}^{-1}\left(\mathrm{I}+\mathrm{K}^{*} \mathrm{~K}\right)^{-1} \\
\mathrm{U}^{*} \mathrm{~A}^{\dagger} \overline{\mathrm{U}}=\left(\mathrm{U}^{\mathrm{T}} \mathrm{AU}\right)^{\dagger}=\left[\begin{array}{cc}
\mathrm{D}^{-1} & 0 \\
0 & 0
\end{array}\right] \\
\mathrm{U}^{\mathrm{T}} \mathrm{AB} \overline{\mathrm{U}}=\mathrm{U}^{\mathrm{T}} \mathrm{AB} \overline{\mathrm{U}}\left(\mathrm{U}^{\mathrm{T}} \mathrm{AB} \overline{\mathrm{U}}\right)^{\dagger} \mathrm{U}^{\mathrm{T}} \mathrm{AB} \overline{\mathrm{U}} \\
=\mathrm{U}^{\mathrm{T}} \mathrm{AB} \overline{\mathrm{U}}\left(\mathrm{U}^{\mathrm{T}}(\mathrm{AB})^{\dagger} \overline{\mathrm{U}}\right) \mathrm{U}^{\mathrm{T}} \mathrm{AB} \overline{\mathrm{U}} \quad \text { (since } \mathrm{U}
\end{gathered}
$$

is unitary)

$$
=\mathrm{U}^{\mathrm{T}} \mathrm{AB} \overline{\mathrm{U}}\left(\mathrm{U}^{\mathrm{T}} \mathrm{~B}^{\dagger} \mathrm{A}^{\dagger} \overline{\mathrm{U}}\right) \mathrm{U}^{\mathrm{T}} \mathrm{AB} \overline{\mathrm{U}}
$$

(byhypothesis)

$$
=\mathrm{U}^{\mathrm{T}} \mathrm{AB} \overline{\mathrm{U}}\left(\mathrm{U}^{\mathrm{T}} \mathrm{~B}^{\dagger} \mathrm{U}\right)\left(\mathrm{U}^{*} \mathrm{~A}^{\dagger} \overline{\mathrm{U}}\right) \mathrm{U}^{\mathrm{T}} \mathrm{AB} \overline{\mathrm{U}}
$$

(since U is unitary). On simplification, we get,

$$
\begin{aligned}
& \mathrm{DB}_{1} \mathrm{QB}_{1}+\mathrm{DB}_{2} \overline{\mathrm{~K}} \mathrm{QB}_{1}=\mathrm{DB}_{1} \\
\Rightarrow & \mathrm{DB}_{1}\left(\mathrm{I}+\mathrm{B}_{1}^{-1} \mathrm{~B}_{2} \overline{\mathrm{~K}}\right) \mathrm{QB}_{1}=\mathrm{DB}_{1}
\end{aligned}
$$

Since $B_{2}=B_{1} K^{T}, Q_{1}=\left(I+K^{T} \bar{K}\right)^{-1}$. Hence $\left(\mathrm{I}+\mathrm{K}^{\mathrm{T}} \overline{\mathrm{K}}\right)=\left(\mathrm{QB}_{1}\right)^{-1}=\mathrm{I}$. Thus $\mathrm{K}^{\mathrm{T}} \overline{\mathrm{K}}=0$ which implies $\mathrm{K}^{*} \mathrm{~K}=0$ so that $\mathrm{K}=0$.

$$
\begin{aligned}
\mathrm{U}^{*} \mathrm{~B} \overline{\mathrm{U}} & =\left[\begin{array}{cc}
\mathrm{B}_{1} & 0 \\
0 & 0
\end{array}\right] \\
\mathrm{U}^{\mathrm{T}} \mathrm{~A} \mathrm{U} & =\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right] \\
\Rightarrow \mathrm{U}^{*} \overline{\mathrm{~A}} \overline{\mathrm{U}} & =\left[\begin{array}{ll}
\overline{\mathrm{D}} & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Since \bar{D} and B_{1} are $r \times r$ nonsingular matrices we have

$$
\begin{aligned}
R(\bar{D})=R\left(B_{1}\right) & \Rightarrow R\left(\left[\begin{array}{cc}
\bar{D} & 0 \\
0 & 0
\end{array}\right]\right)=R\left(\left[\begin{array}{cc}
B_{1} & 0 \\
0 & 0
\end{array}\right]\right) \\
& \Rightarrow R\left(U^{*} \bar{A} \bar{U}\right)=R\left(U^{*} B \bar{U}\right) \\
& \Rightarrow R(\bar{A})=R(B) .
\end{aligned}
$$

Hence the Theorem.

Theorem 2.19

Let A, B are polynomial con- EP_{r} matrices, $\rho(A B)=r$ and $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$, then $A B$ is polynomial con- EP_{r}.
Proof:

$$
\begin{aligned}
\mathrm{R}(\mathrm{~B}) & =\mathrm{R}\left(\mathrm{~B}^{T}\right) \quad\left(\text { Since } \mathrm{B} \text { is polynomial con- } \mathrm{EP}_{\mathrm{r}}\right) \\
\Rightarrow \mathrm{R}(\overline{\mathrm{~B}}) & =\mathrm{R}\left(\mathrm{~B}^{*}\right) \\
& =\mathrm{R}\left(\mathrm{~B}^{*} \mathrm{~A}^{*}\right) \quad\left(\text { Since }=\mathrm{R}\left(\mathrm{~B}^{*} \mathrm{~A}^{*}\right) \subseteq \mathrm{R}\left(\mathrm{~B}^{*}\right)\right. \\
\text { and } \rho(\mathrm{AB})^{*} & =\rho(A B)=r=\rho\left(\mathrm{B}^{*}\right) \\
& =\mathrm{R}(\mathrm{AB})^{*}=\mathrm{R}(\mathrm{AB})^{\dagger} \quad(\text { by result }(2)) \\
& =\mathrm{R}\left(\mathrm{~A}^{\dagger} \mathrm{B}^{\dagger}\right) \quad(\text { by hypothesis }) \\
& \subseteq \mathrm{R}\left(\mathrm{~A}^{\dagger}\right)=\mathrm{R}\left(\mathrm{~A}^{*}\right)=\mathrm{R}(\overline{\mathrm{~A}}) \quad \text { (by result }(2)
\end{aligned}
$$

and A is polynomial con- $\left.E P_{r}\right)$.

$$
\Rightarrow \mathrm{R}(\overline{\mathrm{~B}})=\mathrm{R}(\overline{\mathrm{~A}}) \Rightarrow \mathrm{R}(\mathrm{~B})=\mathrm{R}(\mathrm{~A})
$$

Since $\rho(A B)=r R(B)=R(A)$, by Corollary $1, A B$ is polynomial con- EP_{r}.
Hence the Theorem.

References:

[1] T.S. Baskett and I.J.Katz, "Theorems on Products of EP_{r} matrices", Linear Algebra Appl., 2(1969), 87-103.
[2] A. Ben Israel and T.N.E.Greville, "Generalized inverses- Theory and Applications", Wiley, Interscience, New York, 1974.
[3] AR. Meenakshi and R. Indira, "On conjugate EP matrices" periodica math., Hung.,
[4] R. Penrose, "On best approximate solutions of linear matrix equations", Proc.Cambridge Phil. Soc., 52(1956), 17-19
[5] C.R. Rao and S.K. Mitra, "Generalized inverse of matrices and its applications" Wiley and Sons, New York, (1971).

