On Products of Polynomial Conjugate EPr Matrices

S. Krishnamoorthy Head of the Department of Mathematics, Ramanujam Research Centre, Department of Mathematics, Government Arts College(Autonomous), Kumbakonam-612 001, Tamil nadu(India).

G. Manikandan,

Lecturer in Mathematics, Ramanujam Research Centre, Department of Mathematics, Government Arts College(Autonomous), Kumbakonam-612 001, Tamil nadu(India).

Abstract

In this paper we disscuss the product of polynomial conjugate EP_r (con- EP_r) matrices is polynomial con- EP_r .

Keywords: EP matrix, polynomial matrix, Generalized inverse. **AMS classification:**15A09, 15A15, 15A57.

1.Introduction

Throughout this paper we deal with complex polynomial square matrices. An $n \times n$ square matrix $A(\lambda)$ which is a polynomial in the scalar variable λ from a field C represented by $A(\lambda) = A_m \lambda^m + A_{m-1} \lambda^{m-1} + \dots + A_1 \lambda + A_0$ where the leading coefficient $A_m \neq 0$, A_i 's are square matrices in $V_{n\times n}$ is defined a polynomial matrix. Any matrix A is said to be polynomial con-EPr if $R(A) = R(A^{T})$ or equivalently $N(A) = N(A^{T})$ or equivalently $AA^+ = A^+A$ and is said to be polynomial con- EP_r if A is polynomial con- EP_r and $\rho(A) = r$, where R(A), N(A), \overline{A} , A^{T} and $\rho(A)$ denote the range space, null space, conjugate, transpose and rank of A respectively. A^{\dagger} denotes the Moore-Penrose

inverse of A satisfying the following four equations:(1) AXA = A, (2) XAX = X, (3) $(AX)^* = AX$, (4) $(XA)^* = XA$ [2]. A* is the conjugate transpose of A. In general product of two polynomial con- EP_r matrices need not be polynomial con- EP_r. For instance, $\begin{bmatrix} \lambda i & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & \lambda i \end{bmatrix}$ are polynomial con- EP₁ matrices, but the product is not polynomial con- EP₁ matrix. The purpose of this paper is to answer the question of when the product of polynomial con- EP_r matrices is

polynomial con- EP_r , analogous to that of EP_r matrices studied by [1]. We shall make use of the following results on range space, rank and generalized inverse of a matrix.

- (1) $R(A) = R(B) \Leftrightarrow AA^{\dagger} = BB^{\dagger}$
- (2) $R(A^{\dagger}) = R(A^{*})$
- (3) $\rho(A) = \rho(A^{\dagger})$ $\Rightarrow \rho(A^{T}) = \rho(\overline{A})$
- (4) $(A^{\dagger})^{\dagger} = A$.

2.ON **PRODUCTS** OF **POLYNOMIAL CONJUGATE EP**_{**r**} **MATRICES**

In this section, Explain the product of polynomial conjugate EP_r (con- EP_r) matrices is polynomial con- EP_r

Theorem 2.1

Let A_1 and A_n (n > 1) be polynomial con- EP_T matrices and let $A = A_1A_2A_3....A_n$. Then the following statements are equivalent.

- (i) A is polynomial con- EP_r .
- (ii) $R(A_1) = R(A_n)$ and $\rho(A) = r$
- (iii) $R(A_1^*) = R(A_n^*)$ and $\rho(A) = r$
- (iv) A^{\dagger} polynomial con- EP_r .

Proof:

(i) \Leftrightarrow (ii): Since $R(A) \subseteq R(A_1)$ and $rk(A) = rk(A_1)$ we get $R(A) = R(A_1)$. Similarly $R(A^T) = R(A_n^T)$.

Now, A is polynomial con- $EP_r \Leftrightarrow R(A) = R(A^T)$

and $\rho(A) = r$ (by definition of polynomial con- EP_r)

 $\Leftrightarrow R(A_1) = R(A_n^T) \text{ and } \rho(A) = r$ $\Leftrightarrow R(A_1) = R(A_n) \text{ and } \rho(A) = r$

(since A_n is polynomial con- EP_r)

$$R(A_1) = R(A_n) \iff A_1 A_1^{\dagger} = A_n A_n^{\dagger} \quad \text{(by result (1))}$$
$$\iff \overline{A_1 A_1^{\dagger}} = \overline{A_n A_n^{\dagger}}$$
$$\iff A_1^{\dagger} A_1 = A_n^{\dagger} A_n \quad \text{(since } A_1, A_n$$

are polynomial con- EP_r)

$$\Leftrightarrow \mathbf{R}(\mathbf{A}_1^{\dagger}) = \mathbf{R}(\mathbf{A}_n^{\dagger})$$
 (by results

(1)and (4))

$$\Leftrightarrow R(A_1^*) = R(A_n^*)$$
 (by results (2))

Therefore,

$$R(A_1) = R(A_n)$$
 and $\rho(A) = r \iff R(A_1^*) = R(A_n^*)$
and $\rho(A) = r$.
(iv) \iff (i):

 A^{\dagger} is polynomial con- $EP_{r} \Leftrightarrow R(A^{\dagger}) = R(A^{\dagger})^{T}$ and $\rho(A^{\dagger}) = r$ (by definition of polynomial con- EP_{r}) $\Leftrightarrow R(A^{\dagger}) = R(\overline{A})$ and $\rho(A^{\dagger}) = r$

 $\Leftrightarrow R(A^T) = R(A) \text{ and } \rho(A) = r$ (by results (2)and (3)) $\Leftrightarrow A \text{ is polynomial con-} EP_r \,.$ Hence the theorem.

Corollary 2.2

Let A and B be polynomial con- EP_r matrices.

Then AB is a polynomial con-EP_r matrices $\Leftrightarrow \rho(AB) = r$ and R(A) = R(B).

Proof:

Proof follows from Theorem 1 for the product of two matrices $\,A,B\,.$

Remark 2.3

In the above corollary both the conditions that $\rho(AB) = r$ and R(A) = R(B) are essential for a product of two polynomial con- EP_r matrices to be polynomial con- EP_r . This can be seen in the following:

Example 2.4

Let $A = \begin{bmatrix} 1 & \lambda i \\ \lambda i & -1 \end{bmatrix}$, $B = \begin{bmatrix} -\lambda i & 1 \\ 1 & \lambda i \end{bmatrix}$ be polynomial

con- EP_r matrices. Here R(A) = R(B), $\rho(AB) \neq 1$ and AB is not polynomial con- EP_1 .

Example 2.5

Let $A = \begin{bmatrix} \lambda i & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} \lambda i & \lambda i \\ \lambda i & \lambda i \end{bmatrix}$ by

polynomial con- EP_r matrices. Here $R(A) \neq R(B)$, $\rho(AB) = 1$ and AB is not polynomial con- EP_1 .

Remark 2.6

In particular for A = B, corollary 1 reduces to the following.

Corollary 2.7

Let A be polynomial con-EP_r. Then A^k is polynomial con-EP_r $\Leftrightarrow \rho(A^k) = r$.

Theorem 2.8

Let $\rho(AB) = \rho(B) = r_1$ and $\rho(BA) = \rho(A) = r_2$. If A B, B are con $-EP_{r_1}$ and A is con $-EP_{r_2}$, then BA is con $-EP_{r_2}$.

Proof

Since $\rho(BA) = \rho(A) = r_2$, it is enough to show that $N(BA) = N(BA)^T$. $N(A) \subseteq N(BA)$ and $\rho(BA) = \rho(A)$ implies N(BA) = N(A). Similarly N(AB) = N(B). Now,

N(BA) = N(A)

 $= N(A^T) \ \ (Since \ A \ is polynomial \ con- EP_r \)$

$$\subseteq N(B^{T}A^{T})$$

= N((AB)^T)
= N(AB) (Since AB is polynomial

 $\operatorname{con-EP}_{r_i}$)

$$= N(B^{T})$$
 (Since B is polynomial

 $\operatorname{con-EP}_r$)

$$\subseteq N(A^{T}B^{T}) = N(BA^{T}).$$

Further, $\rho(BA) = \rho(BA)^T$ implies $N(BA) = N(BA)^T$. Hence the Theorem.

Lemma 2.9

If A, B are polynomial con- EP_{r} matrices and AB has rank r, then BA has rank r. *Proof:*

$$\rho(AB) = \rho(B) - \dim(N(A) \cap N(B^*)^{\perp}).$$

Since $\rho(AB) = \rho(B) = r$, $N(A) \cap N(B^*)^{\perp} = 0$ $N(A) \cap N(B^*)^{\perp} = 0 \implies N(A) \cap N(\overline{B})^{\perp} = 0$ (Since B is polynomial con- EP_r)

$$\Rightarrow N(\overline{A})^{\perp} \cap N(B) = 0$$
$$\Rightarrow N(A^{*})^{\perp} \cap N(B) = 0 \quad (\text{Since})$$

A is polynomial con- EP_r).Now,

 $\rho(BA)=\rho(A)-dim\Bigl(N(B)\cap N(A^*)^{\bot}\Bigr)=r-0=r$ Hence the Lemma.

Theorem 2.10

If A, B and AB AB are polynomial con- EP_r matrices, then BA is polynomial con- EP_r . *Proof:*

Since A, B are polynomial con- EP_r matrices and $\rho(AB) = r$, by Lemma 1, $\rho(AB) = r$. Now the result follows from Theorem 2, for $r_1 = r_2 = r$.

Remark 2.11

For any two polynomial con- EP_r matrices A and B, since AB, \overline{AB} , $\overline{A^{\dagger}}B$, $A\overline{B^{\dagger}}$, $A^{\dagger}B^{\dagger}$, $B^{\dagger}A^{\dagger}$ all have the same rank, the property of a matrix being polynomial con- EP_r is preserved for its conjugate and Moore-Penrose inverse, by applying Corollary 1 for a pair of polynomial con- EP_r matrices among A, B, A^{\dagger} , B^{\dagger} , \overline{A} , \overline{B} , $\overline{A^{\dagger}}$, $\overline{B^{\dagger}}$ and using the result 2, we can deduce the following.

Corollary 2.12

 $\label{eq:left} \mbox{Let } A\,,B \mbox{ be polynomial con-} EP_r \mbox{ matrices}.$ Then the following statements are equivalent.

- (i) AB is polynomial con- EP_r matrices.
- (ii) \overline{AB} is polynomial con- EP_r matrices.
- (iii) $A^{\dagger} B$ is polynomial con- EP_{r} matrices.
- (iv) $A\overline{B^{\dagger}}$ is polynomial con- EP_r matrices
- (v) $A^{\dagger} B^{\dagger}$ is polynomial con- EP_{r} matrices

(vi) $B^{\dagger}A^{\dagger}$ is polynomial con- EP_{r} matrices

Theorem 2.13

If A, B are polynomial con-EP_r matrices. $R(\overline{A}) = R(B)$ then $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.

Proof:

Since A is polynomial con- EP_{T} and $R(\overline{A}) = R(B)$, we have $R(A^{\dagger}) = R(B)$. That is given $x \in C_{n}$ (the set of all $n \times 1$ complex matrices) there exists a $y \in C_{n}$ such that $Bx = A^{\dagger}y$. Now,

$$Bx = A^{\dagger}y \Longrightarrow B^{\dagger}A^{\dagger}ABx = B^{\dagger}A^{\dagger}AA^{\dagger}y = B^{\dagger}A^{\dagger}y$$
$$\Rightarrow B^{\dagger}Bx$$

Since $B^{\dagger}B$ is hermitian, it follows that $B^{\dagger}A^{\dagger}AB$ is hermitian. Similarly, $R(A^{\dagger}) = R(B)$ implies $ABB^{\dagger}A^{\dagger}$ is hermitian. Further by result (1), $A^{\dagger}A = BB^{\dagger}$. Hence,

$$AB(B^{\dagger}A^{\dagger})AB = ABB^{\dagger}(BB^{\dagger})B$$

$$= AB$$

$$(B^{\dagger}A^{\dagger})AB(B^{\dagger}A^{\dagger}) = B^{\dagger}(BB^{\dagger})BB^{\dagger}A^{\dagger}$$

$$= B^{\dagger}A^{\dagger}$$

Thus $B^{\dagger}A^{\dagger}$ satisfies the defining equations of the Moore-Penrose inverse, that is, $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$. Hence the theorem.

Remark 2.14

In the above Theorem, the condition that R(A) = R(B) is essential.

Example 2.15

Let $A = \begin{bmatrix} \lambda i & \lambda i \\ \lambda i & \lambda i \end{bmatrix}$ and $B = \begin{bmatrix} \lambda i & 0 \\ 0 & 0 \end{bmatrix}$ Here A and B are polynomial con-EP₁ matrices, $\rho(AB) = 1$, $R(\overline{A}) \neq R(B)$ and $(AB)^{\dagger} \neq B^{\dagger}A^{\dagger}$

Remark 2.16

The converse of Theorem 4, need not be true in general. For,

Let $A = \begin{bmatrix} \lambda i & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & \lambda i \end{bmatrix}$. A and B are polynomial con- EPr matrices, such that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$, but $R(\overline{A}) \neq R(B)$.

Next to establish the validity of the converse of the Theorem 4, under certain condition, first let us prove a Lemma.

Lemma 2.17

Let $A = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$ be an $n \times n$ polynomial con-

 EP_r matrix where E is an r×r matrix and if [EF] has rankr then E is nonsingular. Moreover there is

an $(n-r) \times r$ matrix K such that $A = \begin{bmatrix} E & EK^T \\ KE & KEK^T \end{bmatrix}$. Proof:

Since A is polynomial con-EPr, $\begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}$ is polynomial con- EP_r and [EF] has rank r, the product $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} E & F \\ 0 & 0 \end{bmatrix}$ is a product of polynomial con-EPr matrices which has rank r. Lemma 1 the Therefore product by $\begin{bmatrix} \mathbf{E} & \mathbf{F} \\ \mathbf{G} & \mathbf{H} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{\mathbf{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{E} & \mathbf{0} \\ \mathbf{G} & \mathbf{0} \end{bmatrix}$ has rank **r**. Hence there is an $(n-r) \times r$ matrix K and an $r \times (n-r)$ matrix L such that G = KE, F = EL, and E is nonsingular.

Therefore,
$$A = \begin{bmatrix} E & EL \\ KE & KEL \end{bmatrix}$$

Now, set
$$\mathbf{C} = \begin{bmatrix} \mathbf{I}_{r} & 0 \\ -\mathbf{K} & \mathbf{I}_{n-r} \end{bmatrix}$$
 and consider
 $\mathbf{CAC}^{\mathrm{T}} = \begin{bmatrix} \mathbf{I}_{r} & 0 \\ -\mathbf{K} & \mathbf{I}_{n-r} \end{bmatrix} \begin{bmatrix} \mathbf{E} & \mathbf{EL} \\ \mathbf{KE} & \mathbf{KEL} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{r} & -\mathbf{K}^{\mathrm{T}} \\ 0 & \mathbf{I}_{n-r} \end{bmatrix}$
 $= \begin{bmatrix} \mathbf{E} & \mathbf{EL} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{r} & -\mathbf{K}^{\mathrm{T}} \\ 0 & \mathbf{I}_{n-r} \end{bmatrix} = \begin{bmatrix} \mathbf{E} & -\mathbf{EK}^{\mathrm{T}} + \mathbf{EL} \\ 0 & 0 \end{bmatrix}$
 $\mathbf{CAC}^{\mathrm{T}}$ is polynomial con- \mathbf{EP}_{r} From

 $N(A) = N(CAC^{T})$ it follows that $EL-EK^{T} = 0$, and so $L = K^{T}$, completing the proof.

Theorem 2.18

A.Bare If polynomial con- EP_r matrices, $\rho(AB) = r$ and $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$, then $R(\overline{A}) = R(B)$. Proof:

Since A is polynomial con- EP_r , by Theorem 3 in [3], there is a unitary matrix U such that,

$$\mathbf{U}^{\mathrm{T}}\mathbf{A}\mathbf{U} = \begin{bmatrix} \mathbf{D} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}, \text{ where } \mathbf{D} \text{ is } \mathbf{r} \times \mathbf{r} \text{ nonsingular}$$
matrix.

Set
$$U^* B \overline{U} = \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix}$$

 $U^T A B \overline{U} = U^T A U U^* B \overline{U} = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix}$
 $= \begin{bmatrix} D B_1 & D B_2 \\ 0 & 0 \end{bmatrix}$
 $= \begin{bmatrix} D & 0 \\ 0 & I_{n-r} \end{bmatrix} \begin{bmatrix} B_1 & B_2 \\ 0 & 0 \end{bmatrix}$ has

rankr and thus.

$$U^{*}BAU = U^{*}B\overline{U}U^{T}AU = \begin{bmatrix} B_{1} & B_{2} \\ B_{3} & B_{4} \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} B_{1}D & 0 \\ B_{3}D & 0 \end{bmatrix}$$
$$= \begin{bmatrix} B_{1} & 0 \\ B_{3} & 0 \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & I_{n-r} \end{bmatrix} has$$
rank r . It follows that
$$\begin{bmatrix} B_{1} & B_{2} \\ 0 & 0 \end{bmatrix} and \begin{bmatrix} B_{1} & 0 \\ B_{3} & 0 \end{bmatrix} have$$

rank r, so that \mathbf{B}_1 is nonsingular.

By Lemma 2, $U^*B\overline{U} = \begin{bmatrix} B_1 & B_1K^T \\ KB_1 & KB_1K^T \end{bmatrix}$ with $\rho(U^*B\overline{U}) = \rho(B_1) = r$. By using Penrose representation for the generalized inverse [4], we get $(\mathbf{U}^{*}\mathbf{B}\,\overline{\mathbf{U}})^{\dagger} = \begin{bmatrix} \mathbf{B}_{1}^{*}\mathbf{P}\mathbf{B}_{1}^{*} & \mathbf{B}_{1}^{*}\mathbf{P}\mathbf{B}_{1}^{*}\mathbf{K}^{*} \\ \overline{\mathbf{K}}\mathbf{B}_{1}^{*}\mathbf{P}\mathbf{B}_{1}^{*} & \overline{\mathbf{K}}\mathbf{B}_{1}^{*}\mathbf{P}\mathbf{B}_{1}^{*}\mathbf{K}^{*} \end{bmatrix}$ where $P = (B_1 B_1^* + B_1 K^T \overline{K} B_1^*)^{-1} B_1 (B_1^* B_1 + B_1^* K^* K B_1)^{-1}$ $\mathbf{U}^{\mathrm{T}}\mathbf{B}^{\dagger}\mathbf{U} = (\mathbf{U}^{*}\mathbf{B}\,\overline{\mathbf{U}})^{\dagger} = \begin{bmatrix} \mathbf{Q} & \mathbf{Q}\mathbf{K}^{*} \\ \overline{\mathbf{K}}\mathbf{Q} & \overline{\mathbf{K}}\mathbf{Q}\mathbf{K}^{*} \end{bmatrix} \text{ where }$ $Q = (I + K^T \overline{K})^{-1} B_1^{-1} (I + K^* K)^{-1}$ $\mathbf{U}^* \mathbf{A}^{\dagger} \overline{\mathbf{U}} = (\mathbf{U}^{\mathrm{T}} \mathbf{A} \mathbf{U})^{\dagger} = \begin{bmatrix} \mathbf{D}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$ $\mathbf{U}^{\mathrm{T}}\mathbf{A}\mathbf{B}\overline{\mathbf{U}} = \mathbf{U}^{\mathrm{T}}\mathbf{A}\mathbf{B}\overline{\mathbf{U}}(\mathbf{U}^{\mathrm{T}}\mathbf{A}\mathbf{B}\overline{\mathbf{U}})^{\dagger}\mathbf{U}^{\mathrm{T}}\mathbf{A}\mathbf{B}\overline{\mathbf{U}}$ $= U^{T}AB\overline{U}(U^{T}(AB)^{\dagger}\overline{U})U^{T}AB\overline{U}$ (since U is unitary) $= U^{T}AB\overline{U}(U^{T}B^{\dagger}A^{\dagger}\overline{U})U^{T}AB\overline{U}$ (byhypothesis) $= U^{T}AB\overline{U}(U^{T}B^{\dagger}U)(U^{*}A^{\dagger}\overline{U})U^{T}AB\overline{U}$ (since U is unitary). On simplification, we get, $DB_1QB_1 + DB_2\overline{K}QB_1 = DB_1$ \Rightarrow DB₁(I+B₁⁻¹B₂ \overline{K})QB₁ = DB₁ Since $B_2 = B_1 K^T$, $QB_1 = (I + K^T \overline{K})^{-1}$. Hence $(I + K^T \overline{K}) = (QB_1)^{-1} = I$. Thus $K^T \overline{K} = 0$ which implies $K^*K = 0$ so that K = 0. $\mathbf{U}^{*}\mathbf{B}\mathbf{\overline{U}} = \begin{vmatrix} \mathbf{B}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{vmatrix}$ $U^{T}AU = \begin{bmatrix} D & 0 \end{bmatrix}$

$$\Rightarrow U^* \overline{A} \overline{U} = \begin{bmatrix} 0 & 0 \\ \overline{D} & 0 \\ 0 & 0 \end{bmatrix}$$

Since \overline{D} and B_1 are $r \times r$ nonsingular matrices we have

$$\mathbf{R}(\mathbf{\overline{D}}) = \mathbf{R}(\mathbf{B}_1) \Longrightarrow \mathbf{R}\left(\begin{bmatrix} \mathbf{\overline{D}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}\right) = \mathbf{R}\left(\begin{bmatrix} \mathbf{B}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}\right)$$

$$\Rightarrow R(U^* \overline{A} \overline{U}) = R(U^* B \overline{U})$$
$$\Rightarrow R(\overline{A}) = R(B).$$

Hence the Theorem.

Theorem 2.19

Let A, B are polynomial con-EPr matrices, $\rho(AB) = r$ and $(AB)^{\dagger} = B^{\dagger}A^{\dagger}.$ then AB is polynomial con- EPr. Proof: $R(B) = R(B^{T})$ (Since B is polynomial con-EP_r) $\Rightarrow R(\overline{B}) = R(B^*)$ $= R(B^*A^*)$ (Since $= R(B^*A^*) \subset R(B^*)$ and $\rho(AB)^* = \rho(AB) = r = \rho(B^*)$ $= R(AB)^* = R(AB)^{\dagger}$ (by result (2)) $= R(A^{\dagger}B^{\dagger})$ (by hypothesis) $\subseteq R(A^{\dagger}) = R(A^{\ast}) = R(\overline{A})$ (by result (2) and A is polynomial con- EP_r). \Rightarrow R(\overline{B}) = R(\overline{A}) \Rightarrow R(B) = R(A)

Since $\rho(AB) = r R(B) = R(A)$, by Corollary 1, AB is polynomial con- EP_r . Hence the Theorem.

References:

- T.S. Baskett and I.J.Katz, "Theorems on Products of EP_r matrices", Linear Algebra Appl., 2(1969), 87-103.
 - [2] A. Ben Israel and T.N.E.Greville, "Generalized inverses- Theory and Applications", Wiley, Interscience, New York, 1974.
- [3] AR. Meenakshi and R. Indira, "On conjugate EP matrices" periodica math., Hung.,
- [4] R. Penrose, "On best approximate solutions of linear matrix equations", Proc.Cambridge Phil. Soc., 52(1956), 17-19
- [5] C.R. Rao and S.K. Mitra, "Generalized inverse of matrices and its applications" Wiley and Sons, New York, (1971).