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Abstract—Pseudo-Noise (PN) sequences are widely used in, 

from simple applications such as clock dividers to complex 

applications such as  spread spectrum communication systems. 

Among PN sequences, maximal length (m-)sequences are very 

popular for communications and ranging applications, due to 

their desirable properties. While m-sequences are available only 

in limited number of lengths, the non-maximal length (NML) 

sequences are available in varieties of lengths.  It appears that 

the NMLS were not investigated into, to the extent they deserve. 

The author conjectures  that several other (non-

communications) applications might benefit from the NLM 

sequences.   In this paper, generation and   periodicity property 

of NLM sequences, corresponding to  polynomials of degree 3 to 

20 are investigated. The results are expected to create an interest 

among the researchers in exploring some new applications of 

NML sequences.  

Keywords— PN sequences, Reducible polynomials, Linear 

feedback shift register sequences,  Mobius-Mu function, Euler-Phi 

function 

I. INTRODUCTION 
 

Pseudo-Noise (PN) sequences find applications  in spread 

spectrum communication systems [1], radar [2], clock 

dividers [3],  system identification [4,5,6,7,8],  VLSI circuit 

testing [9,10], test-pattern generation and for signature 

analysis [11], scrambling in digital  broadcasting and 

communications [12], cryptography [13] and programmable 

sound generators [14]. A special class  of PN sequences, 

called the Binary Linear Feedback Shift Register (LFSR) 

Sequences are generated using a simple hardware i.e. shift 

register whose individual stage outputs are feedback to the 

input through a modulo-2 adder. The LFSRs with certain 

combinations of feedback connections  give rise to sequences 

of maximum length i.e. 2𝑛 − 1, where n is the number of 

stages of the shift register. These sequences are called 

maximal sequences (m-sequences), which are preferred to 

non-maximal sequences in most of the real systems, due to 

their desirable  properties. Accordingly, the non-maximal 

sequences were almost ignored and their properties were not 

explicitly discussed in the literature. The author conjectures  

that several other applications might benefit from non-

maximal length sequences. 

 In this paper, the non-maximal length sequences 

generated by linear feedback shift register and their 

periodicity property are discussed in detail. The paper is 

organized as follows. In section I, the mathematical structure 

associated with LFSR sequence generator  is discussed.   The 

primitive irreducible polynomials and their connection to m-

sequences is also discussed. Section III is dedicated to Non-

maximal Length Shift Register (NMLSR) sequences. In this 

section, generation and periodicity property of NMLSR 

sequences corresponding to  polynomials of degree 3 to 20 

are investigated analytically. Section IV discusses the details 

of simulations and the results. Conclusions and scope of 

future work are presented in section V. 

II. BINARY LINEAR FEEDBACK SHIFT REGISTER 

SEQUENCES 

 
Let a binary polynomial h(x) of degree n is given by  

 ℎ(𝑥) = ℎ0𝑥𝑛 + ℎ1𝑥𝑛−1 + … +  ℎ𝑛−1𝑥 +  ℎ𝑛        (1) 

where h0 = hn = 1 and other coefficients ℎ𝑖 ∈ {0,1}. The 

polynomial h(x) can also be represented as a binary vector 

𝒉 = (ℎ0, ℎ1, … , ℎ𝑛−1,  ℎ𝑛) expressed either in binary or in 

octal notation. The vector h or equivalently the polynomial 

h(x) can be used to generate a binary sequence 𝒂 =
𝑎0, 𝑎1, 𝑎2, … … … using an n-stage binary shift register circuit 

with a feedback tap connected to i-th stage if hi = 1 for 0 <
𝑖 ≤ 𝑛. Since hn = 1, the n-th stage always has a connection. 

Thus h(x) is said to be the generator polynomial of the 

sequence 𝒂. 

𝑎𝑘 = ℎ1𝑎𝑘−1 + ℎ2𝑎𝑘−2 + ⋯ +  ℎ𝑛𝑎𝑘−𝑛            (2) 

A 5-stage linear feedback shift register circuit  

corresponding to the polynomial x5+ x3+1 is shown in Fig.1. 

If the current output is taken from the kth stage, then  (k-1)st is 

the previous stage, (k-2)nd is the second previous stage and so 

on. Now by dividing the given polynomial by x5, we get the 

polynomial 1+ x˗2+ x˗5. Here a positive power means an  

advancement of a bit position, where as a negative power 

means a delay of the bit position. Thus both the polynomials 

represent the same shift register circuit. The former takes the 

reference stage at the right, while the latter considers the 

reference stage at the left.  The binary vector corresponding to 

the polynomial x5+ x3+1 is (101001) which is 51 in octal 

notation.  

The sequence a generated by the LFSR circuit initially 

loaded with a non-zero binary vector in Fig.  1 repeats every N 

bits. If the polynomial is a primitive irreducible, then the 

sequence length is maximized with a period of  𝑁 = 2𝑛 − 1, 
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where n is the number of stages of the shift register which is 

same as the degree of the generator polynomial . This 

sequence is popularly known as maximal length sequence 

(MLS)  or m-sequence [15]. The sequences generated with 

different initial shift register states (i.e. initial content of shift 

register) are the same except for a cyclic shift. If the 

polynomial is reducible into factors, then 𝑁 < 2𝑛 − 1 and the 

sequences are called non-maximal length sequences (NMLS). 

The variable L is used to represent the length of NMLS and 

𝐿 < 𝑁. 

 

 

 

 

Fig. 1. A 5-stage linear feedback shift register with tap connections  

corresponding to the polynomial x5+ x3+1 or 1+ x˗2+ x˗5. 

The m-sequences [15,16] have some desirable properties 

which make them unanimously preferred over m-sequences. 

The most important property is 2-level thumb-tack 

autocorrelation function and extremely low cross correlation 

function of the set of sequences corresponding to the generator 

polynomial of same degree. Whereas the m-sequences are 

available in limited number of lengths i.e. 𝑁 = 2𝑛 − 1, the 

NMLS are available in varieties of lengths. 

For a given degree n, a polynomial must be irreducible if it 

has to generate either an m-sequence or a non-maximal length 

sequence (nm-sequence).  Only the irreducible polynomials 

that are primitive generate m-sequences. For a given degree, 

the number of either m-sequences or nm-sequences available 

depends on the number of the primitive and non-primitive 

polynomials available. The number of such polynomials can 

be found using Möbius μ-function and Euler 𝜑-function 

respectively as follows. 

A. Number of Irreducible Polynomials 

The number of irreducible polynomials modulo-2 of 

degree n is given by  
 

𝜓(𝑛) =
1

𝑛
∑ 2𝑑  𝜇 (

𝑛

𝑑
)                                  (3)

𝑑/𝑛

 

             

where 𝜇(. ) is the Möbius μ-function [15] the sum is over all 

positive divisors of d of n. For  n= 8, the divisors of 8 are 

𝑑 = 1,2,4,8, then  𝑛 𝑑⁄ = 8, 4, 2, 1 and 𝜇(8 𝑑⁄ ) = 0,0, −1, −1. 

Substituting in (3), we get 𝜓(8) = 30 i.e. there are 30 

irreducible polynomials of degree 8. These are the LFSR 

sequences that can be generated using a shift register of 8 

stages. 

B. Number of Primitive Polynomials 

 

The number of primitive polynomials modulo-2 of degree 

n  is given by  

𝜆(𝑛) =
𝜙(2𝑛 − 1)

𝑛
                                      (4) 

where 𝜙(. ) is the Euler 𝜑-function [15]. For  n= 8, 

 𝜙(255) = 𝜙(3.5.17) = 2.4.16 = 128. Substituting in (4), 

we get 𝜆(𝑛) = 128 8⁄ = 16. i.e. there are 16 primitive 

polynomials of degree 8. This means out of 30 irreducible 

polynomials of degree 8, only 16 polynomials are primitive 

which give rise to m-sequences of length 255. The remaining 

14  polynomials are not primitive and generate non-maximal 

length sequences having lengths 𝐿 < 255.  Table I gives the 

number of non-maximal length sequences as computed from 

(3) and (4). It may noted that for degrees 3,4,5,7,13,17 and 

19, no non-maximal length sequences exist meaning that all 

irreducible polynomials are primitive only. 

TABLE I.  UMBER OF NONMAXIMAL LENGTH   SEQUENCES FOR DEGREES 

3 TO 20 

Degree 

n 

Number of 

irreducible 
polynomials  

𝜓(𝑛) 

Number of 
maximal 

length 

sequences   
𝜆(𝑛)  

Number of 

non-maximal 
length   

sequences  

𝜓(𝑛) − 𝜆(𝑛)  

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2 

2 

6 

9 

18 

30 

56 

99 

186 

335 

630 

1161 

 2182 

4080 

7710 

14532 

27594 

52377      

2 

2 

6 

6 

18 

16 

48 

60 

176 

144 

630 

756 

1800 

2048 

7710 

7776 

27594 

24000 

0 

0 

0 

3 

0 

14 

8 

39 

10 

191 

0 

405 

382 

2032 

0 

6756 

0 

28377 
 

III. NONMAXMIAL LENGTH SHIFT REGISTER SEQUENCES 
  

In this section, the lengths of non-maximal length 

sequences for degrees 3 to 20 are computed. If the number 

𝑁 = 2𝑛 − 1 has factors other than 1 and N itself, then both 

primitive and nonprimitive polynomials exist for the degree 

n.  
 

Table II gives the lengths of maximal length sequences L 

for degrees 3 to 20. The third column gives the factors of L.  

These factors are nothing but the lengths of non-maximal  

length sequences. These factors (equivalently, the sequence 

lengths) are used as arguments in Euler 𝜑-function to compute 

the number of sequences having these lengths.  The maximal  

lengths N corresponding to n=3,5,7,13,17 and 19  i.e. 7, 31, 

127, 8191, 131071 and 524287 are called mersenne primes. 

Let us consider 𝑛 = 8,  then  𝑁 = 255 which has factors: 

1, 3, 5, 15, 17, 51, 85 and 255. The sequences generated by 

the irreducible  polynomials of degree 8 must have one of the 

periods: 1, 3, 5, 15, 17, 51, 85 and 255. The case of 15 is 

ignored as it is already considered for lower degree n=4, 

N=15. As 3 and 5 are factors of 15, they are also ignored. 

There are 30 irreducible  polynomials (please refer to Table I) 

which give rise to sequences of periods: 17, 51, 85 and 255. 

There are 16 m-sequences having length of 255 

1(x-5) x3(x-2) x5(1) 

k-1 k-2 k-3 
ak 

k-4 k 
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corresponding to 16 primitive polynomials.  The remaining 

14 sequences have lengths: 17, 51 and 85. The number of 

sequences  having these lengths can be again found from  (4). 

Thus 𝜙(17) = 16, 𝜙(51) = 32 and 𝜙(85) = 64,  giving 

rise to 𝜆(. ) = 16 8⁄ = 2,  𝜆(. ) = 32 8⁄ = 4  and 𝜆(. ) =
64 8⁄ = 8. Thus there are two sequences  of length 17, four 

sequences  of length 51 and eight sequences  of length 85, 

thus making a total of 14 non-maximal length sequences 

(please refer to Table III). 

Similarly, for degree 6, 𝑁 = 26 − 1 = 63 has factors 

sorted in ascending order: 1, 3, 7, 9, 21, 63. Out of these the 

lengths of 3 and 7 were already obtained from lower degrees 

2 and 3 respectively. Since 𝜙(9) 6 =  6 6 ⁄⁄ =1, there is one 

sequence of length 9 and since  𝜙(21) 6 =  12 6⁄ = 2,⁄  there 

are two sequences of length 21. Similarly, 

𝜙(63) 6 =  36 6⁄ = 6,⁄  there are six sequences of length 63, 

which are m-sequences. Thus the total number of sequences 

obtained for degree 6 are 9, out of which three sequences are 

of non-maximal length. Samples of the actual sequences 

obtained through simulations are given in section IV.  

TABLE II.  MAXIMAL LENGTHS (L)  AND  FACTORS OF  L FOR 

DEGREE 6 TO 20  

Degree 

n 
𝑁 = 2𝑛 − 1 Factors of  𝑁 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

 

13 

14 

15 

16 

 

17 

18 

 

 

 

19 

20 

 

 

 

 

 

7 

15  

31 

63  

127 

255  

511  

1023 

2047 

4095 

 

8191       

16383        

32767   

65535     

 

131071 

262143 

 

 

  

524287 

1048575  

 

 

 

 

1.7 

1.3.5.15 

1.31 (Mersenne Prime)  

1.3.7.9.21.63 

1.127 (Mersenne Prime)  

1.3.5.15.17.51.85.255 

1.7.73.511 

1.3.11.31.33.93.341.1023 

1.23.89.2047 

1.3.5.7.9.13.15.21.35.39.45.63.65.91.105.117. 

195.273.315.455.585.819.1365.4095 

1.8191 (Mersenne Prime) 

1.3.43.127.129.381.5461.16383 

1.7.31.151.217.1057.4681.32767 

1.3.5.15.17.51.85.255.257.771.1285.3855. 

4369.13107.21845.65535 

1.131071 (Mersenne Prime) 

1.3.7.9.19.21.27.57.63.73.133.171.189.219. 

399.511.513.657.1197.1387.1533.1971.3591. 

4161.4599.9709.12483.13797.29127.37449. 

87381.262143 

1.524287 (Mersenne Prime) 

1.3.5.11.15.25.31.33.41.55.75.93.123.155.165. 

205.275.341.451.465.615.775.825.1023.1025. 

1271.1353.1705.2255.2325.3075.3813.5115. 

6355.6765.8525.11275.13981.19065.25575. 

31775.33825.41943.69905.95325.209715. 

349525.1048575 

 

The number of non-maximal length sequences of different 

lengths obtained for a given degree n are computed and listed 

in Table III for degrees 3 to 19. The sequence lengths for 

degree 20 are avoided due to space constraints, but can be 

computed from factors listed in Table II and using (4).   

 

 

TABLE III.  LENGTHS OF NONMAXMIAL LENGTH SEQUENCES (NMLS) FOR 

DEGREE 6 TO 20 

Degree n 

 

Period of 

NMLS 

Number of 

NMLS 

Total Number 

of NMLS 

6 21 
9 

2 
1 3 

8 

 

85 

51 
17 

8 

4 
2 14 

9 73 8 8 

10 
 

341 
93 

33 

11 

30 
6 

2 

1 39 

11 

 

89 

23 

8 

2 10 

12 
 

1365 
819 

585 

455 
315 

273 

195 
117 

105 

91 
65 

45 

39 
35 

13 

48 
36 

24 

24 
12 

12 

8 
6 

4 

6 
4 

2 

2 
2 

1 191 

14 

 

5461 

381 

129 

43 

378  

18  

6 

3 405 

15 

 

4681 

1057 
217 

151 

300 

60 
12 

10 
382 

16 

 

21845 

13107 
4369 

3855 

1285 
771 

257 

1024 

512 
256 

128 

64  
32 

16 
2032 

18 

 

87381 

37449 
29127 

13797 

12483 
9709 

4599 

4161 
3591 

1971 

1533 
1387 

1197 
657 

513 

399 
219 

189 

171 
133 

57 

27 
19 

2592 

1296 
864 

432 

432 
432 

144 

144 
108 

72 

48 
72 

36 
24 

18 

12 
8      

6      

6      
6   

2 

1 
1 

 
6756 
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IV. SIMULATIONS AND RESULTS 

Simulations are carried out to find out the lengths of the 

non-maximal length sequences corresponding to polynomials 

of degree 6 to 20. All the polynomials of  degrees 6 to 20 

listed in [17] were considered in the simulation study. The 

polynomials were represented in octal notation. The octal 

string of each polynomial is parsed into individual octal digits, 

then each digit is converted to a binary number. The binary 

vector 𝒉 = (ℎ0, ℎ1, … , ℎ𝑛−1,  ℎ𝑛) thus obtained is used to 

decide the feedback tap connections as described in section II.   

Customized Matlab programs are developed for converting 

octal notation to feedback taps and then generating the binary  

linear feedback shift register (LFSR) sequences recursively. 

The  recursive loop is continued to get a sequence a of 3.25N 

binary digits, accounting for  more than 4 - 8 cycles of non-

maximal length sequence depending the actual period of the 

sequence. The value of 3.25 is not mandatory, but is used for 

the unambiguous computation of autocorrelation peaks and 

subsequently the sequence period.  

The cyclic correlation of the sequence is computed and a 

peak detection algorithm is applied to find out the correlation 

peaks, the sample count between the peaks is taken as the 

repetition period of the sequence. The measured periods 𝐿̂, 

thus obtained for different polynomials in octal notation are 

listed in the third column of Table IV. For this work, in total 

around 20 customized functions in Matlab were developed for 

the polynomial representation, sequence generation, period 

computation and displaying of the results. All these functions 

are called in main program i.e. PeriodityofNMLSequences.m.  

TABLE IV.  POLYNOMIALS [TAPS] & PERIODS  MEASURED OF 

NONMAXMIAL LENGTH SEQUENCES  FOR DEGREE 6 TO 10 

Degree 
Polynomial 

Octal [Taps] 

Period   

𝐿̂ 

6 
127  [6  4  2  1  0] 

111  [6  3  0] 

165  [6  5  4  2  0] 

21 

9 

21 

8 

567 [8 6 5 4 2 1 0] 

763  [8 7 6 5 4 1 0] 

675 [8 7 5 4 3 2 0] 

727 [8 7 6 4 2 1 0] 

613 [8 7 3 1 0] 

433 [8 4 3 1 0] 

477 [8 5 4 3 2 1 0] 

735 [8 7 6 4 3 2 0] 

637 [8 7 4 3 2 1 0] 

573 [8 6 5 4 3 1 0] 

643 [8 7 5 1 0] 

661 [8 7 5 4 0] 

771 [8 7 6 5 4 3 0] 

471 [8 5 4 3 0] 

85 

51 

85 

17 

85 

51 

85 

85 

51 

85 

85 

51 

85 

17 

9 

1231 [9 7 4 3 0] 

1027 [9 4 2 1 0] 

1401 [9 8 0] 

1511 [9 8 6 3 0] 

1145 [9 6 5 2 0] 

1641 [9 8 7 5 0] 

1003 [9 1 0] 

1113 [9 6 3 1 0] 

73 

73 

73 

73 

73 

73 

73 

73 

10 

2017 [10 3 2 1 0] 

2257 [10 7 5 3 2 1 0] 
2065 [10 5 4 2 0] 

2653 [10 8 7 5 3 1 0] 

3753 [10 9 8 7 6 5 3 1 0] 
3573 [10 9 8 6 5 4 3 1 0] 

3043 [10 9 5 1 0] 

2107 [10 6 2 1 0] 
3061 [10 9 5 4 0] 

2547 [10 8 6 5 2 1 0] 

3453 [10 9 8 5 3 1 0] 
3121 [10 9 6 4 0] 

2701 [10 8 7 6 0] 

2437 [10 8 4 3 2 1 0] 
2413 [10 8 3 1 0] 

2311 [10 7 6 3 0] 

3777 [10 9 8 7 6 5 4 3 2 1 0] 

3607 [10 9 8 7 2 1 0] 

2355 [10 7 6 5 3 2 0] 

3315 [10 9 7 6 3 2 0] 
3601 [10 9 8 7 0] 

3651 [10 9 8 7 5 3 0] 

2541 [10 8 6 5 0] 
3255 [10 9 7 5 3 2 0] 

3277 [10 9 7 5 4 3 2 1 0] 

3367 [10 9 7 6 5 4 2 1 0] 
3421 [10 9 8 4 0] 

2143 [10 6 5 1 0] 

3465 [10 9 8 5 4 2 0] 
3247 [10 9 7 5 2 1 0] 

2123 [10 6 4 1 0] 

2035 [10 4 3 2 0] 
3705 [10 9 8 7 6 2 0] 

3205 [10 9 7 2 0] 

2231 [10 7 4 3 0] 
3777 [10 9 8 7 6 5 4 3 2 1 0] 

3417 [10 9 8 3 2 1 0] 

2671 [10 8 7 5 4 3 0] 
2251 [10 7 5 3 0] 

2633 [10 8 7 4 3 1 0] 

341 

341 
93 

341 

341 
341 

33 

341 
341 

341 

93 
341 

341 

341 
93 

341 

11 

341 

341 

341 
341 

341 

93 
341 

341 

341 
341 

341 

341 
93 

341 

341 
341 

93 

341 
11 

341 

341 
33 

341 
 

In addition to the above functions, 10 more Matlab 

programs are developed to compute the number of irreducible 

polynomials and the number of primitive polynomials through 

Möbius μ-function and Euler 𝜑-function respectively. The 

results are used to populate the Tables I and II.  

In the simulations study a total of 9840 (i.e. sum of values 

in the fourth column of Table III)  sequences are generated, 

the measured periods from simulations are compared to the 

theoretical periods computed analytically using (3) and (4). 

Both the values are exactly same for all the 9840 sequences 

generated. To get an idea about the distribution of 1s and 0s 

visually, sample binary NML sequences a1 through a8 of 

degree 6 (period: 21) and degree 8 (period: 17, 51 and 85) 

along with the associated polynomials in octal form are 

displayed in Table V. 
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TABLE V.  SAMPLE NONMAXMIAL LENGTH SEQUENCES   

n=6 & 

L= 21 
 

Polynomial1= 127 (Octal) 

a1=111111001110001000110 

Polynomial2= 165 (Octal) 

a2=111111011000100011100 

n=8 & 

L= 17 
 

Polynomial1= 727 (Octal) 

a1=11111111011000110 

Polynomial2= 471 (Octal) 

a2=11111111000101000 

n=8 & 
L= 51 

 

Polynomial1= 763 (Octal) 

a1=1111111101111010100111001001001111110001100 

10111010 

Polynomial1= 433 (Octal) 

a2=1111111100001001110010001001010001011011100 

01000010  

Polynomial1= 637 (Octal) 

a3=1111111101011101001100011111100100100111001 

01011110 

Polynomial1= 661 (Octal) 

a4=1111111101000010001110110100010100100010011 

10010000 

n=8 & 

L= 85 

 

Polynomial1= 567 (Octal) 

a1=11111111001000110110100111001010000100010000 

01100011100000100111100110101001100100110 

Polynomial2= 675 (Octal) 

a2=11111111010001110101010110000101100110010000 

01101110111000000100101101000000011100100 

Polynomial3= 613 (Octal) 

a3=11111111010100100100011101011101111100010001 

00101100000110001011011110111001111110010 

Polynomial4= 477 (Octal) 

a4=11111111000101100111100000101110100001010100 

11011110110110000100011101110110010111110 

Polynomial5= 735 (Octal) 

a5=11111111011001001100101011001111001000001110 

00110000010001000010100111001011011000100 

Polynomial6= 573 (Octal) 

a6=11111111001001110000000101101001000000111011 

10110000010011001101000011010101011100010 

Polynomial7= 643 (Octal) 

a7=11111111010011111100111011110110100011000001 

10100100010001111101110101110001001001010 

Polynomial8= 771 (Octal) 

a8=11111111011111010011011101110001000011011011 

11011001010100001011101000001111001101000 
 

Matlab programs are also developed to display the results 

in ASCII string notation in compact form useful to populate 

the Table IV and V. 

V. CONLUSIONS AND FUTURE WORK 

The  main focus of this work is the investigation of 

periodicity of the non-maximal length sequences generated 

by linear feedback shift registers. The paper discussed the 

mathematical structure associated with LFSR sequence 

generator. The number of primitive and non-primitive 

irreducible polynomials are computed analytically for the 

degrees 3 to 20. Simulations are carried out to generate a total 

of 9840 NML sequences corresponding to  polynomials of 

degree 3 to 20. The period of each simulated sequence is 

computed to verify the analytical results. The repetition  

periods of all the simulated sequences are found to be exactly 

same as those obtained analytically. Sample NML sequences 

are also given.  

The author conjectures that several applications other than 

communications might benefit from non-maximal length 

sequences.  Some of such applications could be the sound 

synthesizers. Work is in progress by the author towards such 

an investigation.  
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