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Abstract:-  Shortest path computation is one of the most 

common queries in location-based services that involve 

transportation networks. Motivated by appreciable challenges 

faced in the mobile network industry, we propose adopting 

the wireless broadcast model for such location-dependent 

applications. In this model the data are continuously 

transmitted on the air, while clients listen to the broadcast 

and process their queries locally. Although spatial problems 

have been considered in this environment, there exists no 

study on shortest path queries in road networks. In presented 

approach server will collect live traffic information and then 

announce them over wireless network. With this approach 

any number of clients can be added. This new approach called 

live traffic index-time reliant  (LTI-TR) enables drivers to 

update their shortest path result by receiving only a small 

fraction of the index. The existing systems were infeasible to 

solve the problem due to their prohibitive maintenance time 

and large transmission overhead. LTI-TR is a novel solution 

for Online Shortest Path Computation on Time Reliant 

Network   

 

1.  INTRODUCTION: 
 

shortest  path  computation  is  an  important  function 

in modern car navigation systems and has been extensively 

studied in . This function helps a driver to figure out the 

best route from his cur-rent position to destination. 

Typically, the shortest path is computed by offline data 

pre-stored in the navigation systems and the weight (travel 

time) of the road edges is estimated by the road distance or 

historical data. Un-fortunately, road traffic circumstances 

change over time. Without live traffic circumstances, the 

route returned by the navigation system is no longer 

guaranteed an accurate result. We demonstrate this by an 

example in Fig. 1. Suppose that we are driving from Lord 

& Taylor (label A) to Mt Vernon Hotel Museum (label B) 

in Manhattan,NY. Those old navigation systems would 

suggest a route based on the pre-stored distance 

information as shown in Fig. 1(a). Note that this route 

passes through four road maintenance operations (indicated 

by maintenance icons) and one traffic congested road 

(indicated by a red line). In fact, if we take traffic 

circumstances into account, then we prefer the route in Fig. 

1(b) rather than the route in Fig. 1(a).Nowadays, several 

online services provide live traffic data (by analyzing 

collected data from road sensors, traffic cameras, and 

crowdsourcing techniques), such as GoogleMap, Navteq , 

INRIX Traffic Information Provider , and TomTom NV , 

etc. These systems can calculate the snapshot shortest path 

queries based on current live traffic data; however, they do 

not report route to drivers continuously due to high 

operating costs. Answering the shortest paths on the live 

traffic data can be viewed as a continuous monitoring 

problem in spatial databases, which is termed online 

shortest paths computation (OSP) in this work. To the best 

of our knowledge, this problem has not received much 

attention and the costs of answering such continuous 

queries vary hugely in different system architectures. 

Typical client-server architecture can be used to answer 

shortest path queries on live traffic data. In this case, the 

navigation system typically sends the shortest path query to 

the service provider and waits the result back from the 

provider (called result transmission model). However, 

given the rapid growth of mobile devices and services, this 

model is facing  limitation appreciable in terms of network 

band-width and server loading. According to the Cisco 

Visual Networking Index forecast, global mobile traffic in 

2010 was 237 pet bytes per month and it grew by 2.6-fold 

in 2010, nearly tripling for the third year in a row. Based 

on a telecommunication expert, the world’s cellular 

networks need to provide 100 times the capacity in 2015 

when compared to the networks in 2011. Furthermore, live 

traffic are updated frequently as these data may be 

collected by using crowd sourcing techniques (e.g., 

anonymous traffic data from Google map users on certain 

mobile devices). As such, huge communication cost will be 

spent on sending result paths on the this model. Obviously, 

the client-server architecture will soon become impractical 

in dealing with massive live traffic in near future. Ku et 

al.raise the same concern in their work which processes 

spatial queries in wireless broadcast environments based on 

Euclidean distance metric. 

Malviya et al. developed a client-server system for 

continuous monitoring of registered shortest path queries. 

For each registered query (s; t), the server first precalculate 

K different candidate paths from s to t. Then, the server 

periodically updates the travel times on these K paths based 

on the latest  
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         traffic, and reports the current best path to the 

corresponding    user. Since this system adopts the client-

server architecture, it cannot scale well with a large number 

of users, as discussed above. In addition, the reported paths 

are approximate results and the system does not provide 

any accuracy guarantee. 

An alternative solution is to broadcast live traffic data 

over wireless network (e.g., 3G, LTE, Mobile WiMAX, 

etc.). The navigation system receives the live traffic data 

from the transmit channel and executes the computation 

locally (called raw transmission model). The traffic data 

are broadcasted by a sequence of packets for each 

broadcast cycle. To answer shortest path queries based on 

live traffic circumstances, the navigation system must fetch 

those updated packets for each broadcast cycle. However, 

as we will analyze an example in Section 2.2, the 

probability of a packet being affected by 1% edge updates 

is 98.77%. This means that clients must fetch almost all 

broadcast packets in a broadcast cycle. 

The main challenge on answering live shortest paths is 

appreciable, in terms of the number of clients and the 

amount of live traffic updates. A new and promising 

solution to the shortest path computation is to transmit an 

air index over the wireless network (called index 

transmission model). The main advantages of this model 

are that the network overhead is independent of the number 

of clients and every client only downloads a portion of the 

entire road map according to the index information. For 

instance, the proposed index in  constitutes a set of 

pairwise minimum and maximum traveling costs between 

every two sub-partitions of the road map. However, these 

methods only solve appreciable  the  issue for the number 

of clients but not for the amount of live traffic updates. As 

reported in , the re-computation time of the index takes 2 

hours for the San Francisco (CA) road map. It is 

prohibitively expensive to update the index for OSP, in 

order to keep up with live traffic circumstances. 

Motivated by the lack of off-the-shelf solution for 

OSP, in this paper we present a new solution based on the 

index transmission model by introducing live traffic 

index.(LTI) as the core technique. LTI is expected to 

provide relatively short tune-in cost (at client side), fast 

query response time (at client side), small broadcast size (at 

server side), and light maintenance time (at server side) for 

OSP.we summarize them as follows: 

 

 The index structure of LTI is optimized by two novel 

techniques, graph partitioning and stochastic-based 

construction, after conducting a thorough analysis the 

hierarchical index techniques . To the best of our 

knowledge, this is the first work to give a through cost 

analysis on the hierarchical index techniques and apply 

stochastic process to optimize the index hierarchical 

structure.  

LTI selectively fetches data in wireless transmit 

environments, which significantly reduce the tune-in cost. 

LTI efficiently maintains the index for live traffic 

circumstances by incorporating Dynamic Shortest Path 

Tree (DSPT) into hierarchial index techniques. In addition, 

a bounded version of DSPT is proposed to further reduce 

the broadcast overhead.  

By incorporating the above features, LTI reduces the 

tune-in cost up to an order of magnitude as compared to the 

state-of-the-art competitors; while it still provides 

competitive query response time, broadcast size, and 

maintenance time. To the best of our knowledge, we are 

the first work that attempts to minimize all these 

performance factors for OSP.  

 

                             2.RELATED WORKS 

 

 “Engineering Highway Hierarchies,”AUTHORS:  

P. Sanders and D. Schultes 

Highway hierarchies exploit hierarchical properties 

inherent in real-world road networks to allow fast and exact 

point-to-point shortest-path queries. A fast preprocessing 

routine iteratively performs two steps: First, it removes 

edges that only appear on shortest paths close to source or 

target; second, it identifies low-degree nodes and bypasses 

them by introducing shortcut edges. The resulting 

hierarchy of highway networks is then used in a Dijkstra-

like bidirectional query algorithm to considerably reduce 

the search space size without losing exactness. The crucial 

fact is that ‘far away’ from source and target it is sufficient 

to consider only high-level edges.  Experiments with road 

networks for a continent show that using a preprocessing 

time of around 15 min, one can achieve a query time of 

around 1ms on a 2.0GHz AMD Opteron. Highway 

hierarchies can be combined with goal-directed search, 

they can be extended to answer many-to-many queries, and 

they can be used as a basis for other speed-up techniques 

(e.g., for transit-node routing and highway-node routing). 

 

“Highway Hierarchies Hasten Exact Shortest Path 

Queries,”Authors:  P. Sanders and D. Schultes 

We present a new speedup technique for route 

planning that exploits the hierarchy inherent in real world 

road networks. Our algorithm preprocesses the eight digit 

number of nodes needed for maps of the USA or Western 

Europe in a few hours using linear space. Shortest (i.e. 

fastest) path queries then take around eight milliseconds to 

produce exact shortest paths. This is about 2 000 times 

faster than using Dijkstra algorithm. 
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“Dynamic Highway-Node Routing,” Authors: 

 D. Schultes and P. Sanders 

We introduce a dynamic technique for fast route 

planning in large road networks. For the first time, it is 

possible to handle the practically relevant scenarios that 

arise in present-day navigation systems: When an edge 

weight changes (e.g., due to a traffic jam), we can update 

the preprocessed information in 2-40ms allowing 

subsequent fast queries in about one millisecond on 

average. When we want to perform only a single query, we 

can skip the comparatively expensive update step and 

directly perform a prudent query that automatically takes 

the changed situation into account. If the overall cost 

function changes (e.g., due to a different vehicle type), 

recomputing the preprocessed information takes typically 

less than two minutes.  The foundation of our dynamic 

method is a new static approach that generalizes and 

combines several previous speedup techniques. It has 

outstandingly low memory requirements of only a few 

bytes per node. 

“Shortest Path Algorithms: An Evaluation Using 

Real Road Networks, Authors:   F. Zhan and C. Noon 

The classic problem of finding the shortest path over a 

network has been the target of many research efforts over 

the years. These research efforts have resulted in a number 

of different algorithms and a considerable amount of 

empirical findings with respect to performance. 

Unfortunately, prior research does not provide a clear 

direction for choosing an algorithm when one faces the 

problem of computing shortest paths on real road networks. 

Most of the computational testing on shortest path 

algorithms has been based on randomly generated 

networks, which may not have the characteristics of real 

road networks. In this paper, we provide an objective 

evaluation of 15 shortest path algorithms using a variety of 

real road networks. Based on the evaluation, a set of 

recommended algorithms for computing shortest paths on 

real road networks is identified. This evaluation should be 

particularly useful to researchers and practitioners in 

operations research, management science, transportation, 

and Geographic Information Systems. The computation of 

shortest paths is an important task in many network and 

transportation related analyses. The development, 

computational testing, and efficient implementation of 

shortest path algorithms have remained important research 

topics within related disciplines such as operations. 

 

EXISTING SYSTEM: 

III. LTI 

 

 LTI Overview 

A road network monitoring system typically consists 

of a service provider, a large number of mobile clients 

(e.g., vehicles), and a traffic provider (e.g., GoogleMap, 

NAVTEQ, INRIX, etc.). Fig.3 shows an architectural 

overview of this system in the context of our live traffic 

index (LTI) framework. The traffic provider collects the 

live traffic circumstances from the traffic monitors via 

techniques like road sensors and traffic video analysis. The 

service provider periodically receives live traffic updates 

from the traffic provider and broadcasts the live traffic 

index on radio or wireless network (e.g., 3G, LTE, Mobile 

WiMAX, etc.). When a mobile client wishes to compute 

and monitor a shortest path, it listens to the live traffic 

index and reads the relevant portion of the index for 

deriving the shortest path.In this work, we focus on 

handling traffic updates but not graph structure updates. 

For real road networks, it is infrequent to have graph 

structure updates (i.e., construction of a new road) when 

compared to edge weight updates (i.e., live traffic 

circumstances). Thus, we assume that the graph structures 

are distributed to every client in advance (e.g., by monthly 

updates or at system boot-up) via typical transmission 

protocol (i.e., HTTP and FTP). 

 

 
 

In Fig.4, we illustrate the components and system flow 

in our LTI framework. The components shaded by gray 

color are the core of LTI. In order to provide live traffic 

information, the server maintains (component a) and 

broadcasts (component b) the index according to the up-to-

date traffic circumstances. In order to compute the online 

shortest path, a client listens to the live traffic index, reads 

the relevant portions of the index (component c), and 

computes the shortest path (component d). 

 

 LTI Objectives 

To optimize the performance of the LTI components, 

our solution should support the following features. 

 

      (1) Efficient maintenance strategy. Without 

efficient     maintenance strategy, long maintenance time is 

needed at  

 
server side so that the traffic information is no longer 

live. This can reduce the maintenance time spent at 

component a. 

(2) Light index overhead. The index size must be con-

trolled in a reasonable ratio to the entire road map data. 

This reduces not only the length of a transmit cycle, but 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

3



 

 

also makes clients listen fewer packets in the transmit 

channel. This can save the communication cost at 

components b and c.  

 

(3) Efficient computation on a portion of entire index.  

This property enables clients to compute shortest path 

on a portion of the entire index. The computation at 

component d gets improved since it is executed on a 

smaller graph. This property also reduces the amount of 

data received and energy consumed at component c.  

Inspired by these properties, LTI has relatively short 

tune-in cost (at client side), fast query response time (at 

client side), small broadcast size (at server side), and light 

index maintenance time (at server side) for OSP. As 

discussed in Section 2.2, the hierarchical index structures 

enable clients to compute the shortest path on a portion of 

entire index. However, without pairing up with the first and 

second features, the communication and computation costs 

are still infeasible for OSP. To achieve these two features, 

in Section 4 and Section 6, we will discuss how to optimize 

the hierarchical structure and efficiently maintain the index 

according to live traffic circumstances. 

 

LTI CONSTRUCTION  

 

Analysis of Hierarchical Index Structures 

Hierarchical index structures (e.g., HiTi, HEPV, and       

Hub Indexing, TEDI ) enable fast shortest path 

computation on a portion of entire index which 

significantly reduces the tune-in cost on the index 

transmission model. Given a graph G = (VG; EG) (i.e., road 

network), this type of index structures partitions G into a 

set of small sub graphs SGi and organizes SGi in a 

hierarchical fashion (i.e., tree). In Fig. 5, we illustrate a 

graph being partitioned 

into 10 sub graphs (SG1, SG2, ..., SG10) and the 

corresponding hierarchical index structure. 

 

 
Every leaf entry in a hierarchical structure represents a 

subgraph SGi that consists of the corresponding nodes and 

edges from the original graph. For instance, SG1 consists of 

two nodes VSG1 = {a; b} and one edge ESG1 = {(a; b)}. A 

non-leaf entry stores the inter-connectivity information 

between the child entries. For instance, SG1-2 stores a 

connectivity edge ЃSG1-2 = {(b; c)} between SG1 and SG2. 

To boost up the shortest path computation, the hierarchical 

index structures also keep some pre-computed information 

in the index entries. For instance, shortcuts ∆ SGi are the 

most common type of pre-computed information in these 

indices, where a shortcut is the shortest path between two 

border nodes in a sub graph. In Fig. 5, SG5 has two border 

nodes2 k and m so that SG5 keeps a shortcut ∆SG5 = {(k; 

m)} and its corresponding weight. 

To answer a shortest path query q(s; t) using the 

hierarchical structures, a common approach is to fetch the 

relevant entries from the index using a bottom-up 

execution fashion. For the sake of analysis, we use Hi Ti as 

our reference model in the remaining discussion. Our 

analysis can be adapted to other approaches since their 

execution paradigm shares the same principle. 

In Fig. 5, the relevant entries of a shortest path query 

q(b; d) are shaded in gray color. Besides the source and 

destination leaf entries (SG1 and SG3), we need to fetch the 

entries from two leaf entries towards the root entry (SG1-

2,SG1-3, SG1-5, and SG1-10) and their sibling entries (SG2, 

SG4-5, and SG6-10). The shortest path is computed on the 

search graph Gq (typically much smaller than G) which 

constitutes of the edges from the source and destination 

entries and the connectivity edges and shortcuts from other 

relevant entries. Note that the edges in Gq already secure 

the correctness of the shortest path query process. As an 

example, suppose the shortest path of q(b; d) passes 

through an edge in SG6, this path must be revealed in the 

shortcut of SG6-10 (i.e., SG6-10 = f(f; p)g). 

 

 Index Construction 

The above discussion shows that it is hard to find a 

hierarchical index structure I that achieves all optimization 

objectives. One possible solution is to relax the 

optimization objectives which makes them be the tuned 

factors of the problem. While the overhead of pre-

computed information (O2) and the number of relevant 

entries (O3) cannot be decided straightforwardly, we 

decide to relax the first objective (i.e., minimizing the size 

of leaf entries) such that it becomes a tunable factor in 

constructing the index. 

To minimize the overhead of pre-computed 

information (O2), we study a graph partitioning 

optimization that minimizes the index overhead SGi through 

the entire index construction subject to a leaf entry 

constraint (O1). Subsequently, we propose a stochastic 

process to optimize the index structure such that the size of 

the query search graph Gq is minimized (O3). 

Graph partitioning optimization. For the sake of 

discussion, we denote that the number of sub graphs being 

created is that is a tuned parameter for controlling the 

number of sub graphs in this work. According to Eq. 2, 

minimizing the size of SGi is likely to minimize the 

overhead of I.  

 

A large cut value is likely to produce 

 

more shortcut edges; in Fig.6(b), the cut value is 10 

and there are 12 shortcuts. 
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Stochastic based index construction. Intuitively, the 

size  search graphs Gq (i.e., O3) is highly relevant to the 

index hierarchical structure. As a motivating example, the 

number 4 as the objective function so that we can 

heuristically reduce the number of border nodes. To 

construct an index, we recursively cut the sub graphs until 

we have enough partitions (i.e., the leaf of relevant entries 

of q(b; d) is reduced from 9 to 8 if we remove one index 

node (e.g., SG1 2) from the index tree in Fig. 5(b). The new 

index and the relevant entries are illustrated in Fig. 7. 

 

   

Search graph can be viewed as a problem of finding 

the best hierarchical index structure for potential queries. 

Finding the optimal hierarchical structure is challenging 

since (1) the performance of an index cannot be easily 

estimated (which should be estimated by a query workload 

Q or a universal query set U) and (2) the index statistics 

(e.g., shortcuts) are changed on different index hierarchical 

structures (which is necessarily recalculated based on the 

structure). Typically, these combinational problems are 

solved by approximate solutions under reasonable response 

time. Thus, we propose a top-down approach that greedily 

decides the structure based on a stochastic estimation. 

To estimate the average size of the search graphs, we 

apply a stochastic process, At every partitioning, we 

attempt to find the best structure for potential queries by 

the stochastic process. Among all assessed partitioning, we 

attach the partitioning having the smallest relevant search 

graphs to the index. The construction terminates when we 

have enough leave entries . 

 In summary, a small may lead the index having large 

leaf entries while a large may lead the index having large 

number of index nodes, where these settings may degrade 

the query performance. Fortunately, is not a very sensitive 

parameter (cf. the studies in other hierarchical indexing 

techniques and our experiments), which can be decided by 

experimental studies in practice. 

 

 

 

PROPOSED SYSTEM: 

LTI TRANSMISSION 

In this section, we present how to transmit LTI on the 

air index. We first introduce a popular broadcasting scheme 

called the (1; m) interleaving scheme in Section 5.1. Based 

on this broadcasting scheme, we study how to broadcast 

LTI in Section 5.2 and how a client receives edge updates 

on air in Section 5.3. 

 

Transmitting Scheme 

The broadcasting model uses radio or wireless network 

(e.g., 3G, LTE, Mobile WiMAX) as the transmission 

medium. When the server broadcasts a dataset (i.e., a 

“program”), all clients can listen to the dataset 

concurrently. Thus, this transmission model scales well 

independent of the number of clients. A broadcasting 

scheme is a protocol to be followed by the server and the 

clients. 

 
 

The (1,m) interleaving scheme is one of the best 

transmitting schemes. Table 1 shows an example 

transmitting cycle with m = 3 packets and the entire dataset 

contains 6 data items. First, the server partitions the dataset 

into m equi-sized data segments. Each packet contains a 

header and a data segment, where a header describes the 

transmitting schedule of all packets. In this example, the 

variables i and n in each header represent the last 

transmitted item and the total number of items. The server 

periodically transmits a sequence of packets (called as a 

transmit cycle) 

We use a concrete example to demonstrate how a 

client receives her data from the transmit channel. Suppose 

that a client wishes to query for the data object o5. First, the 

client tunes in the transmitt channel and waits until the next 

header is broadcasted. For instance, the client is listening to 

the header of the first packet, and finds out that the third 

packet contains o5. In order to preserve energy, the client 

sleeps until the transmitting time of that packet. Then, it 

wake-ups and reads the requested data item from the 

packet. 

The query performance can be measured by the tuned 

time and the waiting time at the client side. In this 

transmitting scheme, the parameter m decides the trade-off 

between tune-in size and the overhead. A large m favors 

small tune-in size whereas a small m incurs small waiting 

time. suggests to set m to the square root of the ratio of the 

data size to the index size. 

 

LTI on Air 

To transmit a hierarchical index using the (1,m) 

interleaving scheme, we first partition the index into two 

components: the index structure and the weight of edges. 

The former stores the index structure (e.g., graph vertices, 

graph edges, and shortcut edges) and the latter stores the 

weight of edges. In order to keep the freshness of LTI, our 
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system is required to transmit the latest weight of edges 

periodically. 

Table 2 shows the format of a header/data packet in 

our model. id is the offset of the packet in the present 

transmit cycle and checksum is used for error-checking of 

the header and data. Note that the packet does not store any 

offset information to the next broadcast cycle or   

 
 

transmit segment. The offset can be matched up by the 

corresponding id since the structure of LTI is pre-stored at 

each client. In our model, the header packet stores a 

timestamp set T for checking new updates and data loss 

recovery. 

 

Client Tune-in Procedures of Air LTI 
 

We proceed to demonstrate how a client (i.e., driver) 

receives edge weights from the air index using the 

hierarchical structure. Fig. 9 shows the content of a 

broadcast cycle for a LTI structure in Fig.7. In this 

example, the air index uses a (1; 2) interleaving scheme 

and each data packet stores the edge weight of different sub 

graphs. For instance, the edge weight of sub graph SG1 are 

stored in the 2nd packet of a transmit cycle. Assume that a 

driver is moving from node b to node d and his navigation 

system first tunes-in to the air index at the 3rd packet of 

segment 1. According to the search graph (as shown in Fig. 

7) and the packet id, the navigation system falls into sleep 

for 1 segment transmission time. It wakes up and receives 

segment 3 where the search graph elements (SG1-3 and 

SG4-5) are located in. Note that the other search graph 

elements (SG1, SG2, and SG3) in segment 1 can only be 

collected in the next transmit cycle. 

 

 
Fig 7:Receiving LTI from air index 

 

Suppose that there are two edge updates, including one 

graph edge (k; l) in SG5 and one shortcut (j; n) in SG4-5, in 

the next transmit cycle. The navigation system identifies 

the sub graphs being updated by checking the timestamp 

set T in the header packet. Since the search graph Gq 

contains SG1-3 and SG4-5, the system tunes-in to the air 

index when the corresponding packets are transmitted(i.e., 

the 3rd packet of segment 3). 

 

 LTI Maintenance 

 

In order to keep the freshness of the transmit index, the 

cost of index maintenance is necessarily minimized. In this 

section, we study an incremental update approach that can 

efficiently maintain the live traffic index according to the 

updates. As a remark, the entire update process is done at 

the service provider and there is no extra data structure 

being transmitted to the clients. 

There is a bottom-up update framework to maintain 

the hierarchical index structure. Their idea is to re-compute 

the affected sub graphs starting from lowest level (i.e., leaf 

sub graphs) to root. Unfortunately, as shown in Section 2.2, 

a small portion of edge updates trigger updates in the 

majority of packets (i.e., sub graphs). Thus, the above 

update technique incurs high computational cost on 

updating the affected sub graphs. 

It is thus necessary to develop a more efficient update 

framework. For any weight update on the road edges, we 

observe that only shortcut edges SGi are necessarily re-

computed as the weight of other edges (i.e., ESGi [ SGi ) are 

directly derived from the updates. To boost the shortcut 

edge maintenance, we incorporates dynamic shortest path 

tree technique (DSPT) into the hierarchical index structures 

and reduce the overhead of DSPT by a bounded version 

(BSPT). 

 
Given a graph G = (V; E), a shortest path tree (SPT) 

rooted at a vertex r 2 V , denoted as SPT (r), is a tree with 

root r, and 8v 2 V fig, SPT (r) contains a shortest path from 

r to v. In Fig.10(a), the shortest path tree of vertex k is 

highlighted by bold lines. Given a shortest path tree, a 

dynamic Dijkstra approach is proposed for handling both 

weight increasing (Fig.10(b)) and decreasing cases 

(Fig.10(c)). The intuition of the algorithms is to find the 

affected local vertices and revise the shortest path tree 

using a Dijkstra like algorithm starting from the updated 

vertices. For instance, the weight of e(m; l) is decreased 

from 2 to 0. Starting from the vertex m, a new path m -> l-

> k, that is a better path from m to k, is found by the 

Dijkstra searching. Thereby, the update process revises the 

shortest path tree accordingly as shown in Fig.10(c). 

 

 
 

To keep the freshness of LTI, every sub graph is 

required to maintain its corresponding shortcut edges SGi 

according to live traffic circumstances. The weight of these 
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shortcuts can be maintained by the corresponding shortest 

path tree from each border node BSGi Pruning ability of 

BSPT. The pruning ability of BSPT is highly relevant to 

the border node selection in each sub graph. In the worst 

case, BSPT performs as the same as a native SPT if the 

borders are very far from each others. However, such cases 

rarely happen in LTI since the graph partitioning technique 

(Section 4.2) prefers a partitioning having small number of 

borders, which minimizes the change of the worst-case 

scenario. In our study, BSPT     prunes 30% to 50% edges 

from the complete SPT for our evaluated datasets (Section 

8). 

Algorithm 2 : Client Algorithm 

Algorithm Client(I:LTI; s:source; 

t:destination)  

1: generate Gq from I based on s and d  

2: listen to the channel for a header 

segment  

3: read the header segment 

. Section 

5.3 

4: decide the necessary segments to be 

read 

. Section 

5.3 

5: wait for those segments, read them to update the 

weight of Gq 

6: compute the shortest path (from s to t) 

on Gq 

. Section 

4.1 

Algorithm 3 : Service Algorithm 

 

Algorithm Service(G:graph) 

1: construct I and {SGi} based on G  Section 4.2 

2:    for each broadcast cycle do  

3: collect traffic updates from the traffic provider  

4

:        update the sub graphs {SGi} . Section 6 

5

: broadcast the sub graphs {SGi} . Section 5.2 

7  PUTTING ALL TOGETHER 

 

We are now ready to present our complete LTI 

framework, which integrates all techniques been discussed. 

A client can invoke Algorithm 2 in order to find the 

shortest path from a source s to a destination t. First, the 

client generates a search graph Gq based on s (i.e., current 

location) and d. When the client tunes-in the broadcast 

channel (cf. Section 5.2), it keeps listening until it 

discovers a header segment (cf. Figure 9). After reading the 

header segment, it decides the necessary segments (to be 

read) for computing the shortest path. These issues are 

addressed in Section 5.3. The client then waits for those 

segments, reads them, and update the weight of Gq. 

Subsequently, Gq is used to compute the shortest path in 

the client machine locally (cf. Figure 7 and Section 4.1). 

Note that Algorithm 2 is kept running in order to provide 

online shortest path until the client reaches to the 

destination. 

We then discuss about the tasks to be performed by the 

service provider, as shown in Algorithm 3. The first step is 

devoted to construct the live traffic index; they are offline 

tasks to be executed once only. The service provider builds 

the live traffic index by partitioning the graph G into a set 

of sub graphs │SGi│ such that they are ready for 

transmitting. We develop an effective graph partitioning 

algorithm for minimizing the total size of sub graphs and 

study a combinatorial optimization for reducing the search 

space of shortest path queries in Section 4.2. In each 

transmit cycle, the server first collects live traffic updates 

from the traffic provider, updates the sub graphs │SGi│ 

(discussed in Section 6), and eventually transmits them. 

 

IV CONCLUSION 

 

In this paper we studied online shortest path 

computation the shortest path result is computed/updated 

based on the live traffic circumstances. We carefully 

analyze the existing work and discuss their inapplicability 

to the problem (due to their prohibitive maintenance time 

and large transmission overhead). To address the problem, 

we suggest a promising architecture that transmits the 

index on the air. We first identify an important feature of 

the hierarchical index structure which enables us to 

compute shortest path on a small portion of index. This 

important feature is thoroughly used in our solution, LTI. 

Our experiments confirm that LTI is a Pareto optimal 

solution in terms of four performance factors for online 

shortest path computation.we  extend our solution on time 

reliant networks. This is a very interesting topic since the 

decision of a shortest path depends not only on current 

traffic data but also based on the predicted traffic 

circumstances. 
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