

Online Shortestpath Computation using LTI-TR

on Networks
P. Manju Latha D. Anjani Suputridevi

 M.Tech Cse(Student) Asst.Professor

 Sri Vasavi Engineering College CSE Dept

 Pedatadepalli,Tadepalligudem Sri Vasavi Engineering College

 Ap,India Pedatadepalli, Tadepalligudem

Abstract:- Shortest path computation is one of the most

common queries in location-based services that involve

transportation networks. Motivated by appreciable challenges

faced in the mobile network industry, we propose adopting

the wireless broadcast model for such location-dependent

applications. In this model the data are continuously

transmitted on the air, while clients listen to the broadcast

and process their queries locally. Although spatial problems

have been considered in this environment, there exists no

study on shortest path queries in road networks. In presented

approach server will collect live traffic information and then

announce them over wireless network. With this approach

any number of clients can be added. This new approach called

live traffic index-time reliant (LTI-TR) enables drivers to

update their shortest path result by receiving only a small

fraction of the index. The existing systems were infeasible to

solve the problem due to their prohibitive maintenance time

and large transmission overhead. LTI-TR is a novel solution

for Online Shortest Path Computation on Time Reliant

Network

1. INTRODUCTION:

shortest path computation is an important function

in modern car navigation systems and has been extensively

studied in . This function helps a driver to figure out the

best route from his cur-rent position to destination.

Typically, the shortest path is computed by offline data

pre-stored in the navigation systems and the weight (travel

time) of the road edges is estimated by the road distance or

historical data. Un-fortunately, road traffic circumstances

change over time. Without live traffic circumstances, the

route returned by the navigation system is no longer

guaranteed an accurate result. We demonstrate this by an

example in Fig. 1. Suppose that we are driving from Lord

& Taylor (label A) to Mt Vernon Hotel Museum (label B)

in Manhattan,NY. Those old navigation systems would

suggest a route based on the pre-stored distance

information as shown in Fig. 1(a). Note that this route

passes through four road maintenance operations (indicated

by maintenance icons) and one traffic congested road

(indicated by a red line). In fact, if we take traffic

circumstances into account, then we prefer the route in Fig.

1(b) rather than the route in Fig. 1(a).Nowadays, several

online services provide live traffic data (by analyzing

collected data from road sensors, traffic cameras, and

crowdsourcing techniques), such as GoogleMap, Navteq ,

INRIX Traffic Information Provider , and TomTom NV ,

etc. These systems can calculate the snapshot shortest path

queries based on current live traffic data; however, they do

not report route to drivers continuously due to high

operating costs. Answering the shortest paths on the live

traffic data can be viewed as a continuous monitoring

problem in spatial databases, which is termed online

shortest paths computation (OSP) in this work. To the best

of our knowledge, this problem has not received much

attention and the costs of answering such continuous

queries vary hugely in different system architectures.

Typical client-server architecture can be used to answer

shortest path queries on live traffic data. In this case, the

navigation system typically sends the shortest path query to

the service provider and waits the result back from the

provider (called result transmission model). However,

given the rapid growth of mobile devices and services, this

model is facing limitation appreciable in terms of network

band-width and server loading. According to the Cisco

Visual Networking Index forecast, global mobile traffic in

2010 was 237 pet bytes per month and it grew by 2.6-fold

in 2010, nearly tripling for the third year in a row. Based

on a telecommunication expert, the world’s cellular

networks need to provide 100 times the capacity in 2015

when compared to the networks in 2011. Furthermore, live

traffic are updated frequently as these data may be

collected by using crowd sourcing techniques (e.g.,

anonymous traffic data from Google map users on certain

mobile devices). As such, huge communication cost will be

spent on sending result paths on the this model. Obviously,

the client-server architecture will soon become impractical

in dealing with massive live traffic in near future. Ku et

al.raise the same concern in their work which processes

spatial queries in wireless broadcast environments based on

Euclidean distance metric.

Malviya et al. developed a client-server system for

continuous monitoring of registered shortest path queries.

For each registered query (s; t), the server first precalculate

K different candidate paths from s to t. Then, the server

periodically updates the travel times on these K paths based

on the latest

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

1

 traffic, and reports the current best path to the

corresponding user. Since this system adopts the client-

server architecture, it cannot scale well with a large number

of users, as discussed above. In addition, the reported paths

are approximate results and the system does not provide

any accuracy guarantee.

An alternative solution is to broadcast live traffic data

over wireless network (e.g., 3G, LTE, Mobile WiMAX,

etc.). The navigation system receives the live traffic data

from the transmit channel and executes the computation

locally (called raw transmission model). The traffic data

are broadcasted by a sequence of packets for each

broadcast cycle. To answer shortest path queries based on

live traffic circumstances, the navigation system must fetch

those updated packets for each broadcast cycle. However,

as we will analyze an example in Section 2.2, the

probability of a packet being affected by 1% edge updates

is 98.77%. This means that clients must fetch almost all

broadcast packets in a broadcast cycle.

The main challenge on answering live shortest paths is

appreciable, in terms of the number of clients and the

amount of live traffic updates. A new and promising

solution to the shortest path computation is to transmit an

air index over the wireless network (called index

transmission model). The main advantages of this model

are that the network overhead is independent of the number

of clients and every client only downloads a portion of the

entire road map according to the index information. For

instance, the proposed index in constitutes a set of

pairwise minimum and maximum traveling costs between

every two sub-partitions of the road map. However, these

methods only solve appreciable the issue for the number

of clients but not for the amount of live traffic updates. As

reported in , the re-computation time of the index takes 2

hours for the San Francisco (CA) road map. It is

prohibitively expensive to update the index for OSP, in

order to keep up with live traffic circumstances.

Motivated by the lack of off-the-shelf solution for

OSP, in this paper we present a new solution based on the

index transmission model by introducing live traffic

index.(LTI) as the core technique. LTI is expected to

provide relatively short tune-in cost (at client side), fast

query response time (at client side), small broadcast size (at

server side), and light maintenance time (at server side) for

OSP.we summarize them as follows:

 The index structure of LTI is optimized by two novel

techniques, graph partitioning and stochastic-based

construction, after conducting a thorough analysis the

hierarchical index techniques . To the best of our

knowledge, this is the first work to give a through cost

analysis on the hierarchical index techniques and apply

stochastic process to optimize the index hierarchical

structure.

LTI selectively fetches data in wireless transmit

environments, which significantly reduce the tune-in cost.

LTI efficiently maintains the index for live traffic

circumstances by incorporating Dynamic Shortest Path

Tree (DSPT) into hierarchial index techniques. In addition,

a bounded version of DSPT is proposed to further reduce

the broadcast overhead.

By incorporating the above features, LTI reduces the

tune-in cost up to an order of magnitude as compared to the

state-of-the-art competitors; while it still provides

competitive query response time, broadcast size, and

maintenance time. To the best of our knowledge, we are

the first work that attempts to minimize all these

performance factors for OSP.

 2.RELATED WORKS

 “Engineering Highway Hierarchies,”AUTHORS:

P. Sanders and D. Schultes

Highway hierarchies exploit hierarchical properties

inherent in real-world road networks to allow fast and exact

point-to-point shortest-path queries. A fast preprocessing

routine iteratively performs two steps: First, it removes

edges that only appear on shortest paths close to source or

target; second, it identifies low-degree nodes and bypasses

them by introducing shortcut edges. The resulting

hierarchy of highway networks is then used in a Dijkstra-

like bidirectional query algorithm to considerably reduce

the search space size without losing exactness. The crucial

fact is that ‘far away’ from source and target it is sufficient

to consider only high-level edges. Experiments with road

networks for a continent show that using a preprocessing

time of around 15 min, one can achieve a query time of

around 1ms on a 2.0GHz AMD Opteron. Highway

hierarchies can be combined with goal-directed search,

they can be extended to answer many-to-many queries, and

they can be used as a basis for other speed-up techniques

(e.g., for transit-node routing and highway-node routing).

“Highway Hierarchies Hasten Exact Shortest Path

Queries,”Authors: P. Sanders and D. Schultes

We present a new speedup technique for route

planning that exploits the hierarchy inherent in real world

road networks. Our algorithm preprocesses the eight digit

number of nodes needed for maps of the USA or Western

Europe in a few hours using linear space. Shortest (i.e.

fastest) path queries then take around eight milliseconds to

produce exact shortest paths. This is about 2 000 times

faster than using Dijkstra algorithm.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

2

“Dynamic Highway-Node Routing,” Authors:

 D. Schultes and P. Sanders

We introduce a dynamic technique for fast route

planning in large road networks. For the first time, it is

possible to handle the practically relevant scenarios that

arise in present-day navigation systems: When an edge

weight changes (e.g., due to a traffic jam), we can update

the preprocessed information in 2-40ms allowing

subsequent fast queries in about one millisecond on

average. When we want to perform only a single query, we

can skip the comparatively expensive update step and

directly perform a prudent query that automatically takes

the changed situation into account. If the overall cost

function changes (e.g., due to a different vehicle type),

recomputing the preprocessed information takes typically

less than two minutes. The foundation of our dynamic

method is a new static approach that generalizes and

combines several previous speedup techniques. It has

outstandingly low memory requirements of only a few

bytes per node.

“Shortest Path Algorithms: An Evaluation Using

Real Road Networks, Authors: F. Zhan and C. Noon

The classic problem of finding the shortest path over a

network has been the target of many research efforts over

the years. These research efforts have resulted in a number

of different algorithms and a considerable amount of

empirical findings with respect to performance.

Unfortunately, prior research does not provide a clear

direction for choosing an algorithm when one faces the

problem of computing shortest paths on real road networks.

Most of the computational testing on shortest path

algorithms has been based on randomly generated

networks, which may not have the characteristics of real

road networks. In this paper, we provide an objective

evaluation of 15 shortest path algorithms using a variety of

real road networks. Based on the evaluation, a set of

recommended algorithms for computing shortest paths on

real road networks is identified. This evaluation should be

particularly useful to researchers and practitioners in

operations research, management science, transportation,

and Geographic Information Systems. The computation of

shortest paths is an important task in many network and

transportation related analyses. The development,

computational testing, and efficient implementation of

shortest path algorithms have remained important research

topics within related disciplines such as operations.

EXISTING SYSTEM:

III. LTI

 LTI Overview

A road network monitoring system typically consists

of a service provider, a large number of mobile clients

(e.g., vehicles), and a traffic provider (e.g., GoogleMap,

NAVTEQ, INRIX, etc.). Fig.3 shows an architectural

overview of this system in the context of our live traffic

index (LTI) framework. The traffic provider collects the

live traffic circumstances from the traffic monitors via

techniques like road sensors and traffic video analysis. The

service provider periodically receives live traffic updates

from the traffic provider and broadcasts the live traffic

index on radio or wireless network (e.g., 3G, LTE, Mobile

WiMAX, etc.). When a mobile client wishes to compute

and monitor a shortest path, it listens to the live traffic

index and reads the relevant portion of the index for

deriving the shortest path.In this work, we focus on

handling traffic updates but not graph structure updates.

For real road networks, it is infrequent to have graph

structure updates (i.e., construction of a new road) when

compared to edge weight updates (i.e., live traffic

circumstances). Thus, we assume that the graph structures

are distributed to every client in advance (e.g., by monthly

updates or at system boot-up) via typical transmission

protocol (i.e., HTTP and FTP).

In Fig.4, we illustrate the components and system flow

in our LTI framework. The components shaded by gray

color are the core of LTI. In order to provide live traffic

information, the server maintains (component a) and

broadcasts (component b) the index according to the up-to-

date traffic circumstances. In order to compute the online

shortest path, a client listens to the live traffic index, reads

the relevant portions of the index (component c), and

computes the shortest path (component d).

 LTI Objectives

To optimize the performance of the LTI components,

our solution should support the following features.

 (1) Efficient maintenance strategy. Without

efficient maintenance strategy, long maintenance time is

needed at

server side so that the traffic information is no longer

live. This can reduce the maintenance time spent at

component a.

(2) Light index overhead. The index size must be con-

trolled in a reasonable ratio to the entire road map data.

This reduces not only the length of a transmit cycle, but

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

3

also makes clients listen fewer packets in the transmit

channel. This can save the communication cost at

components b and c.

(3) Efficient computation on a portion of entire index.

This property enables clients to compute shortest path

on a portion of the entire index. The computation at

component d gets improved since it is executed on a

smaller graph. This property also reduces the amount of

data received and energy consumed at component c.

Inspired by these properties, LTI has relatively short

tune-in cost (at client side), fast query response time (at

client side), small broadcast size (at server side), and light

index maintenance time (at server side) for OSP. As

discussed in Section 2.2, the hierarchical index structures

enable clients to compute the shortest path on a portion of

entire index. However, without pairing up with the first and

second features, the communication and computation costs

are still infeasible for OSP. To achieve these two features,

in Section 4 and Section 6, we will discuss how to optimize

the hierarchical structure and efficiently maintain the index

according to live traffic circumstances.

LTI CONSTRUCTION

Analysis of Hierarchical Index Structures

Hierarchical index structures (e.g., HiTi, HEPV, and

Hub Indexing, TEDI) enable fast shortest path

computation on a portion of entire index which

significantly reduces the tune-in cost on the index

transmission model. Given a graph G = (VG; EG) (i.e., road

network), this type of index structures partitions G into a

set of small sub graphs SGi and organizes SGi in a

hierarchical fashion (i.e., tree). In Fig. 5, we illustrate a

graph being partitioned

into 10 sub graphs (SG1, SG2, ..., SG10) and the

corresponding hierarchical index structure.

Every leaf entry in a hierarchical structure represents a

subgraph SGi that consists of the corresponding nodes and

edges from the original graph. For instance, SG1 consists of

two nodes VSG1 = {a; b} and one edge ESG1 = {(a; b)}. A

non-leaf entry stores the inter-connectivity information

between the child entries. For instance, SG1-2 stores a

connectivity edge ЃSG1-2 = {(b; c)} between SG1 and SG2.

To boost up the shortest path computation, the hierarchical

index structures also keep some pre-computed information

in the index entries. For instance, shortcuts ∆ SGi are the

most common type of pre-computed information in these

indices, where a shortcut is the shortest path between two

border nodes in a sub graph. In Fig. 5, SG5 has two border

nodes2 k and m so that SG5 keeps a shortcut ∆SG5 = {(k;

m)} and its corresponding weight.

To answer a shortest path query q(s; t) using the

hierarchical structures, a common approach is to fetch the

relevant entries from the index using a bottom-up

execution fashion. For the sake of analysis, we use Hi Ti as

our reference model in the remaining discussion. Our

analysis can be adapted to other approaches since their

execution paradigm shares the same principle.

In Fig. 5, the relevant entries of a shortest path query

q(b; d) are shaded in gray color. Besides the source and

destination leaf entries (SG1 and SG3), we need to fetch the

entries from two leaf entries towards the root entry (SG1-

2,SG1-3, SG1-5, and SG1-10) and their sibling entries (SG2,

SG4-5, and SG6-10). The shortest path is computed on the

search graph Gq (typically much smaller than G) which

constitutes of the edges from the source and destination

entries and the connectivity edges and shortcuts from other

relevant entries. Note that the edges in Gq already secure

the correctness of the shortest path query process. As an

example, suppose the shortest path of q(b; d) passes

through an edge in SG6, this path must be revealed in the

shortcut of SG6-10 (i.e., SG6-10 = f(f; p)g).

 Index Construction

The above discussion shows that it is hard to find a

hierarchical index structure I that achieves all optimization

objectives. One possible solution is to relax the

optimization objectives which makes them be the tuned

factors of the problem. While the overhead of pre-

computed information (O2) and the number of relevant

entries (O3) cannot be decided straightforwardly, we

decide to relax the first objective (i.e., minimizing the size

of leaf entries) such that it becomes a tunable factor in

constructing the index.

To minimize the overhead of pre-computed

information (O2), we study a graph partitioning

optimization that minimizes the index overhead SGi through

the entire index construction subject to a leaf entry

constraint (O1). Subsequently, we propose a stochastic

process to optimize the index structure such that the size of

the query search graph Gq is minimized (O3).

Graph partitioning optimization. For the sake of

discussion, we denote that the number of sub graphs being

created is that is a tuned parameter for controlling the

number of sub graphs in this work. According to Eq. 2,

minimizing the size of SGi is likely to minimize the

overhead of I.

A large cut value is likely to produce

more shortcut edges; in Fig.6(b), the cut value is 10

and there are 12 shortcuts.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

4

Stochastic based index construction. Intuitively, the

size search graphs Gq (i.e., O3) is highly relevant to the

index hierarchical structure. As a motivating example, the

number 4 as the objective function so that we can

heuristically reduce the number of border nodes. To

construct an index, we recursively cut the sub graphs until

we have enough partitions (i.e., the leaf of relevant entries

of q(b; d) is reduced from 9 to 8 if we remove one index

node (e.g., SG1 2) from the index tree in Fig. 5(b). The new

index and the relevant entries are illustrated in Fig. 7.

Search graph can be viewed as a problem of finding

the best hierarchical index structure for potential queries.

Finding the optimal hierarchical structure is challenging

since (1) the performance of an index cannot be easily

estimated (which should be estimated by a query workload

Q or a universal query set U) and (2) the index statistics

(e.g., shortcuts) are changed on different index hierarchical

structures (which is necessarily recalculated based on the

structure). Typically, these combinational problems are

solved by approximate solutions under reasonable response

time. Thus, we propose a top-down approach that greedily

decides the structure based on a stochastic estimation.

To estimate the average size of the search graphs, we

apply a stochastic process, At every partitioning, we

attempt to find the best structure for potential queries by

the stochastic process. Among all assessed partitioning, we

attach the partitioning having the smallest relevant search

graphs to the index. The construction terminates when we

have enough leave entries .

 In summary, a small may lead the index having large

leaf entries while a large may lead the index having large

number of index nodes, where these settings may degrade

the query performance. Fortunately, is not a very sensitive

parameter (cf. the studies in other hierarchical indexing

techniques and our experiments), which can be decided by

experimental studies in practice.

PROPOSED SYSTEM:

LTI TRANSMISSION

In this section, we present how to transmit LTI on the

air index. We first introduce a popular broadcasting scheme

called the (1; m) interleaving scheme in Section 5.1. Based

on this broadcasting scheme, we study how to broadcast

LTI in Section 5.2 and how a client receives edge updates

on air in Section 5.3.

Transmitting Scheme

The broadcasting model uses radio or wireless network

(e.g., 3G, LTE, Mobile WiMAX) as the transmission

medium. When the server broadcasts a dataset (i.e., a

“program”), all clients can listen to the dataset

concurrently. Thus, this transmission model scales well

independent of the number of clients. A broadcasting

scheme is a protocol to be followed by the server and the

clients.

The (1,m) interleaving scheme is one of the best

transmitting schemes. Table 1 shows an example

transmitting cycle with m = 3 packets and the entire dataset

contains 6 data items. First, the server partitions the dataset

into m equi-sized data segments. Each packet contains a

header and a data segment, where a header describes the

transmitting schedule of all packets. In this example, the

variables i and n in each header represent the last

transmitted item and the total number of items. The server

periodically transmits a sequence of packets (called as a

transmit cycle)

We use a concrete example to demonstrate how a

client receives her data from the transmit channel. Suppose

that a client wishes to query for the data object o5. First, the

client tunes in the transmitt channel and waits until the next

header is broadcasted. For instance, the client is listening to

the header of the first packet, and finds out that the third

packet contains o5. In order to preserve energy, the client

sleeps until the transmitting time of that packet. Then, it

wake-ups and reads the requested data item from the

packet.

The query performance can be measured by the tuned

time and the waiting time at the client side. In this

transmitting scheme, the parameter m decides the trade-off

between tune-in size and the overhead. A large m favors

small tune-in size whereas a small m incurs small waiting

time. suggests to set m to the square root of the ratio of the

data size to the index size.

LTI on Air

To transmit a hierarchical index using the (1,m)

interleaving scheme, we first partition the index into two

components: the index structure and the weight of edges.

The former stores the index structure (e.g., graph vertices,

graph edges, and shortcut edges) and the latter stores the

weight of edges. In order to keep the freshness of LTI, our

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

5

system is required to transmit the latest weight of edges

periodically.

Table 2 shows the format of a header/data packet in

our model. id is the offset of the packet in the present

transmit cycle and checksum is used for error-checking of

the header and data. Note that the packet does not store any

offset information to the next broadcast cycle or

transmit segment. The offset can be matched up by the

corresponding id since the structure of LTI is pre-stored at

each client. In our model, the header packet stores a

timestamp set T for checking new updates and data loss

recovery.

Client Tune-in Procedures of Air LTI

We proceed to demonstrate how a client (i.e., driver)

receives edge weights from the air index using the

hierarchical structure. Fig. 9 shows the content of a

broadcast cycle for a LTI structure in Fig.7. In this

example, the air index uses a (1; 2) interleaving scheme

and each data packet stores the edge weight of different sub

graphs. For instance, the edge weight of sub graph SG1 are

stored in the 2nd packet of a transmit cycle. Assume that a

driver is moving from node b to node d and his navigation

system first tunes-in to the air index at the 3rd packet of

segment 1. According to the search graph (as shown in Fig.

7) and the packet id, the navigation system falls into sleep

for 1 segment transmission time. It wakes up and receives

segment 3 where the search graph elements (SG1-3 and

SG4-5) are located in. Note that the other search graph

elements (SG1, SG2, and SG3) in segment 1 can only be

collected in the next transmit cycle.

Fig 7:Receiving LTI from air index

Suppose that there are two edge updates, including one

graph edge (k; l) in SG5 and one shortcut (j; n) in SG4-5, in

the next transmit cycle. The navigation system identifies

the sub graphs being updated by checking the timestamp

set T in the header packet. Since the search graph Gq

contains SG1-3 and SG4-5, the system tunes-in to the air

index when the corresponding packets are transmitted(i.e.,

the 3rd packet of segment 3).

 LTI Maintenance

In order to keep the freshness of the transmit index, the

cost of index maintenance is necessarily minimized. In this

section, we study an incremental update approach that can

efficiently maintain the live traffic index according to the

updates. As a remark, the entire update process is done at

the service provider and there is no extra data structure

being transmitted to the clients.

There is a bottom-up update framework to maintain

the hierarchical index structure. Their idea is to re-compute

the affected sub graphs starting from lowest level (i.e., leaf

sub graphs) to root. Unfortunately, as shown in Section 2.2,

a small portion of edge updates trigger updates in the

majority of packets (i.e., sub graphs). Thus, the above

update technique incurs high computational cost on

updating the affected sub graphs.

It is thus necessary to develop a more efficient update

framework. For any weight update on the road edges, we

observe that only shortcut edges SGi are necessarily re-

computed as the weight of other edges (i.e., ESGi [SGi) are

directly derived from the updates. To boost the shortcut

edge maintenance, we incorporates dynamic shortest path

tree technique (DSPT) into the hierarchical index structures

and reduce the overhead of DSPT by a bounded version

(BSPT).

Given a graph G = (V; E), a shortest path tree (SPT)

rooted at a vertex r 2 V , denoted as SPT (r), is a tree with

root r, and 8v 2 V fig, SPT (r) contains a shortest path from

r to v. In Fig.10(a), the shortest path tree of vertex k is

highlighted by bold lines. Given a shortest path tree, a

dynamic Dijkstra approach is proposed for handling both

weight increasing (Fig.10(b)) and decreasing cases

(Fig.10(c)). The intuition of the algorithms is to find the

affected local vertices and revise the shortest path tree

using a Dijkstra like algorithm starting from the updated

vertices. For instance, the weight of e(m; l) is decreased

from 2 to 0. Starting from the vertex m, a new path m -> l-

> k, that is a better path from m to k, is found by the

Dijkstra searching. Thereby, the update process revises the

shortest path tree accordingly as shown in Fig.10(c).

To keep the freshness of LTI, every sub graph is

required to maintain its corresponding shortcut edges SGi

according to live traffic circumstances. The weight of these

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

6

shortcuts can be maintained by the corresponding shortest

path tree from each border node BSGi Pruning ability of

BSPT. The pruning ability of BSPT is highly relevant to

the border node selection in each sub graph. In the worst

case, BSPT performs as the same as a native SPT if the

borders are very far from each others. However, such cases

rarely happen in LTI since the graph partitioning technique

(Section 4.2) prefers a partitioning having small number of

borders, which minimizes the change of the worst-case

scenario. In our study, BSPT prunes 30% to 50% edges

from the complete SPT for our evaluated datasets (Section

8).

Algorithm 2 : Client Algorithm

Algorithm Client(I:LTI; s:source;

t:destination)

1: generate Gq from I based on s and d

2: listen to the channel for a header

segment

3: read the header segment

. Section

5.3

4: decide the necessary segments to be

read

. Section

5.3

5: wait for those segments, read them to update the

weight of Gq

6: compute the shortest path (from s to t)

on Gq

. Section

4.1

Algorithm 3 : Service Algorithm

Algorithm Service(G:graph)

1: construct I and {SGi} based on G Section 4.2

2: for each broadcast cycle do

3: collect traffic updates from the traffic provider

4

: update the sub graphs {SGi} . Section 6

5

: broadcast the sub graphs {SGi} . Section 5.2

7 PUTTING ALL TOGETHER

We are now ready to present our complete LTI

framework, which integrates all techniques been discussed.

A client can invoke Algorithm 2 in order to find the

shortest path from a source s to a destination t. First, the

client generates a search graph Gq based on s (i.e., current

location) and d. When the client tunes-in the broadcast

channel (cf. Section 5.2), it keeps listening until it

discovers a header segment (cf. Figure 9). After reading the

header segment, it decides the necessary segments (to be

read) for computing the shortest path. These issues are

addressed in Section 5.3. The client then waits for those

segments, reads them, and update the weight of Gq.

Subsequently, Gq is used to compute the shortest path in

the client machine locally (cf. Figure 7 and Section 4.1).

Note that Algorithm 2 is kept running in order to provide

online shortest path until the client reaches to the

destination.

We then discuss about the tasks to be performed by the

service provider, as shown in Algorithm 3. The first step is

devoted to construct the live traffic index; they are offline

tasks to be executed once only. The service provider builds

the live traffic index by partitioning the graph G into a set

of sub graphs │SGi│ such that they are ready for

transmitting. We develop an effective graph partitioning

algorithm for minimizing the total size of sub graphs and

study a combinatorial optimization for reducing the search

space of shortest path queries in Section 4.2. In each

transmit cycle, the server first collects live traffic updates

from the traffic provider, updates the sub graphs │SGi│

(discussed in Section 6), and eventually transmits them.

IV CONCLUSION

In this paper we studied online shortest path

computation the shortest path result is computed/updated

based on the live traffic circumstances. We carefully

analyze the existing work and discuss their inapplicability

to the problem (due to their prohibitive maintenance time

and large transmission overhead). To address the problem,

we suggest a promising architecture that transmits the

index on the air. We first identify an important feature of

the hierarchical index structure which enables us to

compute shortest path on a small portion of index. This

important feature is thoroughly used in our solution, LTI.

Our experiments confirm that LTI is a Pareto optimal

solution in terms of four performance factors for online

shortest path computation.we extend our solution on time

reliant networks. This is a very interesting topic since the

decision of a shortest path depends not only on current

traffic data but also based on the predicted traffic

circumstances.

REFERENCES

[1] “Engineering Highway Hierarchies,” AUTHORS: P. Sanders

and D. Schultes

[2] “Highway Hierarchies Hasten Exact Shortest Path

Queries,”AUTHORS: P. Sanders and D. Schultes

[3] “Dynamic Highway-Node Routing,” AUTHORS: D. Schultes and

P. Sanders
[4] “Shortest Path Algorithms: An Evaluation Using Real Road

Networks, AUTHORS: F. Zhan and C. Noon

[5] “Location-Based Spatial Query Processing in Wireless Broadcast
Environments, AUTHORS: W.-S. Ku, R. Zimmermann, and H.

Wang

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICACC - 2016 Conference Proceedings

Volume 4, Issue 34

Special Issue - 2016

7

