

Open Source Software: A Study of Dynamic

Variance of Complexity

Abstract: Quality and complexity are closely related in

software evolution cycle. Evolution period measures the

qualities of the software. Software metrics monitor and

manage the quality of software. Oscillation in the complexity

reflects disparity in the quality. Complexity is one of the

indicators of the software quality. Complexity depends upon

the size of class, number of statements used and type of

statement used in the software development. Video LAN

Client (VLC) media player open source software with its 58

versions and 7-Zip open source compression software with 61

versions are used for the quality analysis. This paper

measures the complexity of the open source softwares VLC

and 7-Zip. The studies of the software complexity are done

with comparative analysis on various factors generated by

metric tool SourceMonitor. The overview is to calculate the

active variation in complexity when compared with functions,

class-size, and statements of VLC with 7-ZIP during

evolution cycle.

Keywords: Open source software, structured complexity,

metrics, evolution, SourceMonitor, VLC, 7-Zip.

I. INTRODUCTION

 Open source software (OSS) is freely available with its

source code for study, research, download, modify, and

share information [14]. Desirable modules are downloaded

quickly from code library and adjusted in the source code

of the software to improve its quality with less time and at

low cost. This paper introduces two OSS; Video LAN

Client (VLC) media player and 7-Zip compression

software. VLC consists of clients and server to stream

videos across the network. VLC is an open source modular

design programmed in an object oriented C++. Incomplete,

damaged or unfinished videos can be easily run on VLC.

Fifty eight versions of VLC have been designed since

evolution period of 2001 to 2013. Software evolution is the

process of developing the software and then frequently

renovating it for various reasons. In this paper evolution is

a process of improvement, inheriting version and

reformation. By the year Feb, 2001 VLC-0.2.0 was

released with its properties and complexities. The evolution

process starts from the time slot of Feb – April 2001. The

evolution in appendix-2 defines the enhancement in the

software either by altering the code(s) of previous version

as per customer requirements and quality satisfaction. The

altitude of complexity gets affected with progression in

evolution. Software is distinctly substantial if it fulfills the

maximum of seven conditions of Lehmann’s Law of

evolution [2]. The study of all the versions are compared

and evaluated with respect to meticulous metric tool. The

metric tool will generate the result in two parameters, i.e.

source code in the versions v/s complexity in the modules.

7-Zip is an open source file archive, which may be used to

compress and encrypt one or more files for various

operating systems. 7-Zip is the conqueror of file archiving

and compression tools. It sets the standard for both

compression ratio and time with its very own 7z

compression format. To compress a file, it manages to beat

MagicRAR, WinRAR, and WinZip for the best

compression ratio, even with its Fastest Compression

setting enabled. 7-Zip takes only 25 seconds to compress

target files/folders, WinRAR (44 sec), WinZip (51 sec),

and MagicRAR (159 sec). Multinational banking, IT, and

other organizations use 7-Zip software for compressing and

encrypting the software files for data transfer and storage.

Appendix-1 defines the enhancement in 7-Zip in its

evolution cycle.

II. PROBLEM DEFINITION

 VLC and 7-Zip are open source software with various

versions. After the development of one version, another

version is ready to release with its own complex properties.

This process continues in software evolution course. Each

version of software develops with an integration of

modules and classes. The statements are the tools used to

measure the structure complexity of the software. Difficult

and copious statements complicate the modules or classes

and inflate the complexity. The quality of the OSS is

calculated through complexity value. The organization of

elements within the software defines complexity.

The time gap between release date of 1
st
 version and the

final version of software should not be the enlarged. This

reduces stability of the software. With the time period of 9

and 13 years more than 58 and 61 versions of VLC and 7-

Zip have been developed [8]. 58 times in VLC and 61

times in 7-Zip numerous changes of the software will

vibrate the market demand and quality of the software

III. METHODOLOGY

To read and study the metrics value of the VLC & 7-Zip

software, another OSS is executed called SourceMonitor.

SourceMonitor is a metric tool that can calculate 14 metrics

of java, C#, C++, VB based software with graphic indicator

Kanwaljit Singh,

Department of Computer Application.

ACET. Amritsar, India.

Hardeep Singh,

Department of Comp. Sc. & Engg.

GNDU. Amritsar, India.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020143

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

148

Files Lines

State-

ments

%

Bnches

%

Cmnts

Class

Defs

Methods/

Class

Avg Stmnts/

Method

Max

Cmplexty

Max

Depth

Avg

Depth

Avg

Cmplxty Functions

387 105,153 35,481 19 25.3 37 4.5 8.9 126 9 1.7 4.21 1,396

Table 1: Study of various attributes by SourceMonitor

and filtering techniques to analyse the results [12]. The

SourceMonitor (SM) scrutinizes how much code software

has and identifies the relative complexity of statements and

modules in software. VLC and 7-Zip are programmed in

C++, and SM runs the software code at high speed,

thousands of lines of code per second. SM has friendly

graphic user interface (GUI). SM presents the metrics in

form of tables or charts, to measure software in several

phases of the development process and save the resultant

metrics in “checkpoints”. SM helps to find out the changes

in the software during the cycle of software evolution by

using the Lehman Laws of Software Evolution. Table-1 is

the result generated by the SourceMonitor with various

attributes or metrics used to measure complexity. Selective

metrics are used in this paper, as in Appendix 3, 4.

 Files: Total number of files measured in the

selected package.

 Lines: Total number of lines in the selected

package, without the blank lines at the end of each included

file.

 Statements: Total number of statements in the

selected package.

 % Branches: Statements such as if, else, for,

while, goto, break, continue, switch, case, default and

return are measured here as a percentage of the total

statements.

 % Comments: Number of total comments divided

by total number of lines. Headers and footers, at the

beginning and end of files are not taken into consideration.

 Class Size: Total number of operations and

attributes that are encapsulated in method or class.

 Method per Class: Total number of complex

methods in a class.

 Functions: Total number of functions existing in

the selected package.

 Average statements/method: Total number of

statements inside methods in a selected package divided by

the number of methods in the package.

 Maximum complexity: Value of the coupling and

cohesion of the most complex function in the selected

package.

 Maximum depth: Maximum nested methods are

depth in the selected package. At the beginning of each file

its value is zero. It must be pointed out that statements at

levels 1 to 8 are recorded, while statements at deeper levels

are counted depth 9.

 Average depth: Depth is total number of methods

starting from root method to leaf method in the execution

path. Average depth of software is sum of depth of all

execution paths divided by total number of execution paths.

 Average complexity: The average value of all

complexity values in the selected package

After measuring the metrics of VLC and 7-Zip software,

the paper will perform the comparative analysis of the

metrics of two softwares and find that during evolution

period which metric(s) follow evolution laws.

IV. RESULT AND ANALYSIS

Various versions of VLC and 7-Zip have been generated

during the evolution period. Each version has hundred of

packages in it. The individual version of the software is

evaluated with SourceMonitor that generates attributes as

shown in table-1. The data is generated, collected and

analysed through all versions (shown in Appendix 3, 4).

Metric Analysis VLC 7-Zip

Statement vs ClassSize - 0.115 (-ve) 0.870 (+ve)

Avg. Complexity vs Function 0.221 (Low) 0.971 (High)

Statement vs Avg. Complexity 0.142 (Low) 0.970 (High)

Function vs Class Size - 0.084 (-ve) 0.737 (+ve)

Statement vs Functions 0.745 (+ve) 0.965 (+ve)

Class Size vs Avg Complexity - 0.068 (-ve) 0.798 (+ve)

Statements vs Method per Class - 0.260 (-ve) - 0.382 (-ve)

Table-2: Correlation value of metrics in VLC and 7-Zip

In the study comparative analysis of the metrics of VLC

and 7-Zip software has been done. Correlation among

metrics is revealed in table-2. Using complexity metric,

software team has the capability to indicate problems of

software, guide software testing, and estimate software

maintenance efforts [15]. Formats designed for

comparative analysis in this paper are:

1. Average complexity vs. Functions

Structure of the functions and their interrelation that are

used to avoid statement redundancy describes the

complexity of the software. Relational analysis classifies

that the level of average complexity fluctuates with

amendment in number of functions. The relationship is

explained with the help of data collection for VLC and 7-

Zip analysis in fig.1 and fig.2. There is a huge gap

between complexity and function metrics values in VLC

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020143

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

149

and 7-Zip. To recover, complexity value is multiplied by

an independent constant value to make it relevant to

represent two-dimensional graph of complexity and

function.

At the initial development in VLC, after the rise in

functions at initial stage with fall in functions, there is

equivalent fall in average complexity. There is fluctuation

in function due to which average complexity descends.

Where as in 7-ZIP application there is linear rise in

functions and calm complexity at initial level. At the mid

stage of evolution, there is strong boost in functions, due

to which complexity level increases with low growth rate

in VLC application. In 7-ZIP there is low density, high

wavy shade enhancement in functions during evolution

period at mid stage, due to which there is less frequency

change in complexity. At the final stage, with the small

rise in number of functions in VLC, there is narrow

increment in complexity. In case of 7-ZIP application, at

final stage with slight fall in number of functions there is

increase in complexity. In table-2 the correlation among

average complexity and function is positive in both the

software but low in VLC and high in 7-Zip.

Finally there are three parameters found in the

relationship among functions and complexity;

I. Sharp Increase in functions – Gentle Rise in complexity.

II. Aslant increase in functions – Tilt Fall in complexity.

III. Syrupy Rise or Fall in functions – Calm complexity.

Fig1: Relation among Complexity and Function in VLC

Fig2: Relation among Complexity and Function in 7-Zip

2. Class Size vs Average Complexity

Class is the core of the object oriented program, and size of

a class has mammoth credence on software output. The

status of class structure is measured with the variable called

“complexity”. Class size is calculated by the multiplication

of method/class and statements/method. An analysis is

being done on the relation between class size and the

complexity in fig. 3. In VLC and 7-Zip, the complexity

metric value is multiplied by an independent constant value

to make it equivalent to class size for graph development.

In VLC, at the early evolution stages, the complexity

reduces as the class size remains same. With decrease in

class size, average complexity also reduces. In the middle

stage of evolution there is a steep fall in class size. With

fall in class size, the complexity increases calmly. At the

last mode of evolution, there is constant flow of class size.

In constant mode of class size, the complexity reduces.

This clarifies that the number of statements used in

methods at different class remain same but the format of

the statements varies.

As compare to VLC in fig.3, 7-Zip application in fig.4 has

very narrow variation in complexity with rise in evolution.

At the early stage with rise in class size, there is rise is

complexity. This results in directs relations. At the mid of

7-Zip evolution period, the complexity increases steadily

with bit by bit increase in class size. The complexity gets

consistent with change in class size. At the last stage, with

minor rise in size, there is narrow increase in complexity.

Table2 calculates the correlation among class size and

average complexity, it is –ve in VLC and +ve in 7-Zip

software. The various parameters found in the relationship

among class size and complexity are:

I. Sharp Boost in class size - Minor fall in complexity

II. Fall in class size – Angled increase in complexity

III. Calm in class size – In control complexity

3. Statement vs Average complexity

 The instruction processed by compiler is called statement.

Set of statements is called method. Program is collection of

statements, functions and classes. Set of programs develop

the software. Statements are the core of the software. Line

graph explains the relation between number of statement

and complexity level. The complexity metric values of

VLC and 7-Zip software are multiplied by different

independent constant values to make them equivalent to

their corresponding statement metric value.

At the initial evolution development stage of VLC the

complexity decreases with increase in number of

statements as in fig.5. At middle stage, a sky scraper is

generated by number of statements, and a bit increase in

complexity.

0

2000

4000

6000

8000

10000

12000

1 4 7 1013161922252831343740434649525558

Functions

AvgCmplx

0

200

400

600

800

1000

1200

1400

1600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Avg Complexity

Functions

7-Zip

Middle Stage

Early Stage

Early Stage

Mid Stage Last Stage

VLC
Last Stage

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020143

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

150

Fig 6: Statement and Complexity relational analysis in 7-Zip

Fig3: Relation among Class-size and Complexity in VLC

Fig4: Relation among Class-size and Complexity in 7-Zip

At the last level, with narrow rise/fall in statements, there is

slim rise/fall in complexity. The less number of

complicated statements are modified to large number of

simple statements. With increase in statements the

complexity level increases.

In the 7-Zip application at fig. 6, there is direct relation

among statement and average-complexity at initial level of

evolution. With increase in statements, the complexity

level also increases. At the middle level of evolution the

complexity calmly increase with increase in number of

statements. At the final stage of evolution there is instant

rise in statements, which makes tiny increase in

complexity. The correlation calculation results positive in

both the software but low in VLC and high in 7-Zip

software in table-2.

Fig 5: Statement and Complexity relational analysis in VLC

The various parameters found in the relationship are as

follow:

1. Strong rise in statements – Potential rise in complexity

2. Steady fall in statements - Slow growth in complexity

3. Slight rise or fall in statements – Constant level of

complexity

DISCUSSION

Complexity depends upon the structure of functions. The

complexity-function analysis of VLC and 7-Zip in fig-1 &

2, recommends that with increase in evolution, there is

increase in functions and the with respect to that the

complexity level increases because of coupling and

cohesions between functions. Class size is total number of

methods and attributes in the structure of the class. In case

of VLC it is harder to test, maintain and reuse the class-size

during evolution cycle. In case of 7-Zip, it is easy to

understand the class-size during the evolution cycle. A

team with less number of members will generate fewer

errors as compare team with more team members. In

statement-complexity analysis of VLC and 7-Zip it is found

that at the initial stage because of less number of statements

the complexity level was low, as the statements increases,

the probability of complexity increases.

 CONCLUSION

In this paper we studied the dynamic variability of

complexity on evolution of long lived open source

programs VLC and 7-Zip. In the study we investigate the

implementation of Lehman’s Law while evolution to the

software. While taking Average Complexity as a major

metric and function, statements and class size as minor

metrics three various comparative analysis were done

between VLC and 7-Zip. On the basis of analysis

Lehman’s Law is studied. In table-3 we studied that among

eight Lehman’s law for software evolution at least six are

applicable for VLC where as all eight are applicable for 7-

Zip.

0

2000

4000

6000

8000

10000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

AvgCmplx
Class_Size

VLC

0

10

20

30

40

50

60

70

80

90

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Class Size

Avg Complexity7-Zip

0

50000

100000

150000

200000

250000

300000

350000

400000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

AvgCmpx

Statements

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Statements

Avg Complexity
7-Zip

Last Stage

Mid Stage Early Stage

Mid Stage
Early Stage

Last Stage

Last Stage

Final stage Middle Stage

Initial Stage

Middle Stage
Initial

Stage

VLC

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020143

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

151

Numerically 79% Laws applicable for VLC and 97% are

applicable for 7-Zip.

This difference of percentage shows

that the occurrence of complexity is more in VLC as

compare to 7-Zip

software.

REFERENCES

1.

Jack Zhang, Shikhar Sagar, Emad Shihab, “The Evolution of

Mobile Apps: An Exploratory Study”. Proceeding of the 2013
International Workshop on Software Development Lifecycle for

Mobile. Pages 1-8. ACM New York, USA, 2013.

2.

M.M. Lehman, “ Rules and Tools for Software Evolution
Planning and

Management”, Journal, Annals of Software

Engineering. Vol. 11, Issue 1. November 2001. NJ, USA.

3.

Andrea Capiluppi, Maurizio Morisio, Juan F Ramil, “ The
Evolution of Source Folder Structure in actively evolved Open

Source

Systems”. Proceedings of the

10th

International Symposium on Software Metrics
(METRICS’04). IEEE

4.

Rajiv D Banker, Srikant M Datar, “ Software Complexity and

Maintainability”. Proceedings of the Tenth International
Conference on Information Systems, December 4-6, 1989,

Boston, Massachusetts.

5.

E Da Wei, “ The Software Complexity Model and Metrics for
Object-Oriented” IEEE 2007.

6.

Ayman Madi, Oussama Kassem Zein and S. Kadry, “ On the

Improvement of Cyclomatic Complexity Metric”. International
Journal of Software Engineering and its Applications. Vol.7, No.

2, March 2013.

7.

N. Nagappan, B. Murphy, V. R. Basili, “ The Influence of
Organizational Structure on Software Quality: An Empirical Case

Study”. International Conference on Software Engineering-ICSE,

pp: 521-539, May, 2008. Germany.

8.

C. Wohlin, B. Lennselius and C. Vrana, "Software Metrics:

Structure and Some New Research Results", Proceedings

Milcomp, pp. 221-226, London, United Kingdom, 1986.

9.

Kanika Raheja, R. Tekchandani,” An Emerging Approach

towards Code Clone Detection: Metric Based Approach on Byte

Code”. International Journal of Advanced Research in Computer
Sc. And Software Engg., Vol. 3, Issue. 5 May 2013. Pg. 881-888

10.

Carlos Lopez, E. Manso, Y. Crespo,” The identification of

anomalous code measures with conditioned interval metrics”.
13th TOOLS Workshop on Quantitative Approaches in Object-

Oriented Software Engineering {(QAOOSE} 2010) –

2010.

Malaga, Spain.

11.

Gurdev Singh, Dilbag Singh, Vikram Singh, “ A study of

Software Metrics”. IJCEM International Journal of

Computational Engg. & Management. Vol. 11, January, 2011.

12.

Capiluppi A., Ramil J.F. (2004), “Studying the evolution of open

source systems at different levels of granularity: two case

studies”, Proceeding on the 7th IEEE International Workshop of

Principles of Software Evolution, 2004, pp 113 –

118

13.

M. Zhang, N. Baddoo, “ Performance Comparison of Software

Complexity Metrics in an Open Source Project”. Springer 2007,

pg. 160-174

14.

Nicholas Drouin, Mourad Badri, “ Investigating the Applcability

of the Laws of Software Evolution: A Metrics Based Study”

Springer, 2013, Pg: 174-189. Berlin.

15.

Nicholas Drouin, Mourad Badri, Fadel Toure, “ Analyzing

Software Quality Evolution using Metrics: An Empirical Study

on Open Source Software”. Jouranal of Software, Vol. 8 No. 10
Oct. 2013.

S. No. Brief Name Law VLC 7-Zip

Law-I Continuing

Change

System continually adapted else they

become less satisfactory

Y Y

Law-II Increasing

Complexity

As an system evolved its complexity

increases-unless work is done to

maintain or reduce it

N Y

Law-III Self Regulation. System evolution process is self

regulating

Y Y

Law-IV Observation of

Organizational
Stability

Global activity rate on a system does

not change.

Y Y

Law-V Conservation of

Familiarity

Developer understand the system

behavior. Constant or decline in
system growth

Y/N Y

Law-VI Continuing

Growth

Content of system continually

increase to maintain user satisfaction.

Y Y

Law-VII Declining

Quality

System will decline unless they are

rigorously maintained.

Y Y

Law-VIII Feedback

System

Role of user feedback in providing

momentum for future evolution.

Y Y

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020143

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

152

Appendix-1 Evolution table of VLC

Sr. No

Version

Date

Sr. No

Version

Date

Sr. No

Version

Date

1

vlc-0.1.99

27 Aug 2000

23

vlc-0.6.1

31 July 2003

45

vlc-1.0.0

06 July 2009

2

vlc-0.2.0

02 Feb 2001

24

vlc-0.6.2

14 Aug 2003

46

vlc-1.0.1

27-july-2009

3

vlc-0.2.60

14 Feb 2001

25

vlc-0.7.0

03 Jan 2004

47

vlc-1.0.2

22 Sept 2009

4

vlc-0.2.70

09 April 2001

26

vlc-0.7.1

02 March 2004

48

vlc-1.1.0

22 June 2010

5

vlc-0.2.70-1

09 April 2001

27

vlc-0.7.2

21 May 2004

49

vlc-1.1.1

21 July 2010

6

vlc-0.2.80

05 June 2001

28

vlc-0.8.0

3 Nov 2004

50

vlc-1.1.2

29 July 2010

7

vlc-0.2.80-1

28 July 2001

29

vlc-0.8.1

14 Nov 2004

51

vlc-1.1.3

18 Aug 2010

8

vlc-0.2.90

10 Oct 2001

30

vlc-0.8.2

25 Jun 2005

52

vlc-1.1.4

27 Aug 2010

9

vlc-0.3.0

09 Oct 2001

31

vlc-0.8.4

26 Nov 2005

53

vlc-1.1.5

13 Nov 2010

10

vlc-0.3.1

06 Dec 2001

32

vlc-0.8.5

6 May 2006

54

vlc-1.1.6

24 Jan 2011

11

vlc-0.4.0

23 May 2002

33

vlc-0.8.6

10 Dec 2006

55

vlc-1.1.7

31 Jan 2011

12

vlc-0.4.1

04 June 2002

34

vlc-0.8.6b

18 April 2007

56

vlc-1.1.8

23 March 2011

13

vlc-0.4.2

10 July 2002

35

vlc-0.8.6c

16 June 2007

57

vlc-1.1.9

12 April 2011

14

vlc-0.4.3

26 July 2002

36

vlc-0.9.0

24 Aug 2008

58

vlc_2.0.0

17 Feb 2012

15

vlc-0.4.4

11 Aug 2002

37

vlc-0.9.1

25 Aug 2008

59

vlc_2.0.1

16 March 2012

16

vlc-0.4.5

14 Oct 2002

38

vlc-0.9.2

14 Sept 2008

60

vlc_2.0.2

27 June 2012

17

vlc-0.4.6

14 Nov 2002

39

vlc-0.9.3

26 Sept 2008

61

vlc_2.0.3

18 July 2012

18

vlc-0.5.0

03 Feb 2003

40

vlc-0.9.4

7 Oct 2008

62

vlc_2.0.4

17 Oct 2012

19

vlc-0.5.1

17 Feb 2003

41

vlc-0.9.5

24 Oct 2008

63

vlc_2.0.5

14 Dec 2012

20

vlc-0.5.2

11 March 2003

42

vlc-0.9.6

5 Nov 2008

64

vlc_2.0.6

7 April 2013

21

vlc-0.5.3

08 April 2003

43

vlc-0.9.8a

3 Dec 2008

65

vlc_2.0.7

26 May 2013

22

vlc-0.6.0

23 June 2003

44

vlc-0.9.9

29 March 2009

Appendix-2: Evolution table of 7-Zip

Sr No

Version

Date

Sr. No.

Ver-sion

Date

Sr. No.

Version

Date

 1

4.13 beta

12/14/2004

22

4.45 beta

4/17/2007

43

9.04 beta

5/30/2009

 2

4.14 beta

1/11/2005

23

4.46 beta

5/25/2007

44

9.06 beta

8/17/2009

 3

4.15 beta

1/25/2005

24

4.47

beta

5/27/2007

45

9.07 beta

8/27/2009

 4

4.16 beta

3/29/2005

25

4.48 beta

6/26/2007

46

9.09 beta

12/12/2009

 5

4.17 beta

4/18/2005

26

4.49 beta

7/11/2007

47

9.10 beta

12/22/2009

 6

4.18 beta

4/19/2005

27

4.50 beta

7/24/2007

48

9.11 beta

3/15/2010

 7

4.19 beta

5/21/2005

28

4.51 beta

7/25/2007

49

9.12 beta

3/24/2010

 8

4.2

5/30/2005

29

4.52 beta

8/3/2007

50

9.13 beta

4/15/2010

 9

4.23

6/29/2005

30

4.53 beta

8/27/2007

51

9.14 beta

6/4/2010

 10

4.24 beta

7/6/2005

31

4.54 beta

9/4/2007

52

9.15 beta

6/20/2010

 11

4.25 beta

7/31/2005

32

4.55 beta

9/5/2007

53

9.16 beta

9/8/2010

 12

4.26 beta

8/5/2005

33

4.56 beta

10/24/2007

54

9.17 beta

10/4/2010

 13

4.27 beta

9/21/2005

34

4.57

12/6/2007

55

9.18 beta

11/2/2010

 14

4.28 beta

9/27/2005

35

4.58 beta

5/5/2008

56

9.19 beta

11/11/2010

 15

4.29 beta

9/28/2005

36

4.59 beta

8/13/2008

57

9.2

11/18/2010

 16

4.30 beta

11/18/2005

37

4.60 beta

8/19/2008

58

9.21 beta

4/11/2011

 17

4.31

12/4/2005

38

4.61 beta

11/23/2008

59

9.22 beta

4/18/2011

 18

4.32

12/9/2005

39

4.62

12/2/2008

60

9.23 alpha

6/7/2011

 19

4.42

5/14/2006

40

4.63

12/31/2008

61

9.25 alpha

9/16/2011

 20

4.43 beta

9/15/2006

41

4.64

1/3/2009

62

9.30 alpha

10/26/2012

 21

4.44 beta

1/20/2007

42

4.65

2/3/2009

63

9.32 alpha

12/1/2013

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020143

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

153

Analyisi-3 : 7-Zip Data Analysis

Sr.

No. Statments

Class

Defs

Methods

/Class

AvgStmts

/Method

Class

Size

Avg

Cmplxity Functions

Sr.

No. Statments

Class

Defs

Methods

/Class

AvgStmts

/Method

Class

Size

Avg

Cmplxity Functions

1 53649 632 8.32 8.2 68.2 3.09 926 31 66409 763 8.67 8.6 74.6 3.24 1156

2 54467 636 8.42 8.2 69.0 3.09 940 32 66368 767 8.52 8.7 74.1 3.27 1166

3 54706 637 8.41 8.2 69.0 3.1 947 33 66562 768 8.53 8.7 74.2 3.27 1168

4 54832 637 8.41 8.2 68.9 3.11 955 34 66569 768 8.53 8.7 74.2 3.27 1168

5 55726 649 8.5 8.3 70.6 3.12 963 35 66637 768 8.54 8.7 74.3 3.27 1172

6 62714 738 8.6 8.7 74.8 3.19 1033 36 66641 768 8.54 8.7 74.3 3.27 1172

7 62693 737 8.61 8.7 74.9 3.2 1029 37 65527 756 8.51 8.7 74.0 3.25 1181

8 62699 737 8.61 8.7 74.9 3.2 1029 38 70277 822 8.29 8.9 73.8 3.3 1262

9 64176 745 8.75 8.6 75.3 3.18 1076 39 70256 822 8.29 8.9 73.8 3.3 1265

10 64233 745 8.75 8.6 75.3 3.18 1079 40 70457 824 8.26 8.9 73.5 3.3 1269

11 64243 746 8.74 8.6 75.2 3.18 1080 41 70460 824 8.26 8.9 73.5 3.3 1269

12 63564 743 8.72 8.5 74.1 3.17 1075 42 70473 826 8.26 8.9 73.5 3.3 1270

13 64204 746 8.75 8.6 75.3 3.18 1084 43 70473 826 8.26 8.9 73.5 3.3 1270

14 64251 747 8.76 8.6 75.3 3.18 1084 44 70503 826 8.27 8.9 73.6 3.3 1269

15 65349 761 8.73 8.6 75.1 3.19 1089 45 74979 868 8.28 9.2 76.2 3.36 1315

16 65680 763 8.8 8.6 75.7 3.19 1090 46 76939 891 8.41 9.2 77.4 3.34 1308

17 65757 764 8.79 8.6 75.6 3.19 1093 47 77087 893 8.39 9.2 77.2 3.35 1310

18 65757 764 8.79 8.6 75.6 3.19 1093 48 77113 895 8.34 9.2 76.7 3.36 1315

19 66812 772 8.83 8.7 76.8 3.21 1106 49 77113 895 8.34 9.2 76.7 3.36 1315

20 66807 772 8.82 8.7 76.7 3.21 1108 50 77233 893 8.35 9.2 76.8 3.36 1336

21 66811 772 8.82 8.7 76.7 3.21 1108 51 77244 893 8.36 9.2 76.9 3.36 1336

22 69414 816 8.69 8.6 74.7 3.2 1130 52 77433 893 8.37 9.2 77.0 3.36 1338

23 66034 754 8.66 8.6 74.5 3.22 1128 53 78057 899 8.39 9.3 78.0 3.37 1346

24 65245 749 8.51 8.6 73.2 3.23 1113 54 78055 899 8.39 9.3 78.0 3.37 1346

25 65363 747 8.57 8.6 73.7 3.22 1115 55 78202 900 8.39 9.3 78.0 3.37 1346

26 65365 747 8.57 8.6 73.7 3.22 1115 56 78396 893 8.39 9.3 78.0 3.38 1350

27 65539 752 8.59 8.5 73.0 3.22 1121 57 80507 905 8.48 9.5 80.6 3.42 1362

28 66361 763 8.59 8.6 73.9 3.23 1141 58 80477 903 8.49 9.5 80.7 3.43 1359

29 65919 758 8.65 8.6 74.4 3.23 1145 59 80621 903 8.49 9.5 80.7 3.44 1360

30 65919 758 8.65 8.6 74.4 3.23 1145 60 82282 935 8.45 9.6 81.1 3.45 1347

61 82348 936 8.45 9.6 81.1 3.45 1347

Analysis-4 VLC Data Analysis

Sr

No

.

Statemnts
Class
Defs

Methods
/Class

Avg Stmts
/Method

Class
Size

Avg
Cmplxty

Functions

 Sr

No

.

Statemnts
Class
Defs

Methods
/Class

Avg

Stmts

/Method

Class
Size

Avg
Cmplxty

Functions

1 20407 16 5 9 40 3 720 30 327316 1597 8 8 64 2 8304

2 35481 37 5 9 40 2 1396 31 327696 1596 8 8 64 2 8320

3 24440 19 5 9 40 2 935 32 327118 1596 8 8 64 2 8333

4 32677 44 8 7 55 2 1182 33 327294 1594 8 8 64 2 8324

5 24440 19 5 9 40 2 935 34 326946 1594 8 8 64 2 8324

6 44854 80 8 7 58 2 1658 35 326572 1595 8 8 64 2 8325

7 45952 57 9 7 56 2 1560 36 326617 1595 8 8 64 2 8309

8 46328 57 9 7 56 2 1558 37 327033 1595 8 8 64 2 8311

9 50358 66 9 7 57 2 1687 38 326899 1595 8 8 64 2 8359

10 50921 66 9 7 57 2 1696 39 341363 1693 7 8 61 2 9200

11 51662 66 9 7 57 2 1710 40 343463 1707 7 8 61 2 9228

12 51905 67 9 6 59 2 1710 41 339849 1711 7 8 61 2 9337

13 51503 67 9 6 59 2 1700 42 333769 2047 7 8 55 2 9581

14 55894 76 11 8 83 2 1823 43 334595 2047 7 8 55 2 9603

15 58053 77 11 8 83 2 1909 44 334881 2048 7 8 55 2 9603

16 118561 253 10 9 85 2 2690 45 333793 2048 7 8 55 2 9593

17 120155 258 10 9 87 2 2716 46 333935 2048 7 8 55 2 9593

18 105325 266 10 9 87 2 2791 47 334029 2048 7 8 55 2 9594

19 142414 329 9 9 82 2 3106 48 334495 2048 7 8 55 2 9594

20 158881 409 9 9 82 2 3220 49 334419 2048 7 8 55 2 9592

21 176169 402 9 9 84 1 3418 50 335196 2051 7 8 55 2 9607

22 175863 407 9 9 85 1 3389 51 335229 2051 7 8 55 2 9617

23 182272 488 9 9 83 1 3355 52 349089 2118 7 8 52 2 11170

24 207721 635 8 8 62 2 3647 53 351390 2119 7 8 53 2 11209

25 219210 695 8 8 61 2 3886 54 352553 2119 7 8 53 2 11211

26 235789 694 7 8 54 2 4498 55 354039 2120 7 8 53 2 11236

27 236551 697 7 8 54 2 4516 56 354739 2120 7 8 53 2 11236

28 359436 1337 7 8 61 2 6301 57 355094 2123 7 8 53 2 11241

29 347779 1382 8 8 64 2 6385 58 354995 2123 7 8 53 2 11241

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020143

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 02, February-2015

154

