
Optimization of Berth Scheduling Problem using

Genetic Algorithm

Soumen Paul

Dept of Information Technology

Haldia Institute of Technology

Haldia, India

Omprakash Chakraborty
Dept of Information Technology

 Haldia Institute of Technology

Haldia, India

Abstract- An algorithm is presented for the scheduling of ships

into berths using the minimization of net waiting time by

Genetic Algorithm. The output as waiting time of the ships are

derived based on their operation times and availability of berths

as in section V. Then the equivalent service order of ships is

determined by minimizing the net waiting time based on

threshold comparison in Genetic algorithm. The minimization

procedure is simple and computer oriented. It is shown that the

algorithm has several advantages, e.g. the reduced waiting time

enhances the berth utilization thereby increasing service

capacity and sailing time. One numerical example is solved to

illustrate the efficiency of the algorithm in berth scheduling

problem,

Keywords— Net Waiting Time, Genetic Algorithm, Threshold,

Operation Time

I. INTRODUCTION

Every berth service system can be translated into

mathematical model. The mathematical procedure of system

modeling often leads to comprehensive description of a

process in the form of higher time complexity which is not

preferred in terms of both port and sailing efficiencies

respectively. It is, therefore, useful, and sometimes necessary,

to find the possibility of finding scheduling sequences of the

same ships but yielding lower time complexity that may be

considered to reflect adequately the optimized service of the

system under consideration. Some of the reasons for using

scheduling sequence models of port servicing systems could

be as follows

 To have a better organising of the system,

 To reduce time complexity,

 To enhance berth capacity,

 To increase sailing time.

Various techniques [1]-[15] have been suggested related to

berth scheduling by previous authors. In 2009 [1], three

models were described for discrete dynamic berth allocation

of arrival of ships. An improved Lagrangian relaxation

algorithm [2] was developed to solve the problem of

dynamically scheduling ships to multiple continuous berth

spaces at the raw material docks. It is implemented in an iron

and steel complex with the objective of minimizing the total

weighted service. The solution of berth allocation [3] and

yard assignment problems was presented by building a

collaborative berth allocation model with multiple ports

under the background of bulk ports. The neighborhood-search

based heuristic optimization approach [4] for the berth

scheduling problem was presented to determine the berthing

time and space for each incoming ship. A knowledge

reasoning mechanism [5] was designed along with numerical

experiments for both the berth allocation and quay crane

assignment. That illustrates the proposed knowledge-based

system. Studying the problem of berth allocation with a

priority service [6] by presenting a model of priority along

with the simulation of the problem was done through the

improvement of the availability of the berths. Genetic

Algorithm which is based on the Darwinian principle [7] of

natural selection had been successfully applied to Berth

allocation problem (BAP), which can decide the ships’

berthing position and berthing time at a container terminal.

The problem of berth allocation was done [8] by

minimization of the total waiting time of the vessels, along

with the improvement of the availability of the berths through

the presentation of priority model. This average ship waiting

time at the berthing area of port container terminal was

reduced [9, 10] using queuing theory at ship tugging

operation. Heuristic procedure based on genetic algorithm

[11] was presented of determining a dynamic berth

assignment to ships in the public berth system. A heuristic

algorithm [12] for solving discrete berth allocation problem

(DRAP) had been evaluated for three different berthing

policies. Simulation experiment was developed for this

evaluation process. Berth allocation models [13, 14] that

allow multiple ships to occupy a single berthing position

were explored. DRAP [15] was extended to the multi water

depth configuration in a public berth system with proposed

Genetic Algorithm. The paper is organized in as follows

In section II the objective of paper is elaborated. Problem

formulation with GA is represented in section III. Section IV

describes all the algorithms in sequence and flow chart of the

algorithm along with an example. In section V, the solution

of example I is described and interpreted through tabular and

graphical presentation. The limitation of the work and future

scope are properly narrated in section VI. Conclusion of the

research work is mentioned in section VII.

II. OBJECTIVE

The objectives of this work are:

To develop a model formulating the ship scheduling

 Problem, and find an algorithm to solve this

problem.

 To achieve the minimum net waiting time of ships

for berth allocation.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS090162
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 5 Issue 09, September-2016

221

 Balanced distribution of service time among all the

berths with minimization of net waiting time.

III. THE PROBLEM FORMULATION USING

GENETIC ALGORITHM

lim: the total number of chromosomes.

ns: the total number of ships.

nb: the total number of berths available.

aij=bi implies that the jth ship order in ith chromosome is

assigned to bi ; where bi corresponds to the berth having the

least service time.

j = (1,2,…,ns)

i = (1,2,…,lim)

bti= opt(ajk) implies that the operation time of the kth ship of

the jth chromosome is added to the service time of the ith

allocated berth.

i = (1,2,…,nb)

j = (1,2,…,lim)

k= (1,2,…,ns)

The basics of optimization revolve round the following

objective function (Z):

Z= Minimize wt,

where wt = bti, for all i = 1, 2… ns,

where bti is the waiting time for individual ships, subjected to

the following constraints

Opt (ai) ≤ th for all i = 1, 2, …,lim , where Opt(ai)

denotes the operation time of ai
th chromosome from the

parent population of size lim.

for all i=1, 2,…,ns (implies one berth

can serve only one ship at a time)

ai>ai-1 for all i=1,2,…,ns (implies that the ships in the

chromosome ‘a’ will be served only in the given order of the

chromosome).

Opt(ai), ns, nb>0, for all i=1,2,…,ns(implies that the

operation time of ships in the chromosome ‘a’ , the number of

ships ‘ns’ and the number of berths(nb) all must have a

positive value).

IV. ALGORITHM AND FLOWCHART OF THE PROBLEM

Declaration of variables:

nb: To store the total number of berths.

ns: To store the total number of ships

lim: To store the total number of parent chromosomes

tp: Array to hold the operation time of parent

 Chromosomes

tps: Array to hold the sorted operation time of parent

 Chromosomes

epoch: To store the total number of iterations.

th: To store the threshold value

sp: Array to store the selected parents

cnt: To hold Counter value

cp: To hold individual parent chromosomes

newp: Array to store the new population.

newpt: Array to store operation times of the new

population

newpts: Array to store the sorted operation times of

the new population

a: To store the chromosome

op: Array to hold the operation time of the

chromosomes.

wt: OUTPUT variable for the function to return

the net waiting time of the chromosome.

b: Array to hold the berth numbers available.

bt: Array to hold the service time at individual

berths.

s: To hold the individual ship from a given

 chromosome.

sp: Array to hold the population and also hold

the resultant population to return as

OUTPUT

ptc: To hold the population size

tm: To hold the population as in sp temporarily.

cp: To assign the crossover point.

ch: Array to hold the population and also hold

the resultant population to return as

OUTPUT.

n: To hold the ship numbers

Algorithm: BERTH_SCH1

Step 1: Initialize the values of ns and nb by taking

 inputs from the user.

Step 2: Repeat step 3 for ‘ns’ times.

Step 3: Get the operation times of the individual

ships from the user as input.

Step 4: Initialize the value of ‘lim’ by receiving the

value of the number of parent strings to be

used as the initial population.

Step 5: Repeat steps 6 to 9 for ‘lim’ times

Step 6: Generate random combination of ‘ns’

numbers to develop individual

chromosomes.

Step 7: Calculate the operation time of the

generated chromosome using ‘opt1’

function and them it to the ‘tp’ array.

Step 8: Repeat step 9 for ‘ns’ times.

Step 9: Add the generated chromosome to the

parent population.

Step 10: Repeat steps 11 to 23 for ‘epoch’ times.

Step 11: Sort the ‘tp’ array in ascending order of

operation time in ‘tps’.

Step 12: Initialize the values of ‘th’ and ‘sp’ to 0 and

‘cnt’ value to 1.

Step 13: Calculate the threshold value for the parent

population.

Step 14: Repeat steps 15 and 16 for ‘lim’ times.

Step 15: Get the parent chromosome in ‘cp’.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS090162
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 5 Issue 09, September-2016

222

Step 16: Select the chromosome ‘cp’ into ‘ps’ if

their

operation time is less than the threshold

value.

Step 17: Use ‘crossover’ and ‘crossmod’ functions

to generate valid offsprings of the parents.

Step 18: Include the new offspring into the ‘newp’

array of size ‘lim’.

Step 19: Include the best of parents to fill the

remaining space of the array.

Step 20: Display the new population.

Step 21: Calculate the operation times for the new

population chromosomes in ‘newpt’ and

display it’s sorted from in ‘newpts’.

Step 22: Assign the new population of ‘newp’ as the

parent of the next genetic optimization

epoch.

Step 23: Assign the operation times of the new

chromosomes ‘newp’ in the ‘tp’.

Step 24: Display the optimized time result.

Step 25: END.

Algorithm: OPT1

Step 1: Initialize all values of ‘b’ and ‘bt’ to 0.

Step 2: Repeat steps 3 and 4 for ‘nb’ times.

Step 3: Allow the ship to access the berths.

Step 4: Update ‘bt’ with the ‘op’ of the

corresponding ships.

 Step 5: Repeat step 6 to 8 for (‘ns’-‘nb’) times.

Step 6: Extract the individual ship numbers from

the chromosome.

Step 7: Assign the berth having the lowest service

time to the next ship.

Step 8: Consider the current service time as of ‘bt’

as the waiting time incoming ship.

Step 9: Add the individual waiting time in ‘bt’ to

the net waiting time of ‘wt’.

Step 10: Return ‘wt’.

Step 11: END

Algorithm: CROSSOVER

Step 1: Repeat step 2 for ‘ptc’ times

Step 2: Repeat step 3 for ‘ns’ times.

Step 3: Assign the chromosomes of ‘sp’ into ‘tm’.

Step 4: Select 2 parent chromosomes sequentially.

Step 5: If ‘ns’ is even, then

Calculate ‘cp’ =’ns’/2.

else

Calculate ‘cp’= (’ns’-1)/2.

 [end if]

Step 6: Interchange the prior and posterior parts of

‘cp’ between the parents and vice-verse

with ‘sp’ and ‘tm’.

Step 7: Return ‘sp’.

Step 8: END.

Algorithm: CROSSMOD

Step 1: Initialize ‘n’ with the values of ship

numbers.

Step 2: Repeat step 3 for ‘ptc’ times.

Step 3: Repeat steps 4 for ‘ns’ times.

Step 4: Verify the ships numbers of ‘ch’ with that

of ‘n’.

Step 5: If number matches with any value of ‘n’,

then,

Replace the number with 0.

Else

Replace the number with the index

of ‘n’ having the first non-zero

element.

 [end if]

Step 6: Repeat Step 1.

Step 7: Return ‘ch’.

Step 8: END.

Figure 1: Flow chart of the problem

T

he solution procedure is written in the MATLAB and executed
on a personal computer equipped with a Intel® Core™ i5-
3230M CPU running at 2.60 GHz speed. The

memory size is 8.00 GB with x 64 bit operation system of

Microsoft Windows 8.1.

Example 1:

Let us consider the following problem for berth scheduling

problem.Number of ships: 6

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS090162
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 5 Issue 09, September-2016

223

Number of berths: 3

Operation time for ship 1: 90 units

Operation time for ship 2: 70 units

Operation time for ship 3: 80 units

Operation time for ship 4: 50 units

Operation time for ship 5: 60 units

Operation time for ship 6: 40 units

I. RESULT AND ANALYSIS

Solution:

The numbers of parent chromosomes are considered as 100.

Table 1: Convergence table of final solution using algorithm BERTH_SCH1

Sl.
No

.

Epoch B1 B2 B3 Wt Sequence/Order
of Service

1 1 70 90 80 240 <2,1,3,4,5,6>

2 3 50 90 80 220 <4,1,3,2,5,6>

3 5 70 80 60 210 <2,3,5,1,4,6>

4 7 90 40 60 190 <1,6,5,4,2,3>

5 9 40 50 90 180 <6,4,1,2,3,5>

6 11 80 50 40 170 <3,4,6,1,5,2>

7 13 60 40 50 150 <5,6,4,1,2,3>

8 14 50 60 40 150 <4,5,6,1,2,3>

Thus it is observed that the net waiting time of ships

converge at 150 time units keeping balanced service pressure

at the 3 berths.
Figure 2: Bar diagram of epoch vs net waiting time

Figure 3: Bar diagram of epoch vs Individual berth waiting time.

Example 2:

No of ship=ns=50

No of berths=nb=30

No of parent chromosome=100

Solution:

The initial normal waiting time is 1818 units.

After optimization the waiting time reduces to 1709 time

units.

Epoch =50

Similarly in testing conditions concerning large number of

ships(i.e ns=50) in case of a larger port (with 30 berths) the

initial normal net waiting time is obtained as 1818 time units

which after optimization reduces to 1709 time units.

VI. LIMITATIONS & FUTURE SCOPE

Some factors that are yet to be implemented are:

1. Availability of tug boat

2. Type of ship

3. Traffic congestion

4. Availability of crew

5. Time for Terminal duties

6. Emergencies

With the incorporation of the above features the formulated

algorithm can promise much practical and real-world

applicable result. It will ease up the concerned authority’s

need to hire expert experienced personals to monitor

scheduling process. However the approach can be modified

to learn from real experts by means of different learning

algorithms that can work well with genetic algorithmic

approach. With the ongoing research on harnessing

capabilities of genetic approach in computation there remains

a lot of possibility yet to be implemented.

VII. CONCLUSION

The major objective of the computational experiment was to

evaluate the Minimum waiting time of the proposed GA

designed model in terms of the quality of the solutions and

the computing time. This evaluation was achieved by

comparing the results of the two approaches: the exact

method using FCFS (Manual Computation) and the GA

designed model. Computational results also indicate that the

optimization approach can solve some moderate size

problems by using a method to generate a subset of feasible

schedules, which is considered very close to optimal solution.

On the other hand, a very large problem will be difficult to be

solved due to out of memory, where it recommends resorting

to GA for solving them. Meantime, computational results

indicate that GA in term of the quality of the solutions is

slightly better than work using FCFS method. Experiment

results presented for the GA approach indicate that when the

number of epoch is large, better solution may obtain.

However, some users prefer reasonable solution in less time

consumption. Further works can be done by elimination of

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS090162
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 5 Issue 09, September-2016

224

disadvantages. Finally, the procedure is put to proof in a real

scenario in which six ships had to visit three different Berths

and serve between them. In the example 1 it is proven that the

method brings advantages when compared with FCFS.

REFERENCES

[1] Katja Buhrkal, Sara Zuglian, Stefan Ropke, Jesper Larsenc, Richard

Lusby, “Models for the Discrete Berth Allocation Problem: A
Computational Comparison”, Preprint submitted to Transportation

Research Part E August 19, 2009

[2] Lixin Tang, Shaohua Li, and Jiyin Liu, “Dynamically scheduling ships
to multiple continuous berth spaces in an iron and steel complex”, Intl.

Trans. in Op. Res. 16 (2009) pp. 87–107
[3] Nitish Umang, Michel Bierlaire, Ilaria Vacca, “”The berth allocation

problem in bulk ports”, STRC April, 2011

[4] Yusin Lee, Chuen-Yih Chen, “An optimization heuristic for the berth
scheduling problem”, European Journal of Operational Research, Vol

196, Issue 2, 16 July 2009, pp 500–508

[5] Sotirios Theofanis, Maria Boile, and Mihalis Golias, “An Optimization
Based Genetic Algorithm Heuristic for the Berth Allocation Problem”,

2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp.

4439-4445
[6] Tong Shan, “Genetic Algorithm for Dynamic Berth Allocation Problem

with Discrete Layout”, The 2nd International Conference on Computer

Application and System Modeling (2012), pp. 261-264
[7] Charif Mabrouki, Ahmed Faouzi, Ahmed Mousrij, “A Priority

Decision Model for Berth Allocation and Scheduling in a Port

Container Terminal”, Journal of Theoretical and Applied Information
Technology 20th August 2013. Vol. 54 No.2, pp. 276-286

[8] A. Shahpanah, S. Shariatmadari, A. Chegeni, A. Gholamkhasi, M.

Shahpanah, “Improvement in Queuing Network Model to Reduce
Waiting Time at Berthing Area of Port Container Terminal via Discrete

Event Simulation”, Applied Mechanics and Materials Vol. 621 (2014)

pp. 253-258
[9] Wen-Chih Huang, Sheng-Chieh Wu, “The Estimation of the Initial

Number of Berths in a Port System Based on Cost Function”, Journal

of Marine Science and Technology, Vol. 13, No. 1, pp. 35-45 (2005)
[10] Nicolaou, S. N. (1967). ‘‘Journal of the Waterways and Harbors

Division, 1967, Vol. 93, Issue 4, Pg. 107-132

[11] Lalla-Ruiz, E.; Melian-Batista, B., and Moreno-Vega, J.M., 2012.
Artificial intelligence hybrid heuristic based on tabu search for the

dynamic berth allocation problem. Engineering Applications of

Artificial Intelligence, 25(6), pp. 1132-1141
[12] S.-W. Lin and C.-J. Ting, “Solving the dynamic berth allocation

problems by simulated annealing,” Engineering Optimization, vol. 43,

no. 3, pp. 308–327, 2014.
[13] G. G. Brown, S. Lawphongpanich, and K. P. Thurman, “Optimizing

ship berthing,” Naval Research Logistics, vol. 41, no. 1, pp. 1–15,

1994.
[14] G. G. Brown, K. J. Cormican, S. Lawphongpanich, and D. B. Widdis,

“Optimizing submarine berthing with a persistence incentive,” Naval

Research Logistics, vol. 44, no. 4, pp. 301–318, 1997.

[15] E. Nishimura, A. Imai, and S. Papadimitriou, “Berth allocation

planning in the public berth system by genetic algorithms,”European

Journal of Operational Research, vol. 131, no. 2, pp, 282–292, 2001.

APPENDIX

Source Code

1. File name: BERTH_SCH1.m

clc;

clear;

ns = input('Enter no. of ships :');

nb = input('Enter no. of berths :');

for i=1:ns

fprintf('operation time for ship %d : ',i);

op(i) = input('');

end

disp(op);

%op=[60 90 70 50 40 3 80];

%ns=7;

%nb=3;

%a=[4 3 2 5 1 7 6];

%t=opt1(a,op,ns,nb);

%disp(t);

%---

lim=input('Enter no. of parent chromosomes :');

for x=1:lim

 a=randperm(ns);

tp(x)=opt1(a,op,ns,nb);

disp(a);

for z=1:ns

pch(x,z)=a(z);

end

end

epoch=input('Enter no. of epochs :');

forep=1:epoch

disp(pch);

disp('---

-----------------');

disp(tp);

disp('--------------------------------after sorting----------

--------------------------------');

tps=sort(tp);

disp(tps);

th=0;

sp=0;

th=(min(tps)+max(tps))/2;

disp('Threshold value :');

disp(th);

cnt=1;

for i=1:lim

cp=(pch(i,:));

if opt1(cp,op,ns,nb)<=th;

disp(cp);

ps(cnt,:)=cp;

cnt=cnt+1;

else

continue;

end

end

selp=crossover(ps,(cnt-1),ns);

selp=crossmod(selp,(cnt-1),ns);

newp=selp;

 j=0;

disp('----------------');

disp('----------------');

disp(cnt);

psl=length(ps);

disp(psl);

for i=1:psl

newp(cnt+j,:)=ps(i,:);

 j=j+1;

end

if length(newp)<lim

for i=1:(lim-(length(newp)))

newp(length(newp)+1,:)=pch(i,:);

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS090162
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 5 Issue 09, September-2016

225

end

end

disp('----------------');

disp(newp);

disp('----------------');

forni=1:lim-1

disp(newp(ni,:));

news=newp(ni,:);

newpt(ni)=opt1(news,op,ns,nb);

disp(newpt(ni));

end

newpts=sort(newpt);

disp('----------------');

disp('<><><><><><><><><><><><><><><><><

><><><><>');

pch=newp;

tp=newpt;

end

disp('----------------');

disp(newpts(1));

2. File Name:crossmod.m

function[ch]=crossmod(ch,ptc,ns)

for i=1:ns

n(i)=i;

end

for i=1:ptc

for j=1:ns

if(n(ch(i,j))~=0)

n(ch(i,j))=0;

else

for z=1:ns

if n(z)~=0

ch(i,j)=n(z);

n(ch(i,j))=0;

break;

end

end

end

end

for i=1:ns

n(i)=i;

end

end

disp(ch);

3. File name:crossover.m

function[sp]=crossover(sp,ptc,ns)

disp(ptc);

for x=1:ptc

for z=1:ns

tm(x,z)=sp(x,z);

end

end

if(mod(ns,2)==0)

cp=ns/2;

for i=1:2:ptc-1

for j=1:cp

sp(i,j)=tm(i+1,cp+j);

sp(i+1,cp+j)=tm(i,j);

end

end

end

if(mod(ns,2)~=0)

cp=(ns-1)/2;

for i=1:2:ptc-1

or j=1:cp

sp(i,j)=tm(i+1,cp+j);

sp(i+1,cp+j)=tm(i,j);

end

end

end

disp(sp);

4. File name:opt1.m

function[wt]=opt1(a,op,ns,nb)

for i=1:nb

b(i)=0;

bt(i)=0;

end

for i=1:nb

b(i)=a(i);

bt(i)=op(a(i));

end

for i=(nb+1):(ns-nb)

 s=a(i);

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS090162
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 5 Issue 09, September-2016

226

